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Abstract

Shiga-like toxins are ribosome-inactivating proteins (RIP) produced by pathogenic E. coli strains that are responsible for
hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 chain of Shiga-like toxin 1 (SLT-1), a representative RIP,
first docks onto a conserved peptide SD[D/E]DMGFGLFD located at the C-terminus of all three eukaryotic ribosomal stalk
proteins and halts protein synthesis through the depurination of an adenine base in the sarcin-ricin loop of 28S rRNA. Here,
we report that the A1 chain of SLT-1 rapidly binds to and dissociates from the C-terminal peptide with a monomeric
dissociation constant of 13 mM. An alanine scan performed on the conserved peptide revealed that the SLT-1 A1 chain
interacts with the anionic tripeptide DDD and the hydrophobic tetrapeptide motif FGLF within its sequence. Based on these
2 peptide motifs, SLT-1 A1 variants were generated that displayed decreased affinities for the stalk protein C-terminus and
also correlated with reduced ribosome-inactivating activities in relation to the wild-type A1 chain. The toxin-peptide
interaction and subsequent toxicity were shown to be mediated by cationic and hydrophobic docking surfaces on the SLT-1
catalytic domain. These docking surfaces are located on the opposite face of the catalytic cleft and suggest that the docking
of the A1 chain to SDDDMGFGLFD may reorient its catalytic domain to face its RNA substrate. More importantly, both the
delineated A1 chain ribosomal docking surfaces and the ribosomal peptide itself represent a target and a scaffold,
respectively, for the design of generic inhibitors to block the action of RIPs.
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Introduction

Shiga toxins such as Shiga-like toxin 1 (SLT-1) are produced by

enteropathogenic Escherichia coli strains and represent the major

cause of hemorrhagic colitis and hemolytic uremic syndrome [1,2].

SLT-1 is a type II ribosome-inactivating protein (RIP) composed

of a catalytically active A subunit non-covalently associated with a

pentamer of B-subunits [3,4]. This pentamer binds to the

glycolipid globotriaosylceramide (CD77,Gb3), an event that leads

to its internalization [5,6,7]. SLT-1 then traffics in a retrograde

manner through the Golgi apparatus where it is proteolytically

cleaved into an N-terminal catalytic A1 domain and a C-terminal

A2 fragment non-covalently associated with its B-pentamer. Both

A chain fragments remain linked by a single disulfide bond which

is thought to be reduced in the ER lumen [8,9,10]. The A1 domain

is then retrotranslocated to the cytosol by virtue of its newly

exposed hydrophobic C-terminus, where it eventually docks onto

ribosomes and subsequently depurinates a single adenine base

(A4324) in the sarcin-ricin loop (SRL) of 28S rRNA

[11,12,13,14,15]. This depurination event creates an apurinic site

that prevents elongation factor 1 (EF-1)-dependent amino-acyl

tRNA from binding to the ribosome and EF-2-catalysed

translocation during elongation, leading to an inhibition of protein

synthesis [16,17,18].

The protein component of the ribosome was first shown to

contribute to the toxicity of RIPs when a 105 fold increase in

depurination rate was observed for ricin on native ribosomes when

compared to protein-depleted ribosomes [19]. SLT-1 as well as

other structurally and functionally related RIPs, require their

docking to ribosomal proteins in addition to rRNA to maintain

their optimal depurination rate and cytotoxic function

[15,19,20,21]. More recently, it has been revealed that the

ribosomal protein components required for interacting with either

type I (trichosanthin (TCS)) or type II (SLT-1 and ricin) RIPs are

the ribosomal proteins RPP0, RPLP1 and RPLP2 (P0, P1, and P2)

[15,20,22,23]. These three proteins form the ribosomal stalk which

is required for the binding of elongation factors leading to protein

translation [24,25,26]. The eukaryotic stalk structure is composed

of two heterodimers of the P1 and P2 proteins [27,28,29], which

interact by virtue of the N-terminus of the P1 protein, at two

specific locations on the P0 protein [30,31,32,33], which

subsequently binds to rRNA [34].
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We have previously shown that the A1 chain of SLT-1 interacts

with the ribosomal stalk proteins P0, P1, and P2 via a conserved

C-terminal peptide (SDXDMGFGLFD, where X = D or E) [15].

