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Simple Summary: The underlying mechanism of post-operative relapse of non-small cell lung cancer
(NSCLC) remained poorly understood. This study highlights that both tumors and adjacent tissues
from stage I NSCLC with relapse show a dysregulated immune and metabolic environment. Immune
response shifts from an active state in primary tumors to a suppressive state in recurrent tumors. A
model based on the enriched biological features in the primary tumors with relapse could effectively
predict recurrence for stage I NSCLC. These results provide insights into the underpinning of the
post-operative relapse and suggest that identifying NSCLC patients with a high risk of relapse could
help the clinical decision of applying appropriate therapeutic interventions.

Abstract: The underlying mechanism of post-operative relapse of non-small cell lung cancer (NSCLC)
remains poorly understood. We enrolled 57 stage I NSCLC patients with or without relapse and
performed whole-exome sequencing (WES) and RNA sequencing (RNA-seq) on available primary
and recurrent tumors, as well as on matched tumor-adjacent tissues (TATs). The WES analysis revealed
that primary tumors from patients with relapse were enriched with USH2A mutation and 2q31.1
amplification. RNA-seq data showed that the relapse risk was associated with aberrant immune
response and metabolism in the microenvironment of primary lesions. TATs from the patients with
relapse showed an immunosuppression state. Moreover, recurrent lesions exhibited downregulated
immune response compared with their paired primary tumors. Genomic and transcriptomic features
were further subjected to build a prediction model classifying patients into groups with different
relapse risks. We show that the recurrence risk of stage I NSCLC could be ascribed to the altered
immune and metabolic microenvironment. TATs might be affected by cancer cells and facilitate the
invasion of tumors. The immune microenvironment in the recurrent lesions is suppressed. Patients
with a high risk of relapse need active post-operative intervention.
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1. Introduction

Lung cancer represents the peaks of both incidence and mortality among all cancer
types [1]. Non-small cell lung cancer (NSCLC) is the most common histological type of lung
cancer, especially in nonsmoking patients. Complete surgical resection with mediastinal
lymph node dissection is the curative treatment for patients with early stage lung cancers [2].
However, due to the high relapse rates about 30–55% for those who could receive curative
resection [3], five-year survival rates for fully resected stage I NSCLC still range from 50%
to 70% [4].

Defining the molecular mechanism underlying recurrence is critical for identifying
biomarkers which could serve as prognostic indicators or therapeutic targets to improve
clinical outcomes. Multiple studies have attempted to decipher the disparity between
paired primary and metastasis lesions and suggested that tumor microenvironment (TME)
with immune suppression might be the mechanism leading to metastasis [5–7]. Although
the defect of immune response is quite prominent in metastasis compared with primary
tumors, TME alteration might occur early in the primary tumor and therefore facilitate the
dissemination of tumor cells.

Prognostic models capable of predicting clinical outcome in early stage NSCLC have
attracted much attention. A previous study utilized immune signature to predict the
overall survival in early stage NSCLC [8]. Similarly, hypoxia-related signature was also
proved to be effective in predicting overall survival in both early and advanced-stage
NSCLC [9,10]. Apparently, the choice of signature was guided by the molecular mechanism
associated with the malignant features of tumor cells. We reason that an in-depth analysis
of multi-omics data [11–14] of patients with relapse could provide more valuable markers
for predicting recurrence, and this might benefit a subpopulation of patients by providing
evidence supporting applying certain therapeutic regimens.

Herein, we collected samples from the primary stage I NSCLC with different risks of
relapse representing the early stage of their kind and nine recurrent tumors corresponding
to the advanced stage. We performed whole-exome sequencing (WES) and RNA sequencing
(RNA-seq) on these samples and compared the genetic and transcriptional profile between
cohorts with and without relapse. We found that primary tumors from patients with post-
operative relapse were marked with aberrant immune and metabolic microenvironment,
and their matched tumor-adjacent tissues (TATs) had decreased immune response. By
analyzing paired primary and recurrent lesions, we identified a suppressive immune status
of recurrent tumors that contrasted the elevated immune response in the primary tumors
of patients with recurrence. Furthermore, we established a predictive model to stratify
patients into groups with different risks of recurrence.

