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Abstract

Phytophthora agathidicida is associated with a root rot that threatens the long-term survival

of the iconic New Zealand kauri. Although it is widely assumed that this pathogen arrived in

New Zealand post-1945, this hypothesis has yet to be formally tested. Here we describe

evolutionary analyses aimed at evaluating this and two alternative hypotheses. As a basis

for our analyses, we assembled complete mitochondrial genome sequences from 16 acces-

sions representing the geographic range of P. agathidicida as well as those of five other

members of Phytophthora clade 5. All 21 mitogenome sequences were very similar, differ-

ing little in size with all sharing the same gene content and arrangement. We first examined

the temporal origins of genetic diversity using a pair of calibration schemes. Both resulted in

similar age estimates; specifically, a mean age of 303.0–304.4 years and 95% HPDs of

206.9–414.6 years for the most recent common ancestor of the included isolates. We then

used phylogenetic tree building and network analyses to investigate the geographic distribu-

tion of the genetic diversity. Four geographically distinct genetic groups were recognised

within P. agathidicida. Taken together the inferred age and geographic distribution of the

sampled mitogenome diversity suggests that this pathogen diversified following arrival in

New Zealand several hundred to several thousand years ago. This conclusion is consistent

with the emergence of kauri dieback disease being a consequence of recent changes in the

relationship between the pathogen, host, and environment rather than a post-1945 introduc-

tion of the causal pathogen into New Zealand.

Introduction

The genus Phytophthora currently consists of ~180 formally described species and hybrids [1].

While this globally important group of pathogens affects a great many plant species, individual

Phytophthora species differ markedly in host range; some have a limited number of hosts (e.g.,

P. infestans (Mont.) de Bary) while others have upwards of a hundred potential hosts (e.g., P.

cinnamomi Rands, P. nicotianae Breda de Haan) [2]. Despite a growing understanding of
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species diversity (e.g., [1, 3]) and evolutionary relationships (e.g., [4–6]), the origins of many

Phytophthora species remain uncertain (e.g., [3, 7]).

The genus Agathis (Araucariaceae) consists of ~13 species of tropical to warm temperate

gymnosperms distributed across Malesia, Australia and New Zealand. The single New Zealand

species, kauri (Agathis australis (D.Don) Loudon), is endemic and the dominant tree in low-

land forests of the northern North Island [8]. A large, long-lived species kauri is an ecosystem

engineer influencing the composition of associated communities via affects on soil chemistry

[9–12]. The species is culturally significant to indigenous Māori [13] but over the last 175 years

kauri forests have been reduced to less than 10% of their pre-European extent by commercial

felling, clearance for farming, and natural fires [8, 14, 15]. The extreme reduction and frag-

mentation of kauri forests makes this species highly vulnerable to other threats.

Gadgil [16] was the first to report a root rot of kauri. His pioneering work associated disease

symptoms with a Phytophthora initially identified as P. heveae A.W. Thomps. Assumed to be

restricted to an offshore island, it was not until symptoms were found on the mainland in 2006

that this disease was recognized as a wider threat [9, 13, 17]. Subsequent work has found that

although the “kauri killing” Phytophthora and P. heveae both belong to Phytophthora clade 5

[18], the two are morphologically and genetically distinct [19]. The species associated with so-

called kauri dieback is now formally described as P. agathidicida B.S. Weir, Beever, Pennycook

& Bellgard [19]. Of the six Phytophthora species reported from kauri forest soils, P. agathidi-
cida is one of only two previously linked to disease in the field [9, 13, 20]. Studies to date indi-

cate that P. agathidicida is highly pathogenic toward kauri. For example, Beever et al. [9]

identified symptoms of P. agathidicida infection in most size classes of kauri and Horner &

Hough [17] observed 100% mortality within four months of inoculation for two-year old kauri

seedlings in a control group. The other Phytophthora recognized as disease causing in kauri, P.

cinnamomi, has yet to be directly linked to the now widespread dieback [9].

Phytophthora clade 5 currently consists of five taxa–P. agathidicida, P. castaneae Katsura &

K. Uchida, P. cocois B.S. Weir, Beever, Pennycook, Bellgard & J.Y. Uchida, P. heveae, and P. sp.

“novaeguineae”. The geographical distributions of the currently recognized species and their

plant hosts imply an eastern Asian and Pacific centre of diversity [19]. However, as is common

for members of Phytophthora the origins of the individual taxa remain uncertain (e.g., [7]). In

the case of kauri dieback, the history of host and pathogen appear to be in striking contrast.

Agathis australis has been long isolated in New Zealand and is genetically distinct from other

members of the Araucariaceae [21–23]. In contrast P. agathidicida is genetically very similar to

the other members of clade 5 suggesting that this species has a much more recent origin [19].

Although analyses to date are consistent with P. agathidicida having only recently established

in New Zealand, when and from where this pathogen originated is yet to be established [19].