In the present study, we demonstrate by yeast-2-hybrid (Y2H) and

surface plasmon resonance (SPR) that the A1 chain of SLT-1

interacts with the C-terminal ribosomal stalk peptide with a

micromolar dissociation constant. Specifically, the interaction of

the A1 chain with the conserved C-terminal peptide SDDD

MGFGLFD common to all three ribosomal stalk proteins exhibits

a modest binding constant (Kd 13 mM), towards the monovalent

peptide, with rapid on and off rates. This transient interaction is

mediated by distinct charged and hydrophobic surfaces on the

SLT-1 A1 chain, which are also essential for its full catalytic

activity. Moreover, alanine-scanning mutagenesis revealed that

anionic tripeptide and hydrophobic tetrapeptide motifs within the

sequence SDDDMGFGLFD represent key anchor residues

recognized by the A1 chain. These findings suggest that the

nature of these interactions may play a guiding role in properly

orientating RIP catalytic domains towards their substrate, the

sarcin-ricin loop, and may represent a scaffold for the generation

of RIP-specific antidotes.

Methods

Protein expression and purification
The wild-type SLT-1 was expressed as an N-terminal His8-

tagged fusion construct in the E. coli strain JM101 (Agilent

Technologies, Mississauga, ON), and purified as an AB5 holotoxin

on nickel-NTA resin (Sigma-Aldrich, St. Louis, MO). The A1

chain was further purified from the holotoxin by first treating the

purified AB5 variants with the protease furin (New England

BioLabs, Ipswich, MA) and reducing the disulfide bond with

10 mM DTT. The A1 chain was then recovered on Nickel-NTA

resin in the presence of a guanidine-HCl gradient to remove the

untagged A2 chain and B subunits, followed by a re-folding step in

PBS.

SLT-1 mutant variants corresponding to those that exhibited a

lack of interaction as defined by Y2H screens (R172A, R176A,

R179A, R188A, R176/179/188A, V191A, F226A, L233A, and

S235A) were created by multi-step PCR using Taq polymerase.

The first PCR step consisted of two reactions: (1) using sense

primer 2 and one of the mutagenic antisense primers and (2) using

an antisense primer 2 and one of the mutagenic sense primers

(Table S1). The second step consisted of a single reaction using the

previous PCR reactions as templates with sense and antisense

primer 2 which allowed for the amplification of the entire mutated

sequence including the incorporation of unique restriction

endonuclease sites. These mutant gene sequences were digested

with the appropriate restriction endonuclease, cloned into the NheI

and XhoI sites of the pECHE10a vector (Molecular Templates

Inc., Austin, Texas). The resulting SLT-1 A1 mutants were

expressed and purified in the same manner as the wild-type SLT-1

A1 chain. The above-mentioned SLT-1 A1 variants used in

subsequent experiments were judged by densitometry to be $85%

pure (Figure S1).

Peptide Synthesis
Synthetic peptides corresponding to the final 17, 11, and 7

residues of the C-terminal domain of ribosomal proteins P1 and

P2, a control peptide, as well as all alanine-containing peptide

variants of the final 11 residue peptide SDDDMGFGLFD used to

measure binding affinities were assembled using the 9-fluorenyl-

methoxycarbonyl (Fmoc) method and Wang resin on a PS3

Peptide Synthesizer (Protein Technologies Inc., Tucson, AZ).