2. Materials and Methods
2.1. Patients

We prospectively enrolled 57 patients with stage I NSCLC from 2012 to 2018, including
29 patients without relapse and 28 patients who relapsed within 5 years. Written informed
consent was obtained from all participants. The paired TATs for each patient were collected
as a negative control. Nine recurrent tumors were collected for WES and RNA-seq analysis.
These patients underwent surgical resection and received no adjuvant therapy. All samples
were collected in Affiliated Hangzhou First People’s Hospital, Zhejiang University School
of Medicine. Detailed clinical characteristics are provided in Tables S1–S3. This study was
conducted in accordance with the Declaration of Helsinki and approved by the Institutional
Review Board of Affiliated Hangzhou First People’s Hospital, Zhejiang University School
of Medicine (No. IIT-20210922-0037-01).
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2.2. DNA Extraction and Sequencing

DNA was extracted from fresh tumor and paracancerous tissues by using QIAamp
DNA MiniKit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
The concentrations of DNA were determined by Qubit fluorometer (Invitrogen, Carlsbad,
CA, USA). A total of 1 µg DNA was fragmented into 200–250 bp segments, using a Covaris
S2 instrument (Woburn, MA, USA). Sequencing libraries were prepared by using the
KAPA DNA Library Preparation Kit (Kapa Biosystems, Boston, MA, USA) according to
the manufacturer’s protocol. In brief, the end of the fragments was repaired before “A”
addition, adapter ligation, amplification, and hybridization to the SeqCap EZ library. The
captured DNA was recovered by using Streptavidin Dynabeads (Thermo Fisher Scientific,
Waltham, MA, USA) and then amplified by PCR. Sequencing was performed by using the
Geneplus-2000 sequencing platform (Geneplus, Beijing, China).

2.3. WES Analysis

BWA (version 0.7.12-r1039, Heng Li and Richard Durbin, Cambridge, UK) was em-
ployed to align the clean reads to the reference human genome (hg19). Picard (version 1.98,
Broad Institute, Cambridge, USA) was used to mark PCR duplicates. Realignment and
recalibration were performed by using GATK (version 3.4-46-gbc02625, Broad Institute,
Cambridge, MA, USA). Single nucleotide variants (SNVs) were called by using MuTect
(version 1.1.4, Broad Institute, Cambridge, MA, USA). Small insertions and deletions (In-
dels) were called by GATK. Somatic copy-number alterations were identified with CONTRA
(v2.0.8, Jason Li et al., Melbourne, Australia). Mutations were considered as candidate
somatic mutations only when (i) the mutation was detected in at least 5 high-quality reads,
(ii) the mutation with a variant allele frequency >0.01, (iii) the mutation was not present in
>1% of the population in the 1000 Genomes Project (version phase 3) or dbSNP databases
(The Single Nucleotide Polymorphism Database, version dbSNP 137), and (iv) the mutation
was absent from a local database of normal samples. The detailed quality-control data are
provided in Table S4.

2.4. Identification of Enrichment of Mutated Genes in the PR Cohort

The enrichment of mutant genes in the PR cohort was estimated by the odds ratio
(OR) and p-value derived from the Fisher’s exact test. OR = prevalence in PR/prevalence
in NR. Genes with OR > 1 and p < 0.1 are plotted in Figure 1C.

2.5. Signature Analysis

The R package deconstructSigs was used to analyze the single nucleotide substitution
signature [15].

2.6. CNV Analysis

Gistic 2.0 was adopted to detect significantly recurrent CNV regions in the cohort. To
evaluate the CNV level at the chromosome and arm level, we performed the following
calculations as per a previous report [16]. Briefly, CNV events were identified by the log2
ratio depth of tumor to normal called from GATK (cutoff, 0.2). The lengths of aberrant
regions were summed up according to the specific status (amplification or deletion), respec-
tively. An arm-level amplification or deletion was identified when the summed-up length
exceeded 50% of the arm length. When both arms of a chromosome presented CNV of the
same aberrant status, a chromosome-level CNV was defined. The events of arm-level and
chromosome-level were counted, respectively, generating the Arm_score and Chrom_score
to represent the CNV burden [16].



Cancers 2022, 14, 3061 4 of 18Cancers 2022, 14, x  4 of 20 
 

 

 
Figure 1. The difference of genetic characteristics between PR and NR. (A) Schematic diagram of the
study design. (B) Oncoprint showing the mutations of the top 15 most frequently mutated genes.
The upper barplot shows the mutation burden of each patient. The bottom annotation shows the
clinical features (tumor stage, smoking, and gender). (C) Forest plot comparing the frequency of
genes mutated in PR versus that mutated in NR. Enrichment for each gene was determined by using
a two-tailed Fisher’s exact test. Only genes with a p-value < 0.1 are shown. (D) Kaplan–Meier curve
for DFS of USH2A mutant and USH2A wild-type group. Log-rank test was used to compare the
difference. (E) GISTIC 2.0 was used to detect significantly altered region with amplification (red) and
deletion (blue).
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2.7. RNA Extraction and Sequencing

RNA was extracted from fresh tissues by using TRIzol and RNeasy MinElute Cleanup
Kit (Invitrogen). RNA purity was measured by using the kaiaoK5500® Spectrophotometer
(Kaiao, Beijing, China). RNA integrity and concentration were evaluated by using the
RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, Palo Alto,
CA, USA). According to the manufacturer’s protocol, mRNA libraries were prepared
by using the NEB Next® Ultra™ RNA Library Prep Kit (NEB, Beverly, MA, USA). The
constructed RNA-seq libraries were sequenced on the Geneplus-2000 sequencing platform
(Geneplus, Beijing, China).

