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Decoding movement related intentions is a key step to implement BMIs. Decoding

EEG has been challenging due to its low spatial resolution and signal to noise ratio.

Metric learning allows finding a representation of data in a way that captures a

desired notion of similarity between data points. In this study, we investigate how

metric learning can help finding a representation of the data to efficiently classify EEG

movement and pre-movement intentions. We evaluate the effectiveness of the obtained

representation by comparing classification the performance of a Support Vector Machine

(SVM) as a classifier when trained on the original representation, called Euclidean,

and representations obtained with three different metric learning algorithms, including

Conditional Entropy Metric Learning (CEML), Neighborhood Component Analysis (NCA),

and the Entropy Gap Metric Learning (EGML) algorithms. We examine different types of

features, such as time and frequency components, which input to the metric learning

algorithm, and both linear and non-linear SVM are applied to compare the classification

accuracies on a publicly available EEG data set for two subjects (Subject B and

C). Although metric learning algorithms do not increase the classification accuracies,

their interpretability using an importance measure we define here, helps understanding

data organization and how much each EEG channel contributes to the classification.

In addition, among the metric learning algorithms we investigated, EGML shows the

most robust performance due to its ability to compensate for differences in scale

and correlations among variables. Furthermore, from the observed variations of the

importance maps on the scalp and the classification accuracy, selecting an appropriate

feature such as clipping the frequency range has a significant effect on the outcome

of metric learning and subsequent classification. In our case, reducing the range of the

frequency components to 0–5Hz shows the best interpretability in both Subject B and C

and classification accuracy for Subject C. Our experiments support potential benefits of

using metric learning algorithms by providing visual explanation of the data projections

that explain the inter class separations, using importance. This visualizes the contribution

of features that can be related to brain function.

Keywords: Electroencephalogram (EEG), brain machine interfaces (BMIs), information theoretic learning (ITL),

metric learning (ML), support vector machine (SVM), movement intention decoding, pre-movement intention

decoding, readiness potential (RP)
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INTRODUCTION

Brain-machine interfaces (BMIs) allow individuals to interact
with machines through direct interpretation of their brain
signals. One of the main goals for developing BMIs has been
improving the quality of life of patients with debilitating
conditions such as paralysis (Chaudhary et al., 2016; Lebedev and
Nicolelis, 2017). Different methods measuring neural activities
have distinctive spatial and temporal resolutions which have
direct influence on what and how information can be processed.
Electroencephalogram (EEG) allows non-invasive recording of
neuronal activities, with benefits of safety and ease relative to
invasive recording procedures, including intracortical BMIs that
require surgical procedures to implant multielectrode arrays
inside of the brain (Abiri et al., 2019; Rashid et al., 2020).

A sensory-motor rhythm-based BMI is the most popular
EEG-based BMI paradigm for controlling external devices based
on motor imagery (Yuan and He, 2014). A notable fact is that
this motor imagery is defined as kinesthetic movement of any
body parts such as hands, feet, and tongue, not necessarily
related to the corresponding movement (Abiri et al., 2019). For
example, in a sensory-motor rhythm-based BMI, a right hand
could be imagined controlling an external device toward the right
direction, a left hand for left, a right foot for up, and a left foot
for down directions. The imagination of the body parts helps
to provide distinctive EEG patterns, overcoming the low spatial
resolution and signal to noise ratio, so this approach has been
popularly employed in EEG-based BMIs. This is reflected on
publicly available EEG data sets for motor imagery that mostly
cover sensory-motor rhythm-based BMI setups (Agarwal, 2020).

However, it should be noted that the discrepancies between
the representation of the body parts and the actual movements
of the external device require large amounts of calibration data
and lengthy training periods for the participants ranging from
several days to weeks. Moreover, this approach fails to follow a
natural and intuitive way of controlling external devices (Kim
et al., 2015). To accomplish the direct extraction of movement
kinematics so that a subject can imagine the natural way of
movement to control external devices, we may need to represent
the EEG in a more appropriate way for neural decoding.

In addition, the time instant when the neural activity is
decoded is an important aspect to design more realistic BMIs.
Traditionally, BMIs have been focused on decoding motor
imagery right after movement onset, since dominant primary
motor activities can be detected after the movement onset (Yong
and Menon, 2015; Kaya et al., 2018; Kim et al., 2019). However,
decoding pre-movement intention, which is measured prior
to movement onset, can help pursuing more realistic BMIs
capable of complex tasks. Readiness potential, which is also called
Bereitschaftspotential or pre-movement potential, is known as
brain activity associated with movement preparation (Schurger
et al., 2021). It has been reported that its early components can be
observed around ∼1.5–0.4 s prior to onset, and late components
can be detected around ∼0.4–0 s before the movement onset
(Brunia et al., 1985; Damen et al., 1996; Rektor, 2000). The unique
pattern of the readiness potential supports the possibility of
classifying different pre-movement intentions using EEG signals

occurring before the movement onset. EEGs associated with pre-
movement have been used to classify movement direction in a
four-target center-out reaching task (Kim et al., 2019) and to
decode voluntary finger movement intention in key pressing
(Wang et al., 2020). Moreover, pre-movement EEG correlations
among upper limb analytic movements (López-Larraz et al.,
2014) and complex upper limbmovements (Mohseni et al., 2020)
have been reported. It has also been shown that target objects
could be predicted before movement from EEG in a virtual
environment to choose one object from presenting two or three
object options (Novak et al., 2013).

Although the possibilities of classifying EEG pre-movement
intention have been reported, this is a challenging task and
the interpretation of neural activities in different brain areas
is still lacking. It is well-known that after the movement
onset, EEG recorded from primary motor cortex (commonly
from channel C3 and C4) shows distinctive EEG patterns to
different movements, which helps to classify these intentions
appropriately. However, relatively less dominant and complex
neural activities prior to the movement onset are more
challenging to detect (Andersen and Cui, 2009). Thus, previous
research has been mainly focused on premotor cortex and
primary motor cortex, emphasizing C3 and C4 channels in EEG.
Methods that exploit the joint activity in multiple brain areas and
that can capture relations beyond simple linear correlations have
the potential advantage for extracting the information required
to decode pre-movement intention.

Metric learning is one type of machine learning algorithm
that finds a transformation that reorganizes data by optimizing
an objective function. Metric learning can be understood as
the problem of learning a representation, a mapping, of the
data that yields some desired notion of similarity between data
points (Bellet et al., 2015; Suárez et al., 2021). In other words,
the objective function in metric learning focuses on how the
machine learning model represents the data in terms of distances
or similarities between data points. This is a distinctive aspect of
metric learning which is conceptually different from learning a
representation that directly optimizes classification performance.
A representation learned for classificationmay impose structures,
such as linear decision boundaries, to define a global rule that
classifies data. This can result in ignoring informative features
that are not linearly related to the class labels. In contrast, a
representation learned to create a metric, where the notion of
distance is relative to each data point, can be more flexible and
be able to capture non-linear relations through local structures.