Biogeographic studies often use divergence time estimates from molecular data to distin-

guish between historical scenarios (e.g., [24–26]). Depending on the question and the available

sampling such studies may use either stem or crown age estimates; that is, estimates for the age

of the most recent common ancestor (MRCA) of the focal taxon and its sister group or the

MRCA of extant diversity within the focal taxon, respectively. In the case of P. agathidicida,

species diversity in Phytophthora clade 5 is poorly characterised and as a result stem age esti-

mates for P. agathidicida could be biased by the failure to include, as yet, undescribed taxa. If

so then we are likely to draw the erroneous conclusion that this pathogen has a long history in

New Zealand. The alternative is to use age estimates for the extant diversity of P. agathidicida.

In this case, if the estimated crown age were more recent than the hypothesised arrival time

then we would infer that the pathogen diversified following arrival in New Zealand. In con-

trast, if the crown age were older than the hypothesised arrival time we would need to consider
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two possibilities. We could either reject the hypothesis in favour of an alternative arrival time

or infer that several genetically distinct strains had been introduced New Zealand.

In the current study we considered three scenarios for the arrival of P. agathidicida in New

Zealand. The first is a recent incursion. A common suggestion has been that P. agathidicida
was introduced into New Zealand on imported forestry equipment or planting materials dur-

ing the late 1940s (see [27]). Assuming a recent incursion we would predict a crown age for P.

agathidicida of less than 70 years old. A second possibility is that pathogen arrival was associ-

ated with large scale European settlement of New Zealand between 1845 and the 1940s. During

this period kauri forests were heavily disturbed and many of the organisms now considered

pests in New Zealand were introduced [28]. Assuming this scenario we would predict a crown

age for P. agathidicida of 70–175 years old. The third possibility is that P. agathidicida was

present in New Zealand prior to 1845. In this case, the pathogen may have evolved in New Zea-

land, arrived via natural dispersal or as the result of earlier human movements (e.g., pre-1845

European visitors). Assuming this scenario we would predict the crown of P. agathidicida to

be more than 175 years old.

In this study we have assembled complete mitochondrial genomes for 21 Phytophthora
clade 5 isolates; 16 accessions of P. agathidicida from across the geographic distribution of this

pathogen and five representing the other Phytophthora clade 5 taxa. From these we infer phy-

logenetic relationships and estimate divergence times for P. agathidicida. We discuss our

results in terms of pathogen history as well as understanding the spread and management of

kauri dieback disease.

Materials and methods

Sampling, sample preparation and genome sequencing

We obtained four accessions of P. agathidicida and five representing other Phytophthora clade

5 taxa from the International Collection of Microorganisms from Plants (ICMP) culture col-

lection (Table 1). The selected accessions were cultured on Phytophthora-selective media [29]

in the dark at 18˚C for 7–10 days. Agar plugs were excised from each plate and incubated over-

night at 56˚C with 180 μL ATL buffer (Qiagen, Hilden, Germany) and 20 μL proteinase K (20

mg/ml; Qiagen). The tubes were then briefly centrifuged before genomic DNA was extracted

from the supernatant using the QIAcube1 instrument and the QIAamp1 DNA mini QIA-

cube kit (Qiagen) according to manufacturer’s protocol. Shotgun sequencing libraries were

prepared from DNA extracts by the Massey Genome Service (Palmerston North, New Zea-

land) using Illumina Nextera DNA library preparation kits (Illumina, Inc., San Diego, CA).

The Massey Genome Service also performed 2 × 250 base pair paired-end DNA sequencing on

Illumina MiSeq instruments. Following sequencing reads were quality assessed using a combi-

nation of SolexaQA [30] and FastQC [31].

To expand the geographical range of our sampling we obtained SRA libraries for twelve

accessions of P. agathidicida from Genbank (Table 1). Together the 16 included accessions

broadly represent the geographic range of P. agathidicida (Fig 1).

Mitochondrial genome assembly and annotation

For each accession we assembled complete mitochondrial genome sequences from quality-

assessed paired-end Illumina reads using a combination of de novo and reference-based

approaches. Preliminary de novo assemblies were made using idba_ud [32] with the resulting

contigs compared to a collection of publicly available and unpublished Oomycete mitochon-

drial genome sequences (S1 Table) using BLAST [33]. Contigs with high similarity to the refer-

ence set were assembled into draft mitochondrial genome sequences using Geneious R9 [34].
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Genome drafts were then checked for assembly errors by mapping the quality-assessed reads

directly to drafts using BWA [35]. Drafts were revised as appropriate following a visual inspec-

tion of mapped reads in Tablet [36].

Mitochondrial genome sequences were annotated on the basis of similarity to publicly

available Oomycete genomes using a combination of Geneious and DOGMA [37].

Phylogenetic and network analyses

A multiple sequence alignment for the complete mitochondrial genomes of all 21 accessions

was constructed for phylogenetic analysis. An initial alignment was generated using ClustalO

[38] and edited in Mesquite version 3 [39] to remove sections where less than 50% of the

sequences were represented or where overlapping indels made alignment ambiguous.