2.8. Gene Expression Profiling and Data Analysis

The sequencing reads containing adaptor sequences and low-quality reads were
removed to obtain high-quality paired-end reads. Reads passing quality control were
aligned to the human genome (hg19), using HISAT (v2.0.4, Daehwan Kim et al., Baltimore,
USA). Transcript assembly was performed by using StringTie (v1.2.3, Mihaela Pertea et al.,
Baltimore, USA). The detailed quality-control data are provided in Table S5. R package
limma was used for gene differential expression analysis. Gene set enrichment analysis
(GSEA) was used to calculate the enrichment scores of certain pathways. The normalized
enrichment score (NES) was obtained for each patient. Gene sets with FDR values < 0.25
and NES > 0 were considered as significantly enriched.

2.9. Analysis of Immune Cell Infiltration

GSVA package was implemented to perform single sample gene set enrichment
analysis (ssGSEA) related to immune cells [17]. The fractions of 22 types of immune
cells associated with innate and adaptive immunity were derived by using CIBERSORT as
previously described [18].

2.10. Inference of Clonal Evolution

The subclones in each sample were inferred by PyClone based on cellular preva-
lence and copy number of mutations [19]. The phylogeny of subclones was constructed by
CITUP (github.com/sfu-compbio/citup, accessed on 20 November 2021) and further visual-
ized by Timescape (www.bioconductor.org/packages/release/bioc/html/timescape.html,
accessed on 20 November 2021).

2.11. Survival Analysis

A Kaplan–Meier plot was used to evaluate the difference of disease-free survival (DFS)
between different groups, and the significance was assessed by a log-rank test.

2.12. Prediction Model Construction

WES data and RNA-seq data were used to construct recurrence prediction models
independently or collectively. To calculate the mutation risk score, frequently mutated genes
(prevalence ≥10%) were analyzed by univariate Cox proportional-hazards regression to
evaluate their association with DFS. The two genes (USH2A, RBM10) with significant results
(p < 0.05) were subjected to the multivariate Cox model. To calculate the expression risk
score, DEGs between the PR and NR groups were analyzed by univariate Cox proportional-
hazards regression to evaluate their association with DFS. Those with significant results
were further selected according to their biological functions. Specifically, KEGG pathways
enriched in the PR group (GSEA, NES > 2) compared with the NR group, including
antigen processing and presentation, B-cell-receptor signaling, natural-killer-cell-mediated
cytotoxicity, and oxidative phosphorylation, were used as the selection criteria. The selected
genes were further evaluated by multivariate Cox model and Akaike information criterion.
Finally, CALR, HSPA2, PSME1, BRAF, SERPINA1, HLA-B, LTA, and CD48 were selected and
fed into the multivariate Cox model. The univariate Cox proportional-hazards regression
model was also used to evaluate the significance of clinical parameters. The risk score for the

www.bioconductor.org/packages/release/bioc/html/timescape.html
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above Cox models were calculated by using the function “predict” from the stats package.
Receiver operating characteristic (ROC) analysis of the model and the areas under the curve
(AUC) was calculated to reflect the prediction power. The difference of DFS between high-
risk and low-risk groups was determined by using a Kaplan–Meier curve and log-rank test.
The optimal cutoff value was determined by the function “surv_cutpoint” from survminer
package, which determines the optimal cutpoint for one or multiple continuous variables
by using the maximally selected rank statistics from the maxstat R package. This is an
outcome-oriented method providing a value of a cutpoint that corresponds to the most
significant relation with an outcome.

2.13. Statistical Analysis and Visualization

Statistical analysis and plot generation were performed with R software (v 4.0.2) and
GraphPad Prism (v 8.0.2), as appropriate. In all analyses, comparisons between two groups
were based on two-sided Wilcoxson sum-rank test. The p-values < 0.05 were considered
statistically significant, except for specific indications.

3. Results
3.1. Clinical Characteristics of Patients

We collected 57 primary tumor samples from stage I NSCLC patients (one sample from
each patient) during surgical resection, among whom 28 patients manifested with relapse
within 5-year follow-up, and their primary tumors were termed as PR in the following
description, while the remaining 29 patients presented no relapse, and tumors derived
from them were termed as NR. Nine patients underwent a second surgery after relapse and
the resected tumors (recurrent lesion from patients with relapse, RR) were obtained. TATs
matched with NR and PR were termed as NR_TATs and PR_TATs, respectively (Figure 1A).
The summary of clinical characteristics is listed in Table S1.