In this study, we explore metric learning techniques applied
to the problem of learning a representation suitable for decoding
pre-movement andmovement intention in EEG-based BMIs.We
focus on metric learning algorithms that linearly project data
to a low dimensional space where neural activity corresponding
to similar actions cluster together. The learned projections
should not only be able to preserve class information, but also
can highlight which EEG channels provide such information,
adding interpretability to the learned representations. This
unique feature of metric learning contrasts with methods
purely based on classification performance which can be hard
to interpret.
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We study three metric learning algorithms whose objective
function are motivated from different perspectives. The first
algorithm is neighborhood component analysis (NCA) whose
objective function is based on a proxy to k-nearest neighbor
(k-nn) classification accuracy. The second and third algorithms
considered are conditional entropy metric learning (CEML)
and entropy gap metric learning (EGML) whose objective
functions are based on information theoretic quantities. These
choices are motivated by their potential to capture non-
linear relations that are relevant for classification through
a linear transformation to a low dimensional space. In
NCA, the k-nn objective imposes very little structure on
the classes allowing for local interactions between learned
features. CEML and EGML can capture relations beyond simple
correlations using conditional entropy and mutual information
as descriptors of the data. CEML has been applied to the
visualization of high-dimensional intracortical neural recordings
from different tasks, by projecting them on 2-dimensional space
(Brockmeier et al., 2013). It was observed that the obtained
projection was able to capture the natural relations among
different tasks using intracortical neural activity from non-
human primates.

To the best of our knowledge, this is the first attempt to
investigate metric learning algorithms and their interpretability
in EEG pre-movement and movement intention classification.
We expect this work will open the door to further investigation
on the representation of pre-movement and movement
intentions in EEG-based BMIs. In the following section,
background on metric learning and support vector machines
is provided. In Section Material and Methods, we describe
which EEG data set we used, and how the EEG data set
was organized to apply the metric learning algorithms.
Details on the metric learning and classifier set ups are
also provided. In the following section, our results and
acknowledgment of the data are explained. At last, we conclude
with potential effects and limitations of metric learning
implementation on EEG pre-movement and movement
intention classification.

BACKGROUND

Metric Learning
In this section, we provide an overview of the metric learning
algorithms applied to the EEG pre-movement and movement
intention classification. A common approach for metric learning
is to parametrize a distance function as a composition of a
transformation, mapping, and the computation of a simple
distance such the Euclidean distance between points after being
transformed (Kulis, 2013). The parameters of the distance
function are thus adjusted according to some desired behavior
of the distance function. For instance, if we have access to class
labels, we can train the model to find a distance that makes data
points from the same class have small distances and points from
different classes have large distances. In our setting, we define a
linear mapping A from the original input space X , in our case,

X = R
d, where d is the dimension of the input data, to a p-

dimensional vector space R
p, where p is a free parameter. The

distance dA between data points xi and xj is given by

dA(xi, xj) =
∥

∥A xi − A xj
∥

∥

where ‖·‖ is the Euclidean distance in R
p.

Euclidian Distance (Baseline Metric)
Euclidian distance is used as a baseline to understand the effect
of the metric learning algorithms. That is, no metric learning
is applied. In this case, the identity matrix is returned as the
transformation matrix, that is, d = p and A= I. Classifiers
are also trained using the Euclidean distance as the metric for
representing the datapoints in the original, i.e., untransformed
spaceX . We compare performances of Euclidian, CEML, EGML,
and NCA.

Matrix-Based Conditional Entropy Metric

Learning
CEML is an information theoretic learning technique that
employs conditional entropy as an objective function to find
a metric space where information about labels is maximally
preserved. Like principal component analysis (PCA) and linear
discriminant analysis (LDA), CEML reduces the dimensionality
of the input, from d to p. However, unlike LDA, CEMLmakes less
assumptions about how data is distributed. That is, CEML does
not assume any type of data distribution, whereas LDA assumes
the data classes follow a Gaussian distribution. Thus, LDA is not
suitable when the data is not Gaussian distributed. In addition,
since PCA is an unsupervised learning technique, no information
about the class labels is used to derive the transformation.

For a set of n data, label pairs
{(

xi, li
)}n

i=1, finding the
representation that minimizes the conditional entropy given
the projected data can be posed as the following optimization
problem (Sanchez Giraldo and Principe, 2013):

minimize
A ∈ Rd×p

Sα (L|Y) , subject to
ATxi=yi , for i=1,...,n;
tr(ATA)=p

(1)

In this optimization problem, A is the parametrization of the
linear transformation matrix by which the projected datapoints
yi are obtained from the original data points xi, where, xi∈Rd and
yi∈Rp such that p≪ d; n refers to the total number of exemplars.
Sα (L|Y) refers to the matrix-based conditional entropy of the
labels L, given the projected datapoints Y , which is defined
as the difference between the matrix-based joint and marginal
entropies, Sα (L,Y) and Sα (Y), as follows:

Sα (L|Y) = Sα (L,Y) − Sα (Y) (2)

The matrix-based entropy Sα (Y) is an information theoretic
quantity proposed in Sanchez Giraldo and Principe (2013),
Sanchez Giraldo et al. (2015) that has similar properties to Rényi’s
α-order entropy but does not require the data distribution to be
computed, and it is defined as
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FIGURE 1 | Average event related potentials for (A) Subject B on C3 channel, (B) Subject C Data 1 on C3 channel, (C) Subject C Data 2 on C3 channel, (D) Subject

B on F4 channel, (E) Subject C Data 1 on Fp1 channel, and (F) Subject C Data 2 on F8 channel. Blue and orange solid lines show mean and standard error of the

selected channels from trials corresponding to Class 1 and 2, respectively. The red and green vertical lines show where the pre-movement, [−0.85, 0] second interval,

and movement intention, [0, 0.85] second interval, were extracted in this study, respectively. Note that t = 0 instant represents the movement onset when the “d” or “l”

keys were pressed on the keyboard. We visualize C3 channel on (A–C) to provide fair comparisons with the previously reported study, which showed C3 channel

deviations after the movement onset (Kaya et al., 2018).