Two methods were used to evaluate evolutionary relationships. First, we used RAxML

v8.3.17 [40] together with a GTRGAMMA model to construct a maximum likelihood tree

from the full matrix. Support for recovered relationships was evaluated using 1000 bootstrap

Table 1. Details of the sampled Phytophthora clade 5 accessions and corresponding mitochondrial genome sequences.

Accession no.a Collection locationb Collection year Mitochondrial genome sequence

GenBank accession no. Length (bp) Average read coverage

Phytophthora agathidicida
ICMP 16471 Great Barrier Island 1972 MN883601 36826 2492.0

ICMP 18244 Pakiri, Auckland 2008 MT032126 36844 4458.4

ICMP 18410 Trounson Park, Northland 2010 MW287988 36826 4494.5

ICMP 20275 Whangapoua Forest, Coromandel 2014 MW287989 36835 493.5

NZFS 3118c Huia, Auckland 2009 BK014402 36839 15163.3

NZFS 3126c Piha, Auckland 2006 BK014403 36837 9505.9

NZFS 3128c Huia, Auckland 2009 BK014416 36841 3987.9

NZFS 3616c Great Barrier Island 2001 BK014404 36860 5711.5

NZFS 3687c Waipoua Forest, Northland 2011 BK014405 36846 2733.6

NZFS 3770c Great Barrier Island 2006 BK014406 36826 3502.5

NZFS 3772c Huia, Auckland 2013 BK011977 36824 3650.5

NZFS 3815c Coromandel 2014 BK014407 36851 19059.9

NZFS 3869c Arapohue, Northland 2014 BK014408 36870 13730.5

NZFS 3885c Ruawai, Northland 2014 BK014409 36823 7686.4

NZFS 4289c Raetea, Northland 2010 BK014410 36847 14708.0

NZFS 4290c Waipoua Forest, Northland 2010 BK014411 36846 18585.9

Phytophthora castaneae
ICMP 19450 Lenhuachih, Taiwan 1988 MN883602 37083 3535.3

Phytophthora cocois
ICMP 16949 Kauai, Hawaii 1990 MN883603 37078 1904.2

ICMP 19685 Port-Bouët, Cote D’Ivoire 1991 MT032127 37125 6857.7

Phytophthora heveae
ICMP 19451 Selangor, Malaysia 1927 MN883604 37150 4165.4

Phytophthora sp. “novaeguineae”

ICMP 19637 Papua New Guinea — MN883605 37072 5056.0

a Sampled accessions are from the International Collection of Microorganisms from Plants (ICMP) or New Zealand Forest Research Institute (NZFS) culture

collections.
b Unless otherwise indicated collection locations are within New Zealand.
c Data was retrieved from the NCBI Sequence Read Archive, BioProject numbers SRX1116282, SRX1116283, SRX4575874-SRX4575886.

https://doi.org/10.1371/journal.pone.0250422.t001
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replicates. Network approaches are often used to represent potentially conflicting phylogenetic

information from sequence data (e.g., [41]) or tree sets (e.g., [42]). To further examine the

underlying structure of the data we conducted a Neighbor-Net analysis [43], as implemented

in SplitsTree4 [44], using only the 16 P. agathidicida accessions.

Divergence time estimates

Estimating divergence times from DNA sequence data requires that the molecular clock be cal-

ibrated. Divergence time analyses are usually calibrated by assigning ages to nodes based on

fossil evidence, by incorporating sampling time information, or by constraining the overall

evolutionary rate. In this case fossils are not available and preliminary analyses suggested that

collection dates alone would not be sufficient to calibrate the phylogeny. Instead to calibrate

the present analyses we have used evolutionary rate estimates derived from a collection of P.

infestans mitogenomes sampled over a period of ~150 years [26, 45, 46]. Relying upon rate esti-

mates from a single species has limitations (e.g., [47]) but similar estimates are not yet available

for other Phytophthora species and comparisons with the results of Yuan et al. [48] suggest

that for the mitochondrial genomes of P. agathidicida and P. infestans microevolutionary pro-

cesses are broadly similar.

We first conducted a sequential analysis in which clock rate estimates for P. infestans were

used to calibrate a subsequent analysis of P. agathidicida. Following Martin et al. [26] we esti-

mated clock rates for P. infestans using BEAST version 1.8.1 [49]. A multiple sequence align-

ment for the 69 P. infestans mitochondrial genomes analysed by Martin et al. [26] was

generated using ClustalO [38]. We then established five data partitions (i.e., one each for first,

second and third codon positions of protein coding genes with further partitions for RNA

Fig 1. Map of the northern North Island of New Zealand showing collection locations for sampled Phytophthora
agathidicida accessions. Base map used under a CC BY license, with permission from Free Vector Maps, original

copyright 2014.

https://doi.org/10.1371/journal.pone.0250422.g001
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gene and non-coding sequences) and determined best-fit models of sequence evolution for

each partition using jModeltest 2.2 [50, 51]. Our BEAST analysis used the best-fit model of

sequence evolution and a strict clock [52] with a uniform clock rate prior for each partition, a

skyride tree prior [53], and was calibrated using the sample collection dates (see [26]). Poste-

rior distributions of parameters were estimated using Markov chain Monte Carlo (MCMC)

sampling; samples were drawn every 1.0 × 103 generations from a total of 5.0 × 107 generations

with 10% discarded as burn-in. The analysis was repeated with visual comparisons of esti-

mated sample sizes (ESS) and the posterior distributions of parameters to evaluate mixing and

convergence.