3.2. The Genetic Characteristics of PR and NR

To investigate the genetic features in stage I NSCLC with a different risk of recurrence,
we performed WES on NR and PR samples (Figure 1A). We found that EGFR and TP53
ranked high among the frequently mutated genes, and their prevalence was comparable
between PR and NR (Figure 1B and Figure S1). An increased prevalence of several mutant
genes was observed in PR compared with that in NR (Figure 1C). Among them, the USH2A
mutation was remarkably enriched in PR (29% vs. 3%, p = 0.012), indicating that it might
be a signature for relapse in stage I NSCLC (Figure 1C and Figure S1). We compared the
DFS between USH2A-mutant and USH2A-wild-type patients and found that the USH2A
mutation was associated with worse DFS in our cohort. However, the USH2A mutation
was not associated with DFS in the TCGA cohort whether LUAD and LUSC were inspected,
respectively, or combined as a whole (Figure S2). We also observed that the USH2A
mutation was associated with an increased tumor mutation burden (TMB) and tumor
neoantigen burden (TNB) in our cohort (Figure S3), indicating that mutation in USH2A
might be associated with an altered immune environment [20]. We did not identify any
difference of TMB and TNB between the NR and PR groups (Figure S4).

The single base substitution signature analysis demonstrated that the overall patterns
between NR and PR were similar. Of note, a small fraction of Signature 11 exhibiting a
mutational pattern resembling that of alkylating agents was present in NR (Figure 1C),
although our patients underwent no treatment before surgery. Signature 3 associated with
failure of DNA double-strand break repair by homologous recombination, and an incon-
spicuous fraction of Signature 21 related to microsatellite unstable tumors only manifested
in the PR group (Figure S5).

Taking the copy number variation (CNV) into account, we observed that there was no
significant difference in the arm-level and chromosome-level CNV between NR and PR
(Figure S6). However, at the focal level, significant alterations that were unique to each
group were observed (Figure 1E). Notably, the 2q31.1 segment harboring HOXD family
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genes was significantly amplified in the PR group (Figure 1E, left panel). As reported
previously, the HOX-Centric network might confer risk to serous ovarian cancer [21,22].
Overall, despite the general similar characteristics between PR and NR, PR had several
unique genetic alterations.

3.3. PR Harbored Aberrant Immune and Metabolic Microenvironment

To further investigate the transcriptional profile of stage I NSCLC patients with differ-
ent relapse risks, we analyzed the RNA profile in NR and PR, as well as in the matched
TATs (Figure 1A). Of the differentially expressed genes (DEGs), 1463 upregulated and 6254
downregulated genes were identified in NR compared with NR_TATs; 1638 upregulated
and 2244 downregulated genes were identified in PR compared with PR_TATs. Comparing
DEGs in PR (vs PR_TATs) and those in NR (vs NR_TATs), we found that most DEGs were
unique to PR or NR (Figure 2A), thus indicating that these two groups harbored a differ-
ent transcriptional profile. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment was performed to annotate the biological functions of DEGs, and enriched
pathways were mostly upregulated in both NR and PR (Figure S7). The infiltration of
lymphocytes was evidenced by the enrichment of immune-related pathways in both groups.
Several cancer-related pathways, including Wnt, ErbB, and Hippo signaling pathways,
were downregulated in NR tumors. Nevertheless, consistent with the findings in DEGs,
PR and NR shared a small fraction of enriched pathways regarding downregulated and
upregulated pathways separately (Figure 2B), thus further indicating that the transcrip-
tional difference between the two groups from our cohort might provide underpinning
of relapse risk. We next attempted to identify DEGs between NR tumors and PR tumors
to extract the finer dichotomous transcriptomic programming determining the relapse
potential. In total, 990 upregulated and 811 downregulated genes were found (Figure 2C).
Although the first two principal components derived from the DEGs revealed a separation
of NR and PR groups (Figure 2D), we did not identify significant pathway enrichment
by using these DEGs. Therefore, we performed GSEA, which could consider the global
pattern of gene expression in the two groups. Compared with NR, the PR group was
mainly enriched with pathways related to immunity, metabolism, cell motility, and cancer
progression (Figure 2E). Herein, the increased activity of several immune-related pathways
in the TME of PR was noticeable, thus suggesting the early immune aberration in primary
tumors with a higher risk of relapse after surgery. The metabolism activity was also boosted
in PR, suggesting that cells within the niche might be more energetic. Genes related to
oxidative phosphorylation and fatty acid metabolism were among the upregulated genes
in PR [23–25] (Figure 2C).