FIGURE 2 | Illustration of feature extraction steps that include metric learning algorithms.
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FIGURE 3 | Mean and standard deviation of the real and imaginary values from fast Fourier transform for [0, 0.85] second intervals on C3 channel for (A) Subject B,

(B) Subject C Data 1, and (C) Subject C Data 2.
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Sα (Y) =
1

1− α
log

[

tr
(

(KY)α
) ]

,

where KY is a Gram matrix constructed by evaluating a
positive definite kernel κ between all pairs of data points, that
is, (KY)ij =κ(yi, yj). The matrix-based joint entropy Sα (L,Y)

between random variables L and Y is defined as:

Sα (L,Y) =
1

1− α
log

[

tr

((

KL◦KY

tr(KL◦KY )

)α) ]

,

KL ◦ KY is the Hadamard product between Gram matrices KL

andKY . For Y , which takes values inRp, a commonly used kernel
is the Gaussian kernel,

κσ

(

yi, yj
)

= κσ

(

A xi, A xj
)

= exp

(

−
‖A xi − A xj‖2

2σ 2

)

with σ > 0 as a scale parameter. For L, we use the
correspondence (KL)ij = 1 if xi and xj are in the same class and
(KL)ij = 0, otherwise.

The minimization part of Equation (1) refers to the
minimization of the conditional entropy of the labels L, given

the projected data pointsY=ATX. The first constraintATxi=yi is
necessary to maintain the relationship between the samples xi in
the original space and the transformed samples yi, and the trace
constraint, tr

(

ATA
)

= p, is included to “avoid a trivial solution
where the magnitude of yi grows unbounded when the entries
of A become large (Sanchez Giraldo and Principe, 2013).” α is
a free parameter, α > 1. For all our experiments, we fixed the
value of α = 1.01, which behaves similar to Shannon’s entropy
and has shown good empirical performance in other applications
(Yu et al., 2020).

Entropy Gap Metric Learning
Finding a metric that minimizes the conditional entropy as
defined above (Equation 2) is equivalent to maximizing mutual
information defined as the difference between the matrix-based
joint entropy and the sum of the marginal entropies, Sα (L,Y)

and Sα (L) and Sα (Y), as follows,

MIα (L;Y) = Sα (L) + Sα (Y) − Sα (L,Y) (3)

where MIα (L;Y) is the matrix-based mutual information of α

order between the class label L and the projected data Y=ATX.
With this formulation, it is still necessary to control the scale of
Y , by constraining the trace ofATA, to avoid trivial maximization
of the mutual information since (Equation 3) would grow when

FIGURE 4 | Average frequency component absolute differences in dB from the event related potentials between Class 1 and 2 for (A) Subject B on C3 channel, (B)

Subject C Data 1 on C3 channel, (C) Subject C Data 2 on C3 channel, (D) Subject B on F4 channel, (E) Subject C Data 1 on Fp1 channel, and (F) Subject C Data 2

on F8 channel. The red and green vertical lines show where the pre-movement and movement intention were extracted in this study, respectively. We set the

colormap limits from −80 to 20 dB for all cases for fair comparisons.
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FIGURE 5 | Absolute amplitude differences from average event related potentials between Class 1 and 2 for (A) Subject B, (B) Subject C Data 1, and (C) Subject C

Data 2. The red and green vertical lines show where the pre-movement and movement intention were extracted in this study, respectively. Note that the color map

values are forced to be limited within the range from 0 to 3 to evaluate pre-movement intention vividly. That is, values larger than 3 are displayed as yellow color due to

the limit.
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we let A take large values. While the trace constraint keeps the
objective function bounded, CEML is sensitive to the choice of
the scale parameter σ of the kernel. Thus, selecting a proper
σ must consider the range of the input data, which makes it
challenging. To overcome this issue, we propose a notion of
mutual information as the difference, entropy gap, between the
expected value of the matrix-based joint entropy Sα (L,Y5) that
is obtained by randomly permuting the order of the samples with
respect to the labels L, and Sα (L,Y), which is the joint entropy
before the random permutation,

EGα (L;Y) = E5 [Sα (L,Y5)]− Sα (L,Y) (4)

In other words, in Equation (4), we compute the difference
between the average of the matrix-based joint entropies over
randomly permuted data sets

{(

y5i , li
)}n

i=1, where 5i is a
random permutation of the indices i = 1, . . . , n, and the matrix-
based joint entropy of the original data set

{(

yi, li
)}n

i=1. Unlike
(Equation 3), where MIα (L;Y) increases as the values of A

increase with a fixed kernel size parameter σ , the entropy gap
(Equation 4) does not monotonically increase with increasing
A. Instead, the entropy gap is only large for intermediate scaling
factors and closes for small and large values relative to σ . More
details about this property of the entropy gap are provided
in the Supplementary Material. This behavior yields a way to
automatically tune A to the scale that best captures the structure

in the transformed data Y=ATX that relates to the labels L. Note
that we use the same α = 1.01 as CEML.

Neighborhood Component Analysis
The idea behind NCA is to provide a metric space for the data
X that will perform well on a k-nn classifier (Goldberger et al.,
2004). Optimizing the metric directly on the k-nn performance
is difficult because this objective is highly discontinuous. Small
variations in the data can change the nearest neighbors of a data
point and therefore, change the class a point is assigned. Thus,
the NCA algorithm approximates the leave one out error of a k-
nn classifier by introducing a soft assignment where two points
are neighbors with probability Pij. This probability is obtained
based on the softmax function over the Euclidean distance of the
transformed samples,

Pij =
exp

(

∥

∥A xi − A xj
∥

∥

2
)

∑n
i6=k exp

(

‖A xi − A xk‖2
)

Based on this soft assignment, we can calculate the probability Pi
that a point xi is assigned correctly to its class Li class as follows:

Pi =
∑

j∈Li

Pij (5)

FIGURE 6 | Illustration of data architecture to compute importance.
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NCA finds the projection matrix A that maximizes the
probability of correct classification for all points in the dataset,

minimize
A ∈ Rd×p

n
∑

i= 1

Pi

Since this function (Equation 5) is differentiable, NCA employs
gradient descent for the parameter search.

Classifier: Support Vector Machine
SVM is a discriminative learning approach that aims to find
separating hyperplanes that are maximally far apart from the
data points from each class (Alpaydin and Bach, 2014). One
of the formulations for the linear version of the soft margin
SVM is known as the ν-SVM (Schölkopf et al., 2000), where
hyperparameter ν controls the percentage of margin errors
and support vectors which indirectly trades off misclassification
cost, and the regularization penalty on the decision hyperplane,
the margin. We choose this formulation over the original
formulation known as C-SVM (Cortes and Vapnik, 1995; Chang
and Lin, 2011), which directly trades off between large margin
and low classification error, because the ν parameter can be easier
to set compared to C in C-SVM. Training the ν-SVM can be
accomplished by solving the following quadratic problem:

minimize
w,b,ξ , ρ

1

2
‖w‖ − νρ +

1

n

n
∑

i= 1

(ξ )i

subject to li

(

wTxi + b
)

≥ ρ − (ξ)i , and ξ ≥ 0, ρ ≥ 0 (6)

where li ∈ {−1, 1}, indicating the class of data point xi. The non-
linear version of this algorithm is based on the dual formulation
of Equation (6) where the dot products are replaced with a
positive definite kernel. The resulting decision function takes
the form:

f (x) = sign

(

n
∑

i=1

βiκSVM(x, xi)+ b

)

where sign(·) denotes the sign function sign (z) = 1 if z > 0 and
sign (z) = −1 if z < 0, and κSVM is a kernel function, where we
employ a Gaussian kernel,

κSVM (x, xi) = exp

(

−
‖x− xi‖2

2σ 2
SVM

)

To distinguish this kernel size from the one used in metric
learning, we denote it as σSVM here. The decision function in the
non-linear case is more flexible. However, the input dimensions
that influence the classification cannot be obtained directly from
the learned parameters βi. For ν-SVM algorithm, both linear and
non-linear, the value of ν must be selected and for the non-linear
case, the parameters of the kernel function, σSVM , must be tuned
as well.