The posterior distribution of the clock rate for each P. infestans partition was then used as a

prior on the clock rate of the corresponding partition in a BEAST2 [54] analysis of the 16 P.

agathidicida mitochondrial genomes. Again, we generated a multiple sequence alignment

using ClustalO [38], established five data partitions, and determined the best fit model of evo-

lution for each partition using jModeltest. For each partition we also specified lognormal clock

rate priors based on the mean and 95% highest posterior density (HPD) of the clock rate for

the corresponding P. infestans partition. We then used nested sampling [55], as implemented

in the NS package [55] for BEAST2 [54], to evaluate the fit of four coalescent tree priors (i.e.,

coalescent with constant population size, coalescent with exponential population growth,

Bayesian skyline, and extended Bayesian skyline) and two clock models (i.e., strict and relaxed

lognormal). Log Bayes factors [56] for each combination of tree prior and clock model were

then compared; differences of 1.1–3.0, 3.0–5.0, and>5 were considered positive, strong and

overwhelming support, respectively [56]. The age of the MRCA for the sampled P. agathidicida
isolates was then estimated using BEAST2 [54] as well as the best fit tree prior, clock model,

and models of sequence evolution. Posterior distributions of parameters were estimated using

Markov chain Monte Carlo (MCMC) sampling using the same chain length, sampling density

and burn-in percentage as for the initial P. infestans analysis; the analysis was repeated to eval-

uate mixing and convergence.

Next, we performed a simultaneous analysis in which tree and substitution models for P.

agathidicida and P. infestans were independent, but partition clock rates were estimated

jointly. We first used the same nested sampling [55] strategy as above to evaluate the fit of tree

priors and clock models to the P. infestans data set. Using the most appropriate combinations

of tree prior, substitution model, and clock model for each species we again estimated the age

of the MRCA of the sampled P. agathidicida. For this analysis uniform priors on clock rate

were used for each of the five sequence partitions. Posterior distributions of parameters were

estimated using Markov chain Monte Carlo (MCMC) sampling using the same chain length,

sampling density and burn-in percentage as for the initial P. infestans analysis; the analysis was

repeated to evaluate mixing and convergence.

Tree model adequacy

We examined tree model adequacy using the TMA package [57] for BEAST2 [54]. This

approach uses the chronogram from an empirical analysis as the basis for simulating data sets

against which to evaluate the empirical result. If the models used in the empirical analysis are

adequate then mean values of an appropriate test statistic should fall within the 95% HPD for

the simulated data sets.

In the present study we evaluated the chronograms from sequential and simultaneous anal-

yses for both P. agathidicida and P. infestans. In each case the TMA run consisted of 300 simu-

lations with model adequacy evaluated on the basis of tree height, tree length, and root-to-tip

heights.
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Results

Mitochondrial genomes

We assembled complete, circularised mitochondrial genome sequences for 16 P. agathidicida
accessions as well as accessions representing four other Phytophthora clade 5 taxa; two acces-

sions of P. cocois and single accessions of P. castaneae, P. heveae and P. sp. “novaeguineae”.

Average coverage values for these assemblies were 493.5–19059.9 sequence reads (Table 1).

The reported mitochondrial genome sequences can be obtained from Genbank (see Table 1

for accession numbers) and from the S1 Data. All 21 Phytophthora clade 5 sequences were

highly similar. For example, they differed by less than 327 nucleotides in length (Table 1) and

shared the same set of 39 protein-coding genes, 25 transfer RNAs and two ribosomal RNAs;

gene order was also conserved across these genomes (Fig 2). Given the overall similarity in

Fig 2. The mitochondrial genomes of Phytophthora agathidicida P. castaneae, P. cocois, P. heveae, and P. sp. “novaeguineae”. Genes on

the interior of the circle are transcribed in the forward direction; those on the exterior are transcribed in the reverse direction. The genome

was drawn using OrganellarGenomeDraw [58].

https://doi.org/10.1371/journal.pone.0250422.g002
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length and gene content it is not surprising that GC content as well as the proportions of cod-

ing and non-coding DNA were also similar across all the genomes. Specifically, GC content

ranged from 21.4% to 21.8% and the proportions of coding and non-coding DNA were 0.91–

0.92 and 0.08–0.09, respectively.