We also analyzed the infiltration of immune cells by calculating the ssGSEA score
(Figure 2F). Consistent with the above findings, the proportion of total immune cell infil-
tration (all_immune) significantly increased in PR compared with NR, which was likely
ascribed to the increase of T cells (Figure 2F). Of note, regulatory T (Treg) cells, which could
play an inhibitory role in the antitumor immunity, were remarkably elevated in PR. We also
analyzed the fraction of immune cell infiltration by using CIBERSORT, which consistently
showed a slight increase of Treg cells in PR; however, the difference was not significant
(Figure S8A). This observation raised the possibility that these cells might be dysfunctional
or non-activated despite the high level of infiltration [26,27].

Given that the USH2A mutation was associated with an increase of TMB and TNB
in our cohort, we also investigated whether this alteration was related to immune cell
infiltration. Both ssGSEA and CIBERSORT results showed that Treg cells increased in
tumors with USH2A mutation, although the analysis from CIBERSORT did not generate a
statistically significant difference (Figure S8B,C). These findings further proved the potential
role of USH2A in affecting immune surroundings.

Collectively, the above results demonstrated that PR was fundamentally different from
NR regarding the transcriptional profile and harbored an imbalanced immune microenvi-
ronment which might lead to an increased risk of post-operative relapse.
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Figure 2. The difference of transcriptional profile between PR and NR. (A) Venn diagram showing
the overlap of DEGs in PR and NR. DEGs, differentially expressed genes; TATs, tumor adjacent
tissues. (B) Venn diagram showing the overlap of enriched pathways (based on DEGs) in PR
and NR (see also Figure S7). (C) Volcano plot showing the upregulated (red) and downregulated
genes (blue) in PR compared with NR. Vertical and horizontal dashed lines represent the cutoff for
Log2FC (1 for upregulated and -1 for downregulated) and adjusted p-value (0.05). DEGs related to
oxidative phosphorylation and fatty acid metabolism are indicated in red. (D) Principal component
analysis showing the separation of NR and PR tumors. (E) Barplot showing the enrichment score
of significantly enriched KEGG pathways in PR versus NR analyzed by GSEA. (F) Immune cell
infiltration calculated by ssGSEA in NR and PR tumors. * p < 0.05, ** p < 0.01.
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3.4. PR_TATs Showed an Inhibitory Immune Microenvironment

Whether TATs around the tumor compartment could affect tumor growth and metas-
tasis is unclear. We attempted to answer this question by investigating the DEGs in TATs
paired with NR and PR tumors. We found that most DEGs (2174) were downregulated,
while a small fraction of genes (182) was upregulated in PR_TATs compared with NR_TATs
(Figure 3A). Overall, the immune state showed a suppressed tendency in PR_TATs versus
NR_TATs with a group of immune-related genes falling into the downregulated genes
(Figure S9) and generally decreased immune score reflecting the immune cell infiltration
in PR_TATs (Figure 3B,C). Immunostimulatory aDC cells, which are a major player in
antigen presentation, were lacking in PR_TATs (Figure 3C). The impaired ability of antigen
processing and presentation was also manifested by the enrichment of relevant functional
genes in the decreased DEGs in PR_TATs (Figure 3A). We also noticed CD56bright NK cells,
which were associated with compromised cytotoxicity and aggressive behaviors of tumor
cells [28], were significantly enriched in PR_TATs (Figure 3C).

Furthermore, we identified several pathways that are more active in PR_TATs, using
GSEA. Notably, pathways related with adhesion and junction were elevated in PR_TATs
(Figure 3D–F), in addition to PR (Figure 2E), emphasizing the dual property of adhesion
and junction related genes; that is, molecules involved in adhesion and junction could
function in blocking the migration of cancer cells in some scenarios, as well as promoting the
malignant progression of tumors under certain circumstances [29]. The pentose phosphate
pathway, which was reported as a critical NAPDH origin for cancer cells to synthesize
fatty acids and respond to stress [30], was also elevated in PR_TATs, indicating that this
energetic alteration was not restricted to the tumors. In addition, genes involved in TGF-
beta signaling and Wnt signaling were upregulated in PR_TATs, and both pathways could
reshape the TME to facilitate tumor progression [31–33]. Taken together, although TATs
were usually considered as the “normal control”, they might already undergo a series of
alterations involving immune response and metabolism as a result of tumor education.