FIGURE 7 | Classification accuracy for EEG pre-movement intention using (A) Feature1-A, (B) Feature1-B, and (C) Feature2 and EEG movement intention using

(D) Feature1-A, (E) Feature1-B, and (F) Feature2, when linear SVM was applied.
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MATERIALS AND METHODS

EEG Data
An EEG data set, which is freely available to the public, is used
in this study. Details on the EEG acquisition set up and task
paradigm can be found in Kaya et al. (2018). When a healthy
adult participant is seating on a recliner chair with an EEG cap
on their head, a computer screen, which was located ∼200 cm
in front at slightly above their eye level, presented a graphical
user interface. A standard 10/20 international configuration was
used for the EEG cap, with 19 bridge electrodes measuring scalp
EEG. Additional two electrodes (A1 and A2) were placed at the
earbuds as electrical ground. The EEG signal was sampled at
a rate of 200Hz, and a band-pass filter of 0.53–70Hz and a
50Hz notch filter were applied to the EEG data. All available
data went through both filtering processes, and bad trials were
already removed by the authors in Kaya et al. (2018). Thus,
we did not apply any further pre-processing steps for the EEG
data set.

We used a specific experiment paradigm called FreeForm
in Kaya et al. (2018). To the best of our knowledge, this
data set is the only publicly available EEG data set that is
recorded for freely chosen target by the participants’ own
will and provides sufficient timeline for the pre-movement
(i.e., prior to the movement onset) analysis. During the EEG
recording session, the computer screen displayed a fixation
point for participants to focus their attention upon during

trials; the participants were asked to press either the “d”
or “l” keys on the keyboard, using either their left or
right hand. This experiment’s unique set up is that the
participants decided which key they will press at a given
time, rather than being instructed to press a key determined
by the experimenter. The 19 channel EEGs were recorded
continuously throughout one recording session. One recording
session contains ∼700 trials. One trial corresponds to the
participant pressing either the “d” or “l” keys. We represent
Class 1 as pressing “d” key and Class 2 as pressing “l” key,
and each class contains a balanced number of trials. We
specifically used “Experiment FREEFORM-SubjectB-151111-
2States,” “Experiment FREEFORM-SubjectC-151208-2States,”
and “Experiment FREEFORM-SubjectC-151210-2States” files,
and each file contains one session of EEG recording. We
indicate Subject B, Subject C Data 1, and Subject C

Data 2 to refer “Experiment FREEFORM-SubjectB-151111-
2States,” “Experiment FREEFORM-SubjectC-151208-2States,”
and “Experiment FREEFORM-SubjectC-151210-2States” files,
respectively. Information regarding which key was pressed was
recorded in an extra channel at a synchronized time to the
EEG data, and the key pressing time is considered as the
movement onset.

To decode the pre-movement and movement intention,
we extracted EEG for 0.85 s windows. For the movement
intention, we used 0.85 s of EEG starting at the movement
onset: i.e., [0, 0.85] second intervals, where we consider

FIGURE 8 | Classification accuracy for EEG pre-movement intention using (A) Feature1-A, (B) Feature1-B, and (C) Feature2 and EEG movement intention using

(D) Feature1-A, (E) Feature1-B, and (F) Feature2, when non-linear SVM was applied.
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the movement onset as the time t = 0 point. We
decided this specific starting time and window size based
on a previously reported study for movement intention
classification using the same data set (Mishchenko et al.,
2019). Moreover, to investigate the pre-movement intention,
we extracted 0.85 s EEG prior to the movement onset; that is,
we used [−0.85, 0] second intervals, relative to the movement
onset. Figure 1 shows the extracted time intervals for pre-
movement (red vertical lines) and movement (green vertical
lines) intention classification. The figure depicts challenges to
distinguish different pre-movement intentions, compared to
the clear distinction of the movement intention on the C3
channel (Figures 1A–C). However, we observe the potential
to distinguish pre-movement intention from EEG amplitude
differences in the frontal lobe (Figures 1D–F). F4, Fp1, and
F8 channels are displayed for Subject B, Subject C Data
1, and Subject C Data 2, respectively. We chose these
specific channels per data file since they show the most
distinguishable amplitude differences in time during pre-
movement intention in each data set. This phenomena can
be explained by how brain organizes movement sequentially
(Andersen and Cui, 2009). It is known that prefrontal and
posterior cortex decide the movement, and primary motor cortex
produce specific movements (Wise, 1985; Andersen and Cui,
2009).

Pre-processing and Feature
Representation
We consider two different features in this study, and Figure 2

illustrates the two different ways to construct the features from
the raw EEG data.

Feature1: Selective Frequency Components
Previous studies have reported that low frequency components
extracted from the EEG signals followed by a linear SVM provide
the best accuracy for movement intention classification (Kaya
et al., 2018; Mishchenko et al., 2019). Therefore, we consider this
feature and classifier as our baseline for comparison in this study.
We followed the same procedure to construct the input features
for both pre-movement and movement intentions. The details of
feature extraction procedures can be found in Kaya et al. (2018).
First, complex frequency components are obtained from the EEG
window, t ∈ [−0.85, 0] seconds for pre-movement intention
and t ∈ [0, 0.85] seconds for movement intention, for all 21
channels via fast Fourier transform. It was reported that using
only frequency components from 0 to 5Hz provides the best
movement intention classification accuracy with a linear SVM for
this data set (Kaya et al., 2018; Mishchenko et al., 2019). Since we
additionally include the pre-movement intention classification
problem, we consider 2 different configurations of the frequency

FIGURE 9 | Conceptual topographical map, based on the extracted importance from metric learning, for EEG pre-movement intention classification for (A) Subject B,

(B) Subject C Data 1, and (C) Subject C Data 2 and EEG movement intention classification for (D) Subject B, (E) Subject C Data 1, and (F) Subject C Data 2, when

