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ABSTRACT: Re-engineering mammalian cell surfaces enables
modulation of their phenotype, function, and interactions with
external markers and may find application in cell-based therapies.
Here we use metabolic glycan labeling to install azido groups onto
the cell surface, which can act as anchor points to enable rapid,
simple, and robust “click” functionalization by the addition of a
polymer bearing orthogonally reactive functionality. Using this
strategy, new cell surface functionality was introduced by using
telechelic polymers with fluorescence or biotin termini,
demonstrating that recruitment of biomacromolecules is possible.
This approach may enable the attachment of payloads and
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modulation of cell function and fate, as well as providing a tool to interface synthetic polymers with biological systems.

ell-based therapies are potent tools in modern medicine,
from blood transfusions and bone marrow transplants, to
rapidly emerging treatments such as stem cell and CAR-T
therapy.'~* However, these cells are limited in their native
functionality and phenotype. In contrast, synthetic polymer—
protein conjugates have shown significant success in improving
therapeutic efficacy by increasing stability, circulation half-lives
and storage.’ Such benefits have made PEGylated (poly-
(ethyene glycol)-grafted) proteins the gold standard in the
pharmaceutical industry.”'* Covalent polymer reformulation
of cell-based therapies is the next frontier to aid translation,
add non-natural functionality, such as imaging agents and/or
loading of additional cargo (e.g, therapeutic drugs), and to
improve logistics.ll_13 Therefore, re-engineering of mamma-
lian cell surfaces with synthetic (or natural) polymers is a
valuable tool for biomedicine and biotechnology.
Polymer-coated islet cells have been the subject of study to
mask cell-surface antigens, minimizing graft rejection in
xenogeneic and allogenic transplants, while retaining biological
function.'*™"” Cell PEGylation methods used to achieve this
include N-hydroxy succinimide and biotin.”’"** Similarly,
PEGylated erythrocytes can improve blood transfusion
compatibility by blocking AB antigens, while also reducing
malaria parasite binding and preventing diseases characterized
by impaired blood flow or vaso-occlusion.”*™** Despite cell-
surface engineering holding great promise, challenges remain
in the design of clinical-translatable and effective methods. A
successful polymer-remodelling approach should be simple,
versatile (i.e., applicable to multiple cell types), bioorthogo-
nal,”” and provide additional functionality, while retaining
normal membrane function.
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Polyelectrolytes have been investigated for noncovalent
electrostatic deposition onto cell membranes for translational
applications due to their widespread use as polymer coat-
ings.’>*' However, polycations can disrupt the (anionic) cell
membrane and rapidly reduce cell viability. Cell viability is
reduced even with the incorporation of PEG chains to
minimize contact of polyelectrolytes with the lipid bilayer.**~*
The susceptibility of nucleated mammalian cells to mechanical
and chemical stress also limits the covalent polymer
conjugation methods that may be employed. Hawker and co-
workers used a “grafting from” approach where ATRP
initiators were immobilized onto yeast cells, followed by
“grafting from” polymerization.”* This approach was found to
exert stress on mammalian cells, leading to significant
cytotoxicity and hence was not broadly useful for biomedical
application.”

Genetic tools allow modulation of cell function by
introducing or knocking out/silencing genes but, in most
cases, they are not adaptable to accept synthetic components.
Non-natural amino acids (with bioorthogonal functionality)
are challenging to install at specific sites in whole cells.*”
Therapeutic value is also limited due to tedious and costly
transfection procedures along with safety and ethical
concerns.>®*” As such, exploring novel cytocompatible
methods of polymer conjugation to cell surfaces remains a
challenging area of biomaterial science.
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Figure 1. Telechelic polymer synthesis. (A) RAFT polymerization with PEP-RAFT agent; (B) a,w-functionalization with DBCO-NH,, followed by
(i) fluorescein maleimide or (ii) biotin maleimide. ACVA = 4,4 Azobis(4-cyanovaleric acid).

Cell-surface glycans play major metabolic, structural, and
recognition roles in biology. Glycan metabolic labeling, a
technique pioneered by Bertozzi et al,””** allows azido groups
(or other bioorthogonal handles)™ to be incorporated into
specific cell-surface glycans by “hijacking” oligosaccharide
biosynthesis pathways, such as the sialic acid biosynthetic
pathway. This tool provides an extremely versatile approach to
reprogram cell surfaces using only chemical, rather than
genetic, methods. Shi et al. tagged azido-labeled cells with
alkynyl-PEG-f-cyclodextrin and photoswitchable azobenzene-
MUCI1 aptamer to controllably target epithelial cancer cells
(MCF-7) and, thus, promote the formation of T-cell cancer
cell assembly.”® Furthermore, metabolic labeling has been used
to selectively label cancer cells in vivo through the installation
of “caged” azido sugars, which are cleaved by cancer-
overexpressed enzymes.!' Liposomal delivery of azido-glycans
can also be used for selective cell labeling, targeting
overexpressed receptors on cells.*” This presents a unique
opportunity in biomaterials science to take advantage of
controlled polymerization techniques®’ to enable selective
introduction of biorthogonal “click” functionality,” allowing
cell surfaces to be re-engineered through purely chemical
means.