The 16 P. agathidicida mitochondrial genome sequences differed in length by less than 47

nucleotides. This length variation was the result of 23 indels; of these, 19 were five nucleotides

or shorter in length with the remainder 10 to 49 nucleotides long. All but four indels fell within

non-coding sequences. The exceptions were all single nucleotide indels and were located

within ribosomal genes. The P. agathidicida genome sequences also differed at the nucleotide

sequence level. Our sample of 16 mitochondrial genomes contained 14 distinct sequence

types. Of these 12 (75%) were recovered from single isolates with the remaining two sequences

each recovered from a pair of accessions (i.e., ICMP 16471 and NZFS 3770, ICMP 20275 and

NZFS 3815). Although the proportion of unique sequence types is high the sequences them-

selves exhibit little diversity at the nucleotide sequence level. Specifically, in pairwise compari-

sons the 14 sequence types differed from one another by 5–48 aligned sequence positions (i.e.,

0.01–0.13%). The distribution of nucleotide sequence diversity was broadly consistent with the

sizes of three functionally defined sequence partitions. The protein coding genes, which

account for ~76.0% of the mitogenome sequence, contained 81.5% (53 of 65) of the variable

sequence positions whereas the RNA genes (~16% of the sequence) and non-coding DNA

(~8.0% of the sequence) each contained ~9.2% (6 of 65) of the variable positions. Although

most variable positions fell within the protein coding partition, of the 39 protein coding genes

16 shared 100% identity with the remaining 23 having 1–5 variable positions.

Phylogenetic and network analyses

The maximum likelihood analysis of the mitochondrial genome sequences for members of Phy-
tophthora clade 5 resulted in a well-resolved and supported topology (Fig 3). In this tree the P.

agathidicida accession (ICMP 16471) was sister to a clade containing the two P. cocois accessions;

both these relationships received 100% bootstrap support. Among the three remaining accessions

P. heveae and P. sp. “novaeguineae” form a clade, again with 100% bootstrap support.

Neighbor-Net analysis of the 16 P. agathidicida mitochondrial genome sequences suggests

four geographically distinct groups (Fig 3). In the network three of the groups were clearly sep-

arated; one group consisted of accessions from Raetea (NZFS 4289) and Waipoua Forest

(NZFS 3687, NZFS 4290), one included accessions from Great Barrier Island (ICMP 16471,

NZFS 3616, NZFS 3770) and one the accessions from Arapohue (NZFS 3869), Coromandel

(ICMP 20275, NZFS 3815), Ruawai (NZFS 3885), and Trounson Park (ICMP 18410). The

remaining accessions–from Huia (NZFS 3118, NZFS 3128, NZFS 3772), Pakiri (ICMP 18244),

and Piha (NZFS 3128)–were clustered within the network but did not clearly form a clade.

Consistent with the relationships suggested by the Neighbor-Net analysis, mitogenome

sequences from different geographic groups differed by 0.04–0.13% (14–48 aligned positions)

whereas those from the same group differed by 0.00–0.08% (0–30 aligned positions). For

example, accessions from Great Barrier Island (i.e., ICMP 16471, NZFS 3616 and NZFS 3770)

from one another differed by 0.00–0.02% (0–8 aligned positions) but by 0.08–0.11% (29–41

aligned positions) from accessions from the Far North group (i.e., NZFS 3687, NZFS 4289 and

NZFS 4290). In a few cases we included multiple accessions from the same local area; levels of

nucleotide difference were similar to those within geographic groups. For example, the three

accessions from Huia (i.e., NZFS 3118, NZFS 3128 and NZFS 3772) differed by 0.01–0.08%

(5–30 aligned positions) whereas two of the three samples from Great Barrier Island (i.e.,

ICMP 16471 and NZFS 3770) shared 100% sequence identity.
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Divergence time estimates for P. agathidicida
We first estimated clock rates for five mitochondrial sequence partitions in P. infestans using

the approach of Martin et al. [26]. Our reanalysis of the Martin et al. [26] data suggested an

age of 646.9 years (95% HPD, 409.7–932.7 years) for the MRCA of the sampled P. infestans
accessions. Estimates of clock rates for the P. infestans mitochondrial partitions ranged from

3.58 × 10−7 substitutions per site per year (95% HPD, 1.56 × 10−7–5.83 × 10−7 substitutions per

Fig 3. Phylogenetic reconstructions for Phytophthora agathidicida and related Phytophthora clade 5 taxa. A. Maximum likelihood tree describing

relationships among members of Phytophthora clade 5. Tree obtained from analysis of complete mitochondrial genome sequences (likelihood = -54392.814),

branches labelled with bootstrap values. B. Phylogenetic network describing relationships among the Phytophthora agathidicida accessions. Network obtained

from Neighbor-Net analysis of complete mitochondrial genome sequences (Fit = 98.023). Terminals are labelled with collection location and accession number;

four broad genetic groups are also labelled.

https://doi.org/10.1371/journal.pone.0250422.g003
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site per year) for the RNA genes to 7.26 × 10−6 substitutions per site per year (95% HPD,

4.32 × 10−6–1.03 × 10−5 substitutions per site per year) for non-coding sites (S1 Fig).