Feature1-B was used for EGML.
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ranges for comparisons: Feature1-A) all frequency components
(0–100Hz) and Feature1-B) only frequency components from
0 to up to 5Hz. The complex frequency components were split
into real and imaginary pairs for each frequency, and then, each
channel’s “Cartesian” Fourier transform values are concatenated
into a single vector. Consequently, Feature1-A and Feature1-B

produce a 3,549 (169 features× 21 channels) and a189 (9 features
× 21 channels) dimensional vector per trial, respectively. Note
that although Feature1-A has higher dimensionality (d =3,549)
compared to Feature1-B (d =189), the data projection after
metric learning (Rd → R

p) yields a smaller dimensionality for
the inputs to the SVM classifier. We set to investigate whether
metric learning provides an effective organization of the data
for EEG intention classification, even without preselecting the
effective frequency components. Figure 3 shows the real and
imaginary values of the resulting fast Fourier transform from
channel C3 for the [0, 0.85] second interval. A clear difference
between the values of the frequency components for two classes
can be observed for frequencies <5Hz, which supports the use
of Feature1-B.

Note that (Mishchenko et al., 2019) investigated how much
information is contained in different frequency ranges that
contribute to EEG motor imagery classification tasks. This group
used the same EEG data set as in Kaya et al. (2018), which
is the data set we use in this study. They set the frequency
range from 0 to 80Hz, and then applied a filter with the

following passing bands; 0–5, 5–10, 10–15, · · ·, and 75–80Hz.
It was reported that after ∼20Hz, the decoder’s performance
on the mental imagery classification dramatically decreased as
the features include higher frequency components, and they
concluded that the 0–5Hz band showed the best performance.
Although alpha or mu sensorimotor rhythms have been actively
considered to classify EEG motor imagery, the use of slow
potentials such as movement related cortical potentials has
also been reported. In addition, Figure 3 supports that the
low frequency components are the most distinctive in different
intentions. Thus, we chose the 0–5Hz range for Feature 1-

B. In addition, we decided to include all frequency ranges (0–
100Hz with sampling frequency of 200Hz) for comparison
in Feature 1-A.

However, differences for higher frequency components
are also observed, thus, we also investigate the full frequency
range and raw time domain EEG, which are described in
the following section. Figure 4 show the absolute frequency
differences in dB, between the average event related potentials
from Classes 1 and 2. As expected, based on Figures 1A–C,
more distinctive frequency differences are observed for
the signals that correspond to the “after movement”
onset than for those prior to movement, on channel C3.
However, as noted in Figures 1D–F, possible distinction
before the movement onset is also observed in the selected
channels (Figures 4D–F).

FIGURE 10 | Conceptual topographical map, based on the extracted importance from metric learning, for EEG pre-movement intention classification for (A) Subject

B, (B) Subject C Data 1, and (C) Subject C Data 2 and EEG movement intention classification for (D) Subject B, (E) Subject C Data 1, and (F) Subject C Data 2, when

Feature1-B was used for NCA.
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Feature2: Time Domain EEG
In addition to the frequency component features, we also
investigate projected electrical potentials as features. To organize
this feature, each channel’s electrical potential, the time-
series data, is first concatenated, which flattens the 2-
dimensional data into a vector. The extracted EEG data
for 0.85 s window contains 170 values per electrode due
to the sampling frequency of 200Hz, thus, the vectorized
input dimension results in a 3,570-dimensional vector, when
all 21 electrodes are considered. Figure 5 visualizes absolute
amplitude differences from average event related potentials
(ERPs) between Class 1 and 2 for each data set. As we have
seen in Figure 1, more distinctive potentials are observed on
all channels after the movement onset. However, although
the difference is not as dominant as after the movement
onset, electrical potential contrasts are noticeable before the
movement onset.

Feature Conditioning via Principal Component

Analysis
After features are vectorized, we applied principal component
analysis (PCA) as a preprocessing step. This step reduces the
input dimensionality below the number of available instances,
which makes transformed data matrix have a rank equal to

the number of PC dimensions, i.e., d = dpc. This provides
better conditioning for the subsequent metric learning and
classification stages and reduces the computational burden of
their training. In addition, PCA can remove correlations due
to the temporal structure of the data, potentially improving
classification performance. We also normalized the total variance
of the selected PCs, which is defined as the sum of the variances
of all chosen dimensions, i.e., the trace of the covariance matrix
in the PC space, to match the number of PCs, dpc. This
normalization provides an expected range for the data which
can be useful in setting the range for hyperparameter search,
particularly the kernel size, σ for the metric learning algorithms
and σSVM for the non-linear SVM classifier.

To select the best parameter configurations, we ran
experiments with two different number of principal components.
For Feature1-A and Feature2, we used dpc = 300 and all
non-zero variance PCs, which are at most the number of
training samples, roughly dpc = 560 in our case (for Feature1-
A d =3,549 and for Feature2 d =3,570). For Feature1-B,
dpc = 30 and all non-zero variance PCs, dpc = d = 189.
As we will see below, we use cross-validation to choose the
optimal number of PCs dpc in combination with metric
learning dimension p and SVM parameters ν and σSVM for the
non-linear case. Details of this procedure are provided in the
following sections.

FIGURE 11 | Conceptual topographical map, based on the extracted importance from metric learning, for EEG pre-movement intention classification for (A) Subject

B, (B) Subject C Data 1, and (C) Subject C Data 2 and EEG movement intention classification for (D) Subject B, (E) Subject C Data 1, and (F) Subject C Data 2, when

Feature2 was used for EGML.
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Implementation of Metric Learning
Algorithms and a Classifier
The metric learning algorithms are applied to the features
(Feature1-A, Feature1-B, and Feature2) we described in the
previous section. We applied a grid-search tuning for the
metric learning algorithm’s hyperparameters. We explored three
different values for p, namely, 3, 10, and 100. Since PCA
normalizes the data that serves as input to the metric learning
algorithms, we fixed the kernel size for EGML and CEML to
σ =

√

p/2. Finally, for both linear and non-linear SVMs,
we search over ν ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8}, and for
the non-linear SVM, we search over kernel size parameters
σSVM ∈

{√
5p,

√
p,
√

p/2,
√

p/4,
√

p/20
}

. Test accuracies
correspond to 10-fold cross-validation over the entire data set.
For hyperparameter search, we ran a nested 10-fold cross-
validation within each training partition, we call this partition
the hyperparameter folds, for which all parameter configurations
for PCA, metric learning, and SVM classification algorithms
are trained. Based on the average among hyperparameter folds
within a training partition, we choose the best combination of
hyperparameters and test this configuration on the test fold.

Two classes are considered in the classification task. Classes
1 and 2 refer to trials pressing the “d” and “l” key, respectively.
For the SVM implementation, we chose the widely used LIBSVM
(Chang and Lin, 2011) library. Linear and non-linear SVMs are
trained on the learned-metric.