Here we covalently graft well-defined RAFTed (reversible
addition—fragmentation transfer) polymers onto live cells,
which have been metabolically labeled using azido-glycans.
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Telechelic hydrophilic polymers are subsequently “clicked”
onto the modified glycans using strained alkynes, enabling
rapid, specific, and biocompatible reprogramming of the cell
surface and the introduction of non-native functionality.
Poly(hydroxylethyl acrylamide) (pHEA) was selected for
cell-surface remodelling due to its versatility, water solubility,
and surface passivation capabilities.”” A pentafluorophenyl
(PFP) ester functionalized RAFT agent was employed to
synthesize telechelic polymers (PFP-pHEA), Figure 1.
Polymers were characterized by SEC, 'H, *C, and '’F NMR,
and infrared spectroscopy (IR), Table 1 and Supporting
Information. Two different chain lengths (DPS0O and 100)
were prepared with low dispersities, <1.2. Azide-reactive
functionality was installed using dibenzocycloctyne-amine
(DBCO-NH,) to displace the PFP ester, confirmed by the

Table 1. pHEA Precursor Polymers

[M]:[CTA] conv.” Mn((heo)b Mn(SECfC i

code (=) (%) (g/mol) (g/mol) ol
PFP-pHEA 4, 100 91.3 13000 15000 1.15
PFP-pHEAy, NV 98.2 8300 9700 1.17

“Determined by 'H NMR against an internal mesitylene standard.
YDetermined by the [M]:[CTA] ratio and conversion, assuming
100% CTA efficiency. “Determined by SEC in DMF against PMMA
standards.

DOI: 10.1021/acsmacrolett.8b00675
ACS Macro Lett. 2018, 7, 1289—-1294


http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00675/suppl_file/mz8b00675_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00675/suppl_file/mz8b00675_si_001.pdf
http://dx.doi.org/10.1021/acsmacrolett.8b00675

ACS Macro Letters

removal of PEP peaks in '”F NMR and IR spectra (Supporting
Information). During functionalization, the trithiocarbonate
was cleaved revealing a thiol, which was coupled to either
fluorescein or biotin maleimide. Conjugation was confirmed
via fluorescence spectroscopy after exhaustive dialysis
(Supporting Information).

Following polymer synthesis, cell-surface glycans were
metabolically labeled.”® Adenocarcinomic human alveolar
basal epithelial cells (AS49 cells), a stable model cell line,
were incubated with ManNAz (tetraacylated N-azidoacetyl-
mannosamine), which enters the cell and “hijacks” the sialic
acid biosﬁynthetic pathway presenting azido groups on the cell
surface.”® The presence of cell-surface azides was confirmed by
the SPAAC (strain-promoted azide/alkyne click) reagent
DBCO-CyS (Supporting Information). Confocal microscopy
displayed strong localized fluorescence at the cell membrane of
ManNAz treated cells, along with cytosolic staining due to
nonspecific uptake of the dye (see below). Control cells
presented no staining, demonstrating selectivity even in the
presence of the myriad of intracellular and extracellular
components.

AS49 cells were cultured in the presence and absence
(negative control) of ManNAz and were subsequently
incubated with DBCO-pHEA,-FL at 1—-10 mg/mL for 1 h
(initial screening showed this was sufficient for labeling),
Figure 2. The highly specific nature, and rapid kinetics, of
azide—alkyne reactions allowed the conjugation process to be
undertaken in complete cell media, removing risks of starvation
and thus exertion of unnecessary cellular stress. Membrane-
associated (green) fluorescence was observed in cells treated
with ManNAz at all polymer concentrations used, in a dose-
dependent manner. The absence of polymer-associated
fluorescence in control cells (no ManNAz) confirmed that
“click” conjugation occurred, rather than nonspecific mecha-
nisms (such as membrane insertion)”” or cellular uptake
(endocytosis).

Cell viability was assessed after 24 h of polymer exposure by
the resazurin reduction assay (Supporting Information). At all
concentrations there was no reduction in viability and the cell
morphology was also unaffected by polymer incubation.