For our sequential analysis we initially conducted nested sampling to identify the most

appropriate clock rate models and coalescent tree priors for use with our P. agathidicida data

set. Using best-fit substitution models and P. infestans clock rate estimates as priors, these anal-

yses provided overwhelming support for the use of strict clocks (log Bayes factor = 38.89) and

strong support of use of a coalescent tree prior with constant population size (log Bayes fac-

tor = 3.22) for the P. agathidicida data set. The subsequent divergence time analysis suggested

an age of 304.4 years (95% HPD, 206.9–414.6 years) for the MRCA of all the sampled P. agathi-
dicida accessions and of 66.8–231.5 years (95% HPD, 25.4–316.2 years) for the MRCA of each

of the four geographical groups. In this topology accessions from the Great Barrier Island from

a well-supported clade that appears to be nested within the Auckland grouping (Fig 4); how-

ever, consistent with the structure of our Neighbor-Net this arrangement was poorly sup-

ported. Estimates of clock rates for P. agathidicida ranged from 4.32 × 10−7 substitutions per

site per year (95% HPD, 2.39 × 10−7–6.51 × 10−7 substitutions per site per year) for the RNA

genes to 4.73 × 10−6 substitutions per site per year (95% HPD, 4.65 × 10−6–6.38 × 10−6 substi-

tutions per site per year) for non-coding sites (S2 Fig).

For our simultaneous analysis we again used nested sampling to determine the most appro-

priate clock model and tree prior for the P. infestans data set. These analyses provided strong

to overwhelming support for a Coalescent Bayesian Skyline tree prior (log Bayes factor = 3.00)

and strict clock (log Bayes factor = 15.02) for the P. infestans data set. For P. agathidicida the

simultaneous analysis recovered posterior distributions for the age of the MRCA sampled

Fig 4. Time-calibrated phylogeny from the sequential analysis of sampled P. agathidicida mitochondrial genomes. Branch lengths are

proportional to time with grey bars indicating the 95% highest probability densities. Terminals are labelled with collection location and accession

number; four broad genetic groups are also labelled.

https://doi.org/10.1371/journal.pone.0250422.g004
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accessions and clock rates for sequence partitions that were highly similar to those of the

sequential analyses. Specifically, the MRCA was estimated to be 303.0 years old (95% HPD,

210.1–405.2 years) with clock rates ranging from 3.53 × 10−7–5.73 × 10−6 substitutions per site

per year (95% HPD, 2.31 × 10−7–7.07 × 10−6 substitutions per site per year) (S1 and S2 Figs).

In this case the ages of the MRCA for each of the four geographical groups ranged from 66.2–

229.7 years (95% HPD, 24.8–314.6 years); again, the Great Barrier Island clade is nested within

the Auckland grouping.

Tree model adequacy

We used tree model adequacy to assess whether the tree models applied in our sequential and

simultaneous analyses could have generated the observed data. For the parameters tree height,

tree length, and root-to-tip heights we compared the mean of the posterior distribution to the

95% HPD for a collection of 300 simulated data sets. Without exception mean parameter val-

ues fell within the corresponding 95% HPD for the simulated data. For example, for tree

height, which corresponds to the age of the MRCA, the observed mean value and 95% HPD

for simulated data were 304.4 and 267.3–535.7 years, respectively. The models used in our

analyses were therefore considered adequate.

Discussion

Diversity of clade 5 mitochondrial genomes

We assembled complete mitochondrial genomes from 21 accessions representing all currently

recognised members of Phytophthora clade 5. These mitogenome sequences are highly similar;

for example, they differed little in size sharing both gene content and arrangement. Mitogen-

ome size and gene content is also broadly similar to those reported for other Phytophthora spe-

cies. For example, all available Phytophthora mitogenomes contain the same 35 protein-coding

genes of known function (i.e., 18 respiratory chain proteins, 16 ribosomal proteins, and an

import protein) and two ribosomal RNA genes (e.g., [59, 60]). However, despite these similari-

ties no previously reported Phytophthora mitogenome has the same structural arrangement as

that identified for the clade 5 taxa.

Our sample of 16 P. agathidicida mitogenomes contained 14 distinct sequence types that in

pairwise comparisons differed by 5–48 aligned sequence positions (i.e., 0.01–0.13%). Two pre-

vious studies [19, 61], both similar to the present study in the size and geographical range of

sampling, have also reported estimates of sequence diversity for P. agathidicida. Most recently,

Guo et al. [61] reported pairwise sequence differences for whole genome comparisons that are

very similar to those for mitogenome sequences. Specifically, their sample of genomes differed

from one another by 0.08–0.12%. Our results are also consistent with those of Weir et al. [19]

who included two mitochondrial markers. In this case levels of sequence variation for cyto-

chrome oxidase 1 (cox1) and NADH dehydrogenase subunit 1 (nad1) were the same in both

studies; 0.00% and 0.25% variable sequence positions, respectively. Taken together, these com-

parisons suggest that the sequence diversity observed in the present study is likely to be repre-

sentative of sequence diversity in P. agathidicida more generally.