Visualizing the Projections
The metric obtained by transforming the input EEG features
in R

d to a lower dimensional space R
p can be used to

understand the contributions of the different EEG channels
to the discrimination of neural states. Below, we describe a
methodology to quantify the contribution of the inputs to the
obtained metric. The EEG features that we analyze undergo a
series of transformations. For instance, we apply PCA before
metric learning. Therefore, to analyze the contribution of
each one of the EEG channels to the discrimination between
neural states, we need to include the PCA transformation
as part of the projection. The overall transformation from
the input data to the space learned by the metric, is a
composition of several mappings. Namely, the projection matrix
resulting from the composition of the PCA transformation
matrix Q ∈Rd×dpca and the matrix A ∈Rdpca×p obtained from
the metric learning algorithm that takes the selected PCs
as input, is given by B=QA. Note that B ∈Rd×p. Figure 6

illustrates a conceptual diagram to explain how the contribution
of the input EEG channels, which we call here importance,
is obtained from the transformations learned by the metric
learning algorithms.

Since the metric in the projected space is invariant to
any unitary transformation and shifts, we need to define a
way to impose an order in the projected dimensions. We
accomplish this by using the singular value decomposition of the

FIGURE 12 | Conceptual topographical map, based on the extracted importance from metric learning, for EEG pre-movement intention classification for (A) Subject

B, (B) Subject C Data 1, and (C) Subject C Data 2 and EEG movement intention classification for (D) Subject B, (E) Subject C Data 1, and (F) Subject C Data 2, when

Feature2 was used for NCA.

Frontiers in Human Neuroscience | www.frontiersin.org 14 July 2022 | Volume 16 | Article 902183

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Plucknett et al. Metric Learning in EEG-Based BMIs

FIGURE 13 | Conceptual topographical map, based on the extracted importance from metric learning, for EEG pre-movement intention classification for Subject B on

(A) dimension 1, (B) dimension 2, and (C) dimension 3, when Feature1-B was used for EGML.
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FIGURE 14 | Conceptual topographical map, based on the extracted importance from metric learning, for EEG pre-movement intention classification for Subject B on

(A) dimension 1, (B) dimension 2, and (C) dimension 3, when Feature1-B was used for NCA.
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projection matrix,

B= UDVT .

where U and V are unitary transformations corresponding
to the left and right singular vectors, and D is a diagonal
matrix containing the singular values. We then define the sorted
projection matrix

B̃= UD

where the singular values are ordered in descending order.
The contribution of each input channel to each one of the
learned features in the sorted projection matrix B̃ is obtained
by taking the squared Euclidean norm of the entries in B̃

related to a channel and dividing it by the squared Euclidean
norm of the entries for all channels combined. We call this
measure importance (Equation 7). Let x ∈Rd, be a vectorized
sample from one of the EEG trials. For instance, if we are
using Feature1-B (see Section Feature1: Selective Frequency
Components), a vectorized sample x from one of the EEG
trials would have d = Nf × Nch = 189, where Nf is
the number of frequency components in Cartesian form for
each channel for 0∼5Hz and Nch is the number of channels.
For Feature2, a vectorized sample x from one of the EEG
trials would have d = Nt × Nch = 3, 570, where Nt is
the number of time points of the window for the trial being
considered. Then, for a sorted projection matrix B̃∈Rd×p the
importance of channel chk for feature in the projected space Rp

is given by:

importance
(

chk, j
)

=
∑

i∈Ik (B̃)ij
2

∑d
i
′=1

(B̃)i′ j
2 (7)

Where Ik is the set of all input dimensions corresponding to
channel chk. For example, in Feature1-B, when k = 2, that is the
channel is ch2, I2 = {10, 11, 12, 13, 14, 15, 16, 17, 18}.
Note that the denominator of Equation (7) represents
the squared Euclidean norm of the entire column of B̃,
and the numerator is only for the entries corresponding
to channel chk. The overall importance of channel chk is
given by

1

p

p
∑

j=1

importance(chk j)

RESULTS

Figures 7, 8 showcase the performance of the classifiers to
distinguish EEG pre-movement and movement intentions, with
respect to the features we considered. Figure 7 displays results
when linear SVM is applied to EEG intention classification,
and Figure 8 shows results with non-linear SVM. Note that the

linear and non-linear SVM classifiers are trained on the same
data projections obtained by the metric learning algorithms,
but the choice of the hyperparameters may differ based on
the result of the cross-validation. We included the Euclidian
(no metric is learned only PCA is applied) as a baseline.
Our results on Feature1-B when using linear SVM match
previously reported performance (Kaya et al., 2018). This
was used as a sanity check for our implementation of EEG
movement intention classification using Feature1-B (Figure 7E
blue bars).

As we pointed out based on Figure 4 for Feature1 and
Figures 1, 5 for Feature2 that show less distinctive patterns
of EEG features, the pre-movement intention classification
is more challenging. Relatively lower classification accuracies
were observed as shown in Figures 7A–C, 8A–C compared
to Figures 7D–F, 8D–F. In addition, lower performances were
observed on Subject B compared to Subject C Data 1 (C1)
and Subject C Data 2 (C2), due to the nature of different
subject’s EEG variability. This is a well-known challenge
for obtaining a BCI neural decoder that generalizes well
among subjects.

In addition, Subject B does not show significant performance
variations over different features, whereas Subject C (C1 and
C2) reveals variations on the performance over different
metric learning algorithms depending on the employed features.
In C1 and C2, all algorithms show similar performance
on Feature1-A and Feature2, but variations when using
Feature1-B are observed. Although Feature1-B provides the
best classification accuracy in Subject C, Feature2 shows
reasonably good performance compared to Feature1. It is
notable that Feature2 only uses the raw EEG data in
vectorized form, which can be extremely beneficial for the
real-time implementation of BMIs. In addition, considering
relatively similar electrical potentials between the two classes
prior to the movement onset (Figure 1), the classification
accuracy of the pre-movement intention using Feature2 is
impressive (Figures 7C, 8C). It is important to note that
while classification accuracy does not improve after metric
learning, the transformed data matches the accuracy of the
Euclidean baseline but uses a much smaller number of
dimensions. This means that the projected data captures the
variations of the data that help distinguish between classes in
a small subspace which becomes useful for the computation
of importance.