3.5. Genetic and Transcriptional Distinction between PR and RR

We also performed WES and RNA-seq in nine RR tumors (Figure 1A) and compared
them with the matched PR. Pair-wise comparison demonstrated that PR and RR from
most patients had a similar mutational landscape of the frequently mutated genes, except
for LYM and XRS (Figure 4A). A clonal evolution analysis could help identify whether
the recurrent loci was seeded from the primary lesion or formed de novo. Our results
revealed that all RR samples were clonally related with their paired PR, including those
from the two patients mentioned above (Figure S10). We also found that most PRs (6/9)
demonstrated a low degree of intra-tumoral heterogeneity, while most RRs (7/9) had novel
subclones. Given that the PR samples were acquired from stage I patients, the relatively
simple clonal architecture in most cases represented an early stage of clonal evolution.
Comparing the commonly altered genes between PR and RR, we found that FSIP2 was
mutated more frequently after relapse; however, the result was not significant (Figure 4B).
Several studies demonstrated that FSIP2 was associated with metastasis and drug response
in breast cancers [34,35]; therefore, we suspected that FSIP2 mutation might contribute
to the survival advantage of disseminated lesions. We next compared the TMB and TNB
between paired PR and RR but found no obvious difference (Figure 4C). However, we
found that arm-level CNV was significantly elevated in RR, whereas chromosome-level
CNV manifested no significant alteration in the pair-wise analysis (Figure 4D).
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Figure 3. PR_TATs showed an inhibitory immune microenvironment. (A) Volcano plot showing the
upregulated (red) and downregulated genes (blue) in PR_TATs compared with NR_TATs. Vertical and
horizontal dashed lines represent the cutoff for Log2FC (1 for upregulated and -1 for downregulated) and
adjusted p-value (0.05). Genes related to antigen processing and presentation are annotated. PR_TATs,
tumor-adjacent tissues paired with PR tumors; NR_TATs, tumor-adjacent tissues paired with NR tumors.
(B) Heatmap showing the immune cell infiltration of each sample. Samples are split into NR_TATs
and PR_TATs cohorts and are in descending order according to the score of all_immune cells. For each
cell type, the ssGSEA score was transformed to the scaled z-score before visualization. (C) Boxplots
comparing the immune cell infiltration between NR_TATs and PR_TATs. Wilcoxon rank-sum test
was performed to evaluate the statistical significance. Differences with p < 0.05 are indicated by red
asterisks. * p < 0.05. (D–I) GSEA results showing the significantly upregulated pathways in PR_TATs
versus NR_TATs.
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Figure 4. Genetic and transcriptional distinction between PR and RR. (A) Oncoplot depicting frequently
mutated genes in paired PR and RR tumors. (B) Barplot comparing the prevalence of frequently mutated
genes in PR and RR tumors. (C) Pair-wise comparison of TMB (left) and TNB (right) between PR and
RR tumors. The difference was evaluated by Wilcoxon matched-pairs signed-rank test. (D) Pair-wise
comparison of Chrom_score (left) and Arm_score (right) between PR and RR tumors. The difference
was evaluated by Wilcoxon matched-pairs signed-rank test. (E) Volcano plot showing the upregulated
(red) and downregulated genes (blue) in RR compared with PR. Vertical and horizontal dashed lines
represent the cutoff for Log2FC (1 for upregulated and -1 for downregulated) and adjusted p-value (0.05).
Genes related to immune effector process are annotated. (F) Dotplot showing that downregulated genes
in RR versus PR enriched in immune-related Gene Ontology terms.
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We next investigated the transcriptional profile in RR relative to PR. A small
number of DEGs were identified, including 362 upregulated and 52 downregulated
genes in RR (Figure 4E). Nevertheless, the downregulated compartment included
several immune-related genes and were enriched for immune-related Gene Ontology
terms (Figure 4E,F), suggesting an immunosuppression state of TME, which was in
accordance with several previous studies [5,36,37]. We also analyzed immune cell infil-
tration by using ssGSEA and CIBERSORT and found generally no significant difference
between PR and RR, except for decreased monocytes in RR (Figures S11 and S12).

3.6. Establishing A Prognostic Model for Recurrent Stage I NSCLC

In order to establish a prognostic model to predict recurrence in stage I NSCLC, we
first applied univariable cox regression to analyze the association of clinical features and
relapse. Age, gender, smoking status, histological subtype, tumor size, and primary site
were not significantly correlated with a high risk of relapse (Figure S13A) and were therefore
excluded from the model.