Compared to small molecule probes, which require DMSO
solubilization, p(HEA)-DBCO polymers offered several
advantages due to their high water solubility. DMSO promotes
cell uptake, hence, small molecule probes lead to off-target
cytosolic labeling, whereas the low cell permeability of water-
soluble polymers ensures selective extracellular interactions.
The approach presented here provides benefits compared to
the “grafting from” approach used by Hawker et al, which
required fine-tuning to avoid damage to cells, or the use of
robust yeast cells.”* Confocal images of labeled cells (Figure 2)
showed that DPS0 polymers gave increased membrane labeling
at all concentrations compared to DP100, potentially due to a
combination of lower molar concentrations and increased
steric hindrance. Hence, the macromolecular engineering of
the grafted layer was crucial to the success of this methodology.

Having demonstrated successful cell labeling, the robustness
of the polymer coating was evaluated, which is crucial due to
the potential recycling of glycan anchors.*® Established
methods of coating cells, such as lipid anchors,*’ suffer from
lack of robustness due to membrane recycling and polymer
dissociation due to weak hydrophobic interactions."" Polymer-
labeled cells were imaged over 24 h by monitoring fluorescein
(green) fluorescence, Figure 3. Image cytometry showed a
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Figure 2. Covalent grafting of polymers to azido-labeled cells. (A)
Incubation of AS49 cells with ManNAz, followed by SPAAC at the
cell surface; (B) Confocal images of ManNAz treated cells exposed to
indicated concentrations of DBCO-pHEA,-FL (green) for 1 h (n =
3); Blue: DAPI (nuclear) stain. Scale bar = 50 ym.

relatively even distribution of labeling and degrafting across the
population (Supporting Information). Total average fluores-
cence suggested that DPS0 polymers retained over 2X greater
surface coverage compared to DP100 polymers, even 24 h
postconjugation. However, initial degrafting of pHEA;,
occurred within 8 h whereas loss of pHEA,, occurred later,
between 8 and 16 h following conjugation. Thus, this may
present opportunities for temporal control over conjugation
using polymer length. No evidence was found of increased
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Figure 3. Grafting lifetime of glycan-immobilized polymers. Time-
lapse confocal images over 24 h are shown (n = 3); Blue: DAPI
(nuclear) stain; Green: DBCO-pHEA,-FL polymer (10 mg/mL).
Scale bar = 50 ym.

intracellular green fluorescence, suggesting that the fate of cell
surface polymers was degrafting rather than uptake and
processing.

Following the above success, we wanted to demonstrate that
additional functionality can be brought to the cell surface using
these polymers while retaining availability of the nongrafted
chain end (and not sterically limited by, for example, the
glycocalyx). This approach enables encoding of additional
information to the cell surface without using genetic
engineering. Biotin-maleimide was introduced to the thiol
chain end of polymers (Figure 1). Cells treated with azido
sugars were subsequently functionalized with the biotinylated
polymers, using the optimized procedures described above.
Cy3-labeled (red) streptavidin was introduced either immedi-
ately, or 24 h after, incubation with polymers. Confocal images
of pHEA-biotinylated cells after incubation with streptavidin
demonstrated clear membrane associated red fluorescence
consistent with recruitment of streptavidin to the cell surface,
Figure 4. Due to the increased loading of the DP50 polymers,
there was approximately double (values in Supporting
Information) the recruitment extent of streptavidin compared
to DP100. This model system demonstrates the versatility of
this method to re-engineer cells with non-native functionality
using accessible and versatile tools.

In summary, we have covalently grafted synthetic polymers
onto the surface of living cells. The tethering point is
introduced to AS49 cells by metabolic labeling of cell surface
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Figure 4. Recruitment of streptavidin to polymer-remodelled cell
surfaces. (A) Immobilization of DBCO-pHEA,-biotin to azido-
functionalized AS49 cells, followed by recruitment of Strepavidin-
Cy3 (red); (B) Time lapse confocal images of cells after streptavidin
recruitment (n = 3); Blue: DAPI (nuclear) stain. Scale bar = S0 ym.

0 hrs

24 hrs

glycans by acetylated N-azidoacetylmannosamine (ManNAz).
This azide was then used to anchor telechelic polymers via
strain-promoted azide/alkyne “click” reaction. The optimized
polymers remain on the cell surface for over 24 h, which is
longer than reported for lipid-remodelling methods. Further-
more, the extent and durability of the grafting was found to be
linked to the molecular weight of the polymer chain used.
Additional functionality was introduced through biotin-
terminated polymers, which were immobilized onto the cell
surface and subsequently used to recruit fluorophore labeled
streptavidin to the surface. Hence, demonstrating applicability
in biomedical engineering and offering several advantages over
genetic encoding methods. In this study, we have devised a
versatile yet simple approach to remodel cell surfaces that will
find application in cell-based therapies and for fundamental
studies on cell surface interactions.
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