Overall, EGML shows consistent performance over all
features, and it provides the best matching classification accuracy
to the Euclidean baseline, whereas CEML and NCA suffer more
on the characteristics of the features. Paired t-test on the cross-
validation test accuracies of the Euclidean baseline vs. EGML
for movement intention using Feature1-A yield p-values 0.1552
(Supplementary Table 5), 0.4331 (Supplementary Table 6), and
0.8321 (Supplementary Table 7) for subject B, C Data 1 and
C Data 2, respectively. For Euclidean vs. CEML p-values are
0.3436, 0.0039, and 0.0954, and for Euclidean vs. NCA 0.0509,
0.0283, and 0.5414 (Supplementary Tables 5–7). A complete set
of tables with all comparison between different methods can be
found in Supplementary Material (Supplementary Tables 5–13).
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When input dimensions have different variances, CEML and
NCA tend to assign more weight to input dimensions with larger
variance. CEML tendency for this is due to its trace constraint
tr
(

ATA
)

= p, which is better suited for dimensions with
equal variances. For NCA the convergence of its optimization
algorithm is influenced by the input features with larger
variances. Note that we applied the normalization to the total
variance, the sum of all variances, rather than normalizing
each dimension individually. Thus, further investigation of the
importance maps focuses on the transformations obtained by
NCA and EGML, only.

The overall distributions of importance for the EEG pre-
movement and movement intention classification are displayed
for each dataset as EEG topographic maps of the scalp. The
average importance values over 10 folds and 3 top dimensions
are displayed in Figures 9–12. When EGML is applied to
Feature1-B, overall importance emphasizes on motor cortex for
both pre-movement and movement intention (Figure 9), which
supports the role of this cortical area in motor functioning
(Rahnev et al., 2016; Firat, 2019). In contrast, the overall
importance measured by NCA from Feature1-B emphasizes
more on the frontal lobe (Figure 10), where more significant
frequency component differences are observed compared to
the ones from motor cortex (Figure 4). When Feature2 is
used, for movement intention, the focus occurs at the frontal
and occipital lobes (Figures 11, 12), which coincides with the
measured distance differences on the EEG after movement onset
(Figure 5). The highly distinguishable occipital lobe’s activity
may be due to the visual stimulation in the experimental set
up due to the screen display changing depending on which key
is pressed. Note that Feature1-A contains Fourier transform
components from the cropped EEG data which correspond to
Feature2. Therefore, Feature1-A and Feature2 have a linear
relationship that causes the close to identical importancemaps. In
addition, interestingly, no remarkable differences on the average
importance are observed between pre-movement and movement
intention in all feature cases for both EGML and NCA. This
may be due to the proximity to the onset point, t = 0, from
both windows.

In addition, Figures 13, 14 show the distributions of
importance for a data set with the selected metric learning
algorithm over the projection dimensions 1, 2, and 3. We
select Subject B for the visualization since this data shows clear
focus on the motor cortex in C3 and C4 channels despite
having the lowest classification accuracies compared to the other
subject’s data sets. This is a great example that supports the
critical role of the metric learning algorithms in reorganizing
the selected features to maximize the class differences in an
interpretable fashion. Depending on the selected trials for the
10-fold cross validation, variations are observed. For example,
some folds are mainly focused on the motor cortex on the
2nd or 3rd dimensions when EGML is used (Figure 13).
However, when the importance maps over 10 folds and 3
dimensions are averaged, the key importance is clearly displayed.
Figures 9A, 10A are the average of the 30 maps displayed in
Figures 13, 14, respectively.

DISCUSSION AND FUTURE DIRECTIONS

Brain Functions in Movement and
Interpretation of the Metric Learning
Algorithms
When a person is making a movement, their behaviors are
sequentially arranged in the brain in the following steps (Wise,
1985; Andersen and Cui, 2009): Step (1) Perception at a cognitive
level by visual cortex, when they perceive the environment; Step
(2) Planning and Decision-Making by prefrontal and posterior
cortex deciding the movement and posterior and premotor
cortex organizing movement sequences; and Step (3) Execution
by the primary motor cortex to generate specific movement
trajectories. Traditionally, BMIs have been mainly focused on
(Step 3) decoding trajectories of movements from the primary
motor cortex (M1) (Donoghue, 2002; Moritz et al., 2008; Lebedev
and Nicolelis, 2017; Abiri et al., 2019). However, decoding
intended goals, (Step 2), allows us to achieve more realistic BMIs
with high accuracy and robustness (Srinivasan et al., 2006; Kim
et al., 2019; Wang et al., 2020).

Numerous studies using intracortical recordings have shown
that neuronal activities, firing rates, from other brain areas
besides primary motor cortex (M1) can be associated with
movement by presenting correlation of firing rates and
movement procedures. For example, the lateral prefrontal cortex
(LPFC), dorsal premotor cortex (PMd), and posterior parietal
cortex [PPC, including lateral intraparietal area (LIP) and the
parietal reach region (PRR)] are involved in movement planning
and decision-making (Mountcastle et al., 1975;Wise, 1985;Miller
and Cohen, 2001; Tanji and Hoshi, 2008; Desmurget et al., 2009).
It has been found that although the posterior parietal cortex
(PPC)’s function has been well-known for spatial attention and
awareness (Hecaen, 1953; Colby and Goldberg, 1999), and the
LPFC is mainly associated with voluntary attention (Tanji and
Hoshi, 2008), it has been shown that action-related processes
are highly linked to PPC, LPFC, PMd, and M1 (Goldman-Rakic,
1988; Andersen et al., 1990; Ojakangas et al., 2006; Schwedhelm
et al., 2017). Moreover, Brodmann Area 5 in PPC has shown
an involvement in reaching arm movement providing spatial
information of the limb movement (Lacquaniti et al., 1995;
Kalaska et al., 1997). In addition, (Ojakangas et al., 2006) presents
movement intent decoding results on 4 direction and Go-No Go
classification by comparing spike counts with respect to a specific
class. Average classification accuracy were 38% on patient 1 and
2, and 47% on patient 3 in 4-direction classification, and patient 3
showed 73% average accuracy on theGo-NoGo task. All neurons’
activities were recorded from middle frontal gyrus. Although
this study does not aim to decode pre-movement intention,
it shows possibilities of using neural representations associated
with movement planning and decision making.

In addition, Bereitschaftspotential (BP), or readiness
potential, is a movement-related cortical potential that is
observed prior to the movement onset. Observed initial slow
negative potentials are reported 2 s before the movement onset
(early BP) in the pre-supplementary motor area, and the steeper
negative slope (late BP) have been reported before about 0.4 s
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prior to the movement onset (Shibasaki and Hallett, 2006;
Schurger et al., 2021). In addition, several studies investigated
possibilities of EEG pre-movement intention classification have
been reported as described in Introduction Section (Novak et al.,
2013; López-Larraz et al., 2014; Kim et al., 2019; Mohseni et al.,
2020; Wang et al., 2020). Our study also confirms that the pre-
movement intention can be distinguished between different tasks
prior to the movement onset, using EEG. Furthermore, our study
provides a unique addition to the EEG-based BMIs to classify
EEG pre-movement intention using metric learning algorithms.