We next sought to combine the genetic and transcriptional data to fit the model. Af-
ter excluding a few non-adenocarcinoma samples to avoid bias, we restricted the train-
ing cohort to 50 adenocarcinomas. Risk scores were calculated according to the tran-
scriptional and mutational profile, respectively (Section 2). Furthermore, an integration
score was generated by combining both types of risk score. The training cohort was di-
vided into high-risk groups and low-risk groups by the optimal cutoff value (Section 2)
according to the risk score, and the high-risk groups showed inferior DFS compared to
the low-risk groups whether expression risk and mutation risk were considered sepa-
rately or combined (Figure 5A–C). Additionally, the mutations risk score (AUC = 0.685,
hazard ratio (HR) = 1.226, 95% hazard ratio (CI) = 1.088–1.383, p = 0.00084) fell behind
the expression score (AUC = 0.880, HR = 1.212, 95% CI = 1.068–1.177, p = 3.54 × 10−6)
and integration score (AUC = 0.896, HR = 1.063, 95% CI = 1.026–1.101, p = 7.71 × 10−4)
in predicting recurrence; the expression score and the integration score showed a
similar performance (p = 0.5322, DeLong test) (Figure 5D). When we validated the
model in the stage I LUAD from TCGA data, the mutation risk score could no longer
distinguish high-risk patients from low-risk patients in differentiating DFS, whereas
both the expression risk score and integration risk score could identify patients with
a shorter DFS (Figure 5E–G). Consistently, the expression risk score (AUC = 0.639,
HR = 1.557, 95% CI = 1.105–2.194, p = 0.0114) displayed a better performance in predict-
ing recurrence compared with the mutation risk score (AUC = 0.518, HR = 0.9835, 95%
CI = 0.8384–1.154, p = 0.838) and integration risk score (AUC = 0.543, HR = 0.9291, 95%
CI =0.7364–1.172, p = 0.535) (Figure 5H). Therefore, the expression risk score generated
from the transcriptional data demonstrated optimal power in predicting recurrence
in both the training and validation datasets, and there is no need to integrate muta-
tion data to boost the model. We further tested the expression risk model in another
independent cohort (GSE30219) and validated that the selected genes from our model
could effectively predict recurrence risk in the stage I LUAD patients (Figure S13B,C).
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Meier curve for DFS of high-risk group and low-risk groups according to expression risk score (A),
mutation risk score (B), and integration risk score (C) calculated in the test cohort. (D) ROC curve for
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risk score (G) calculated in the TCGA validation cohort. (H) ROC curve for each risk score calculated
in the TCGA validation cohort. The cutoff values in the Kaplan–Meier plots were determined by a
result-oriented function “surv_cutpoint” in survminer package.

4. Discussion

Surgery remains the curative treatment for stage I NSCLC. With the expectation that
surgery might completely eradicate the tumor cells, patients with clinical stage 0 or IA
NSCLC after segmentectomy generally present favorable survival [38]. However, a fraction
of patients will eventually relapse [39]. In the current study, we used WES and RNA-seq
analysis to unveil the main distinction between patients with and without relapse and
further selected genes to establish a prediction model which could effectively stratify
patients from our cohorts into tiers with different risks of recurrence.

To explore the underlying mechanism associated with recurrence risk in stage I NSCLC
patients, we performed systemic analysis to pin down the difference between NR and PR
samples. We found that USH2A mutation and 2q31.1 amplification were enriched in the
PR tumors. A previous study reported that the USH2A mutation was associated with
high TMB and poor clinical prognosis. Additionally, cases with USH2A mutation had
an increased immune score [20]. In our findings, although USH2A mutation tented to be
positively associated with TMB and TNB, as well as the abundance of Treg cells, it was not
related to the global immune infiltration, which might explain the inferior DFS to an extent.
The 2q31.1 region is resided mainly by HOXD genes. Previous studies in other cancer types
have suggested a potential oncogenic role for HOXD genes, but the underlying mechanism
is not clear [21,22,40]. Inhibition of the transcription of the HOXD locus was suggested to
be relevant with tumor-cell immune escape [41]. Whether the HOXD genes contribute to
tumor progression by shaping the immune microenvironment needs further investigation.

We also observed dysregulated immune response in the patients with relapse, which
was marked by the upregulation of several immune-related pathways. A previous study



Cancers 2022, 14, 3061 14 of 18

deduced that immunosuppression was a critical risk factor for relapse [5]; however, the
seemingly contradictory results in our study revealed that the broad immune level was not
necessarily indicative of a poor prognosis, and the complexity of immune reactivity needed
to be finely dissected to identify the essential determinant of relapse risk. Additionally, our
samples were collected from primary tumors of stage I patients and, therefore, represented
an early alteration in the TME, which revealed the vigorous combat between antitumor
immunity and the tumor-intrinsic need for growth and survival. Moreover, we found
that, although the overall level of immune response was high, Treg cells, which might
shift the immune microenvironment to an inhibitory state, were enriched in PR. This
controversial finding led to the assumption that these infiltrated Treg cells might not be
able to exert inhibitory function to the immune response. Likewise, a previous study
found the enrichment of Treg cells in ulcerative colitis, which was obviously characterized
by vigorous inflammation, and suggested that these cells might represent a functionally
impaired subgroup [26]. We also could not exclude the possibility that the Treg cells might
reside in a naive state [42], considering that our samples were derived from early stages
patients. However, lacking the single-cell-level resolution, we were not capable of further
dissecting the heterogeneity of Treg cells to draw a more solid conclusion.