Given that P. agathidicida isolates appear to differ little at the nucleotide sequence level,

marker selection must be an important consideration for future evolutionary studies. Work

that has documented levels of sequence variation for mitochondrial loci in Phytophthora [48]

and identified potential marker loci (e.g., [48, 62, 63]) should inform mitochondrial marker

selection for P. agathidicida. Given the results of Weir et al. [19] similar consideration will

need to be given to selection of nuclear markers.
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Divergence time estimates for P. agathidicida
Molecular divergence time estimates for stem nodes are often used to test hypotheses about

the history of biological lineages. However, we cannot yet confidently draw biogeographical

inferences from stem age estimates for P. agathidicida because species diversity within Phy-
tophthora clade 5 is poorly characterised. We instead investigated the age of the MRCA for a

geographically diverse sample of P. agathidicida accessions using a combination of the P.

agathidicida sample collection ages and clock rate estimates from P. infestans to calibrate our

divergence time analyses. Despite applying information about P. infestans clock rates in two

different ways we recovered very similar age estimates for the MRCA of the sampled P. agathi-
dicida. Specifically, mean estimates fell within two years of each other (i.e., 303.0 and 304.4)

and the 95% HPDs broadly overlapped (i.e., 210.1–405.2 and 206.9–414.6).

One question when using secondary rate calibrations is whether the rates applied are appro-

priate. Tree model adequacy [55] provides a means of evaluating the appropriateness of the

tree model underpinning an analysis. Although this approach evaluates the overall tree model,

for the current analyses we explicitly compared the observed and simulated results on the basis

of three branch length parameters. For both the sequential and simultaneous analyses, all three

parameters suggested that observed and simulated results were very similar. This implies that

the underlying models could have generated the observed results and therefore that using

clock rate estimates from P. infestans as priors on divergence time analyses for P. agathidicida
was appropriate.

Other questions relate to the application of rate calibrations. One is whether the rate priors

capture the initial rate estimates. To examine this we compared the probability distributions of

the priors and corresponding posteriors from initial and sequential analyses of P. infestans. In

general these distributions were very similar, although the posterior distributions for the

sequential analysis were narrower than those of the priors (S1 Fig). Consistent with the similar-

ity of clock rates, age estimates were also broadly similar for P. infestans; for example, crown

age estimates for the HERBI lineage [26] were all 252.0–267.0 years (95% HPD, 208.7–342.5

years) old. These results suggest that our priors captured the P. infestans clock rates and the

associated estimation uncertainty. Another question is whether the priors dominate posteriors.

To examine this we compared the distributions of the priors and corresponding posteriors

from the sequential analysis of P. agathidicida (S2 Fig); in all cases the distributions differ. Fur-

thermore, for both P. agathidicida and P. infestans the clock rate posteriors from sequential

analyses differ from those jointly estimated in the simultaneous analysis (S1 and S2 Figs).

Taken together these observations suggest that signal from the P. agathidicida sequence data

has contributed to age estimates for this species.

Interpreting the age of the MRCA

If we assume that the inoculum of P. agathidicida introduced into New Zealand was genetically

uniform, that is it contained a single mitochondrial genome sequence type, then estimates of

303.0–304.4 years (95% HPDs 206.9–414.6 years) old for the MRCA of the sampled P. agathi-
dicida isolates are inconsistent with either a recent incursion (i.e., post-1945) or an arrival asso-

ciated with large scale European settlement (i.e., 1845-1940s). To be consistent with these

hypotheses the estimated age of the MRCA would need to have been less than 70 years old or

70–175 years old, respectively. Instead, both mean estimates and 95% HPDs suggest that the

MRCA of the sampled isolates is more than 175 years old. Assuming that a genetically uniform

inoculum our age estimates suggest P. agathidicida was present in New Zealand prior to 1845.

Importantly, given the small sample size we expect our analyses to have underestimated the

crown age of P. agathidicida and for our interpretation to be conservative. Increased sampling
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is likely to capture a larger proportion of the underlying genetic diversity and therefore provide

older estimates for the crown age of P. agathidicida. That is, increased sampling is unlikely to

result in estimates suggesting anything other than an arrival prior to 1845.

Our interpretation of divergence time estimates for the MRCA of the sampled P. agathidi-
cida isolates assumes that a genetically uniform inoculum arrived in New Zealand. If, instead,

multiple mitochondrial genotypes had been introduced then hypotheses suggesting more

recent arrival are plausible. Without further analyses we cannot completely exclude the possi-

bility that multiple mitotypes were introduced. That said, multiple introductions do not easily

explain the observed geographic distribution of genetic diversity in P. agathidicida. If this path-

ogen had arrived in New Zealand post-1945 then explaining the observed mitogenome diver-

sity would require 9–14 (i.e., 66–100%) of the mitotypes identified in the present analyses to

have been introduced. Although multiple introductions are a possibility, in this case we would

also need to explain how mutually exclusive subgroups of between two and five sequence types

were then moved to the four different geographical regions. Human-mediated transport has

been suggested as explaining the spread of P. agathidicida (e.g., [24, 64]). However, given a

post-1945 introduction as well as the number and geographical distribution of mitotypes our

results are difficult to convincingly explain in this way. That human-mediated transport is not

clearly linked to the distribution of P. agathidicida diversity is consistent with Beachman [27]

who, based on forestry records, found little support for widespread human-mediated transport

of P. agathidicida.