The explanation of which brain areas or neural patterns
contribute to the movement planning is an important aspect to
address when modeling BMIs. The problem of interpretability
of machine learning algorithms has been receiving sharply
increasing attention. The ability to explain how the algorithm
decides its outputs can help build trust by practitioners and
bring understanding that supports reliability. In addition, visual
interpretation provides straightforward intuition about the data.
This is a topic that has been receiving increasing attention
in the deep learning communities where several methods
for attribution have been proposed (Zeiler and Fergus, 2014;
Selvaraju et al., 2017; Schulz et al., 2020). Interpretable methods
have been considered to better understand brain activities using
EEG. Recently, algorithms providing clinical interpretation have
been introduced in seizure prediction in epilepsy (Uyttenhove,
2020; Pinto et al., 2022) and schizophrenia detection (Vázquez
et al., 2021). In addition, Three-stage algorithm was introduced
to classify two spatial tasks (Yi et al., 2022). The use of Layer-
wise Relevance Propagation (LRP) has been introduced in EEG
motor imagery classification (Sturm et al., 2016). Like Grad-
CAM, LRP is an attributionmethod that provides interpretability
on an instance basis. While this level of granularity may add to
interpretability, it has been shown that, in the context of vision
models (Ghorbani et al., 2019), attribution methods including
LRP are brittle to adversarial attacks where small changes to the
input may result in completely different attribution maps. In
this case aggregate methods such as our importance or Common
Spatial Pattern are still preferred.

The importance measure we propose is one possible but not
the only way to assess the relevance of different brain areas in
predicting movement. Other approaches based on attribution
such as Grad-CAM (Selvaraju et al., 2017) can be considered.
However, there is amain distinction between attributionmethods
and importance. Attribution methods usually work in a per data
sample basis. Thus, to obtain the importance map, one must
adapt the attribution methods to summarize the contributions of
the input features for all data instances to the decision function.
As more data becomes available, it would be interesting to
explore alternative techniques that employ attribution to obtain
the importance of brain areas.

We confirm that importance allows to visualize how much a
given feature contributes to the decision of the neural decoder,
and when key features are sorted based on this measure,
explainable brain function can be visualized. We show that the
learned metrics can capture the features that are relevant for
classification irrespective of the structure of the classes, which
offers the potential to highlight important information from the
input that does not need to be linearly separable. Although this

is still a preliminary result that is not yet sufficient to draw
definite conclusions, our experiments support possible use of
importance to visualize the contribution of features that can be
related to brain function. In our experiments, metric learning
did not provide any improvements in classification accuracy.
However, we expect that with more experimental data, a non-
linear classifier may provide better accuracy for which metric
learning algorithms can provide a sensible way to track which
input features are relevant (Goldberger et al., 2004).

Metric learning has been mainly considered as an integrative
method to aid classification algorithms. Benefits of using metric
learning in EEG classification have been reported in sleep stage
classification (Phan et al., 2013), personal identification (Cai
et al., 2015), epilepsy classification (Xue et al., 2020), and
motor imagery classification (Alwasiti et al., 2020). The later,
focuses on deep metric learning which learns a non-linear map
for the metric that may not be easy to interpret in terms of
the input features. In addition, the study suggests a different
time-frequency representation of the signals, namely Stockwell
transform that improves classification. However, it is novel and
valuable to emphasize metric learning’s interpretability on EEG
data. Our proposed importance provides visual explanation of
the data projections to maximize the inter class separations.
Although this study provides meaningful interpretation of the
EEG data, further implementation with various data sets is
required. In addition, although we set the window size and time
locations from our best reasoning and judgement, it is possible
that different window sizes and time locations can provide more
meaningful interpretation of the neurological representation
of the pre-movement intentions and better classification
performance. In addition, while the metric learning algorithms
we explored are not the only ones available in the literature,
we see the potential to apply the same importance measure to
other metric learning algorithms, including (Weinberger et al.,
2005; Davis et al., 2007; Jain et al., 2008; Taylor et al., 2011), that
learn a linear map. Kulis (2013) provides a comprehensive review
of various metric learning algorithms that can be integrated to
this study.

In this study, we examined metric learning algorithm’s
interpretability in space, that is, which brain area provides
more information for the intention classification. For the raw
EEG, it is worth to note that interpretability can also be
considered in time. When more data becomes available, it
will be possible to inspect importance values for individual
time instances. These can highlight which time intervals within
the pre-movement or movement windows are more relevant
for the classification. Moreover, other representation such
as time frequency representation including the short time
Fourier transform, wavelet transform, or the Stockwell transform
employed in Alwasiti et al. (2020) can be used, as well. We plan
to study this temporal aspect in future work.

Available EEG Data and Feature
Representations
Although several EEG data sets to investigate motor imagery
are publicly available (Schalk et al., 2004; Blankertz et al., 2007;
Luciw et al., 2014; Schirrmeister et al., 2017), the number of data
sets that can be used to investigate pre-movement intentions are
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still limited. In addition, most of the experimental set ups do
not allow to investigate freewill. Commonly used experimental
set ups include stimulus-driven actions with externally decided
targets based on light or color indicators. That is, the task or
goal that the subject needs to accomplish is provided by the
experimenter, beforehand by a visual or auditory cue. To the best
of our knowledge, the data set we used here is the only publicly
available EEG data set that allows to investigate freewill pre-
movement intention. Due to the limited size of the data set, which
contains only two individuals in three different day’s recordings,
our investigation cannot be generalized, yet. However, our study
supports the potential of using raw EEG data, with only basic
filtering to remove artifacts, to reliably classify pre-movement
and movement intention. In addition, the use of frequency
components has shown benefits for increasing the classification
accuracy. Furthermore, metric learning algorithm that can select
certain frequency components allow straightforward design of
EEG-based BMIs. Thus, further investigation of the features
beyond time or frequency representations could be beneficial to
provide better interpretability of the metric learning algorithms
and to bring high performance BMIs. Nevertheless, design of
automatic selection of features would be essential to implement
closed-loop BMIs.

It is important to highlight that non-linear SVM did not
provide distinguishably superior classification accuracies. The
classification accuracies obtained by linear and non-linear SVM
do not show significant differences (within 1% differences
on average). This may be due to the characteristics of the
task conducted for these specific data sets, pressing two keys
on the keyboard. Again, with the limited available data sets,
our observations cannot be generalized. To further investigate
behaviors of the metric learning and performances on the
classifiers, our group has started collecting our own EEG data
on reaching tasks that allow to investigate freewill pre-movement
and movement intentions. Once a sufficient amount of data
has been collected, we plan to apply the same methods to
expand our study. It is expected that these data sets will allow
us to better understand the selection of features, the timing of
events related to pre movement intention, the role of metric
learning algorithms, and the performance of linear vs. non-
linear classifiers.
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