TATs represent a unique intermediate state between healthy and tumor tissues [43].
Robust predictive ability based on information extracted from TATs are proposed [44]. In
our results, the TATs paired with NR and PR also presented with diversity in immune cell
infiltration. We found that a defect of antigen processing and presentation in the TATs was
prominent in PR_TATs. This impairment might circumvent the cytotoxicity of activated T
cells and confer survival advantage to tumor cells which further acquire a chance of dissem-
ination [45,46]. The underlying mechanism of immune deficiency, for instance, whether it
was related to MSI or HLA-LOH, needs to be further investigated [47,48]. PR_TATs were
also enriched for pathways of cell adhesion and junction. In fact, contradictory reports
about the role of focal adhesion molecules in tumor invasion were documented [29,49].
By censoring the biological function of genes involved in the adhesion and junction, we
also noticed multiples genes with oncogenic potential (www.gsea-msigdb.org, accessed on
1 December 2021). In summary, abnormality in TATs could also contribute to the cancer
progression, and one should be cautious in using TATs as “normal” control.

While the genome of primary NSCLC has been well characterized, there has been
considerably less of an analysis of recurrent specimens due to the challenge in acquiring
samples. One of the strengths of our research is that our cohort used tumors after relapse to
find out genomic variations and responsible pathways in RNA-seq. The recurrent lesions
in our cohort manifested with inactive immune-related biological processes, therefore
corroborating the immunosuppression state of recurrent lesions. In the analysis of immune
cell infiltration, we found that monocytes were decreased in the RR lesions, and this might
be ascribed to their weakened migration to the TME. As previously reported, inhibition
of monocyte migration could promote the motility of tumor cells [50]. Moreover, our
results indicated the transition of the immune process from a strong reaction at the early
stage to a suppressive state at the advanced stage, thus suggesting that the application of
immunological therapy might be different for early stage and advanced tumors.

The current therapy standards for NSCLC solely rely on the clinical staging. For
example, adjuvant chemotherapy after complete surgical resection is not recommended for
early stage NSCLC but might be considered as an option for stage IB patients according to
the NCCN guidelines [51,52]. Whether or not to apply adjuvant therapy to NSCLC patients
at stage I after surgical resection needed more reference beyond the TNM stage. A previous
study reported that combining gene mutation with expression data could improve the
outcome prediction of clinical outcomes [53]. Inspired by this, we established a model
based on the comparison between NR and PR samples to select the predictive markers and
calculate the risk score. Our results suggested that the transcriptional profile alone was
enough to distinguish high-risk groups; therefore, deep phenotyping including multiple

www.gsea-msigdb.org
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features might be a costly redundancy. Admittedly, further clinical trials are warranted to
explore the adoption of adjuvant therapy in the high-risk patients.

Our study still suffered from several limitations. First, our cohort was very limited in
the sample size, and this was a potential reason restricting the generalization of the model
predicting relapse. Second, in the analysis of TATs, we did not define the precise distance of
the regions sampled from the tumor or perform the comparison with truly normal tissues
due to a shortage of samples from non-diseased individuals.

5. Conclusions

In summary, we characterized unique molecular signatures of stage I NSCLC with a
high risk of recurrence, which is marked with by altered immune and metabolic environ-
ment, and revealed that the TATs of the primary lesions showed difference between patients
with different relapse potential, suggesting that tumors might reshape the surrounding
environment to facilitate their migration and re-seeding. We established a model which
could effectively predict the risk of recurrence of stage I NSCLC after surgical resection
in both the test and validation cohort. Further exploration in whether adjuvant therapy
would improve the clinical outcome of stage I NSCLC patients with a high risk of relapse
predicted by the model is required.
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Abbreviations

NSCLC non-smallcell lung cancer
TME tumor microenvironment
WES Whole-exome sequencing
RNA-seq RNA sequencing
TATs tumor-adjacent tissues
OR odds ratio
GSEA gene set enrichment analysis
NES normalized enrichment score
ssGSEA single sample gene set enrichment analysis
DFS disease-free survival
ROC receiver operating characteristic
AUC areas under the curve
PR primary tumors with relapse
RR recurrent tumors
NR primary tumors without relapse
CNV copy-number variation
TMB tumor mutation burden
TNB tumor neoantigen burden
DEGs differentially expressed genes
KEGG Kyoto Encyclopedia of Genes and Genomes
HR hazard ratio
CI confidence interval
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