There are several ways in which our inference that P. agathidicida arrived in New Zealand

prior to widespread European settlement might be further examined. One would be to more

fully evaluate the geographic distribution of genetic diversity in P. agathidicida. Preliminary

analyses of mitochondrial genomes from several additional accessions (e.g., [65]) are consis-

tent with the geographical distribution observed in the present analyses (i.e., the new

sequences fall sister to mitotypes from the same location in a phylogenetic network) but fur-

ther sampling is still needed. Analyses of whole genome data will also be important in this con-

text. For example, based on genome wide analyses of single nucleotide polymorphisms Guo

et al. [61] identified the same broad geographic groupings. Again a much larger sample will be

needed to more fully evaluate the distribution of genetic diversity. Another approach would be

to investigate the broader relationships within Phytophthora clade 5. There are several reports

of diebacks involving other members of the Araucariaceae (e.g., [66]) as well as of clade 5 rep-

resentatives from elsewhere in the Indo-Pacific (e.g., [67, 68]). Although these examples are

obvious candidates for further investigation, a much broader effort (e.g., inclusion of widely

sampled isolates [69]) will be needed in order to ensure sampling is sufficient for robust histor-

ical inference.

Taken together the available genetic evidence is most consistent with diversification of P.

agathidicida in New Zealand having begun at least 300 years ago and therefore that this patho-

gen must have arrived even earlier. Although considerably older than has previously been sug-

gested, this should not be interpreted as evidence of ancient heritage. Indeed, preliminary

analyses suggest that P. agathidicida and its currently recognised sister species, P. cocois,
diverged 7,115.9 years (95% HPD, 5514.8–8845.4 years) ago. Further work is clearly needed,

but the present analyses appear to be consistent with P. agathidicida having been present in

New Zealand for between several hundred and several thousand years.

Implications for management of disease and pathogen risk

Beever et al. [9] recommended that P. agathidicida should be managed as a recently introduced

pathogen until the origins of this species could be resolved. Further work on origins has not
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been conducted; instead it has simply been assumed that P. agathidicida arrived in New Zea-

land post-1945 (e.g., [70, 71]). Several observations (e.g., high host mortality [17]) are consis-

tent with a recent arrival in New Zealand. However, none of these observations provide direct

evidence of recent arrival and, significantly, most are also consistent with a longer history in

New Zealand.

The disease triangle [72] views disease expression as an emergent property of interactions

between a virulent pathogen, a susceptible host, and suitable environmental conditions. Under

this model the recent emergence and spread of kauri dieback need not be attributed to recent

pathogen arrival. Instead, the pathogen could have remained a relatively benign member of

the soil community until changes in the pathogen, host, or environment resulted in conditions

conducive to disease expression. Evolutionary changes that increase pathogen virulence or

host susceptibility offer a possible explanation. If so, given the discontinuous distribution of

disease symptoms, geographic distribution of pathogen diversity, and broad age distribution

of infected hosts such evolutionary changes must have occurred on multiple occasions.

Although possible, the plausibility of evolutionary explanations is reduced because these

changes must have occurred frequently since kauri dieback was first reported in the 1970s but

rarely, if at all, before this. In contrast, changes to biotic or abiotic environments offer a more

plausible explanation for the emergence of kauri dieback. Studies suggest that even highly

aggressive Phytophthora species may remain benign unless conditions are conducive to disease

[3, 73–76] and, more generally, it is recognized that pathogen activity and disease severity can

be moderated by climate (e.g., [77–78]). A recent study [79] has suggested that biotic (e.g., sec-

ondary fungal infections) and abiotic (e.g., extremes in rainfall due to climate change) factors

have contributed to Phytophthora-linked decline of European beech (Fagus sylvatica L.) stands

in Lower Austria. Human activity has already severely fragmented kauri forests [8, 14, 15] and

this could have exacerbated the impacts of other factors such as climate change (e.g., [79]) or

potentially co-acting pathogens (e.g., [80]).

It is generally assumed that the distribution of P. agathidicida corresponds closely to that of

kauri dieback. Yet, if P. agathidicida has been long present and disease expression is environ-

mentally mediated then this pathogen may be more widely distributed than is suggested by

disease symptoms alone. Pathogen distribution has yet to be assessed in detail [64] but the

assumption that the distributions of pathogen and disease closely correspond could potentially

compromise research and management efforts. We need to distinguish between “pathogen

risk,” the risk that P. agathidicida has arrived and is persisting at a given location, and “disease

risk,” the risk that kauri dieback symptoms will be expressed. Pathogen risk is likely to be

determined by interactions between the biological characteristics of the pathogen (e.g., life his-

tory, dispersal) and landscape or environmental factors that influence movement and survival

(e.g., hydrology). Although pathogen risk contributes to disease risk the two should not be

considered equivalent. Beyond pathogen presence, disease risk is likely to be mediated by a

range of site-specific environmental factors (e.g., microclimate, plant and microbial associa-

tions, disturbance history) acting on both pathogen and host. Recognising the contrast

between pathogen and disease risk may lead to important insights. For example, potentially

providing a means of selecting appropriate management tools and evaluating their

effectiveness.
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