Fmoc-Asp(OMpe)-OH (NovaBiochem, Gibbstown, NJ) and

Fmoc-Glu(OBt)-Ser(YMe, MePro)-OH (NovaBiochem) dipeptide

were used to avoid aspartimide formation. The Fmoc protecting

groups were removed using 20% Piperidine/0.1 M HOBt in

DMF during synthesis. The N-a-amino group (N-terminus) of the

peptides was labeled overnight with biotin using a ten-fold excess

of biotin (Molecular Probes, Burlington, ON) in the presence of

HCTU/HOBt and DIPEA. Biotinylated peptides were cleaved

from their support using 3 mL of a TFA/TIS/EDT/Water

(92.5:2.5:2.5:2.5%) mixture for 4 hrs at RT and purified by HPLC

on a C18 semi-preparative column using an acetonitrile gradient

from 5% to 100% in 20 min. Peptide masses were then confirmed

by mass spectrometry.

Yeast-2-Hybrid
Yeast ribosomes are rapidly inactivated by the A chains of RIPs

such as SLT-1. A catalytically inactive form of the A1 chain (CIA1)

was thus generated by introducing two mutations, namely E167A

and R170A, within its catalytic region [11,15]. These two point

mutations decrease the toxicity of the A1 chain by 10,000 fold,

therefore enabling yeast to grow during the expression of the A1

chain of SLT-1 [35,36]. The yeast-2-hybrid (Y2H) technique [37],

takes advantage of the GAL4 transcription factor that can be

spliced into 2 complementary domains: a DNA binding domain

(DNA-BD) and a transcription activation domain (AD). When

pairs of bait/prey proteins interact, the GAL4 DNA-BD and

transcription AD modules are assembled leading to the activation

of survival genes (i.e.: HIS3).

The CIA1 SLT-1 gene sequence was used as a template to

construct several charged and hydrophobic single point mutations

to alanine by multistep PCR using sets of mutagenic primers

(Table S1). The CIA1 as well as the point mutants were cloned

into the bait vector pGBKT7 (Clontech, Mountain View, CA)

between the NdeI and BamHI sites and expressed as fusions to the

C-terminus of the GAL4 DNA-binding domain (GAL4 DNA-

BD). The human gene sequence corresponding to RPLP2 (P2)

was cloned into the prey vector pGADT7 (Clontech) and

expressed as a fusion construct to the GAL4 activation domain

(GAL4-AD). The pGBKT7-CIA1 or one of the charged or

hydrophobic point mutants were co-transformed with pGADT7-

P2 separately into the yeast strain AH109 [MATa, trp1-901,

leu2-3, 112, ura3-52, his3-200, gal4D, gal80D, LYS2::GAL1UAS-

GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-

MEL1TATA-lacZ, MEL1] (Clontech).

Transformed cells were plated onto SD agar lacking Trp and

Leu (2Trp/2Leu), to select for the presence of both plasmids, and

incubated for 72 h at 30uC. A single colony of each transformation

was then inoculated into SD 2Trp/2Leu broth and shaken at

30uC overnight. Overnight cultures were centrifuged at 4000 rpm

for five minutes followed by washing and equilibration to OD600 of

1.0 in phosphate-buffered saline (PBS). Samples were then serially

diluted 10-fold followed by spotting onto SD agar 2Trp/2Leu to

select for the presence of both plasmids and SD 2Trp/2Leu/

2His to select for an interaction between the two proteins. Plates

were incubated for 72 h at 30uC.

Surface Plasmon Resonance Measurements
Toxin-peptide binding affinities were assessed by surface

plasmon resonance (SPR) using a ProteOnXPR36 array biosensor

[38] (Bio-Rad) in PBS buffer at 25uC. A neutravidin (NLC) sensor

chip (Bio-Rad) was preconditioned by four pulses of 1 M NaCl,

50 mM NaOH, and 100 mM HCl, which was followed by an

equilibration step in PBS. Biotinylated peptides corresponding to

the final 17, 11, and 7 residues of the conserved peptide and a
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control peptide with no sequence homology were immobilized on

the NLC sensor chip followed by a wash step in 1 M NaCl, to

remove unbound peptide and a PBS wash to equilibrate the chip.

Purified SLT-1 wild-type A1 chain was tested at 10 different

concentrations in quadruplicate beginning with 30 mM and

diluting 2-fold in PBS to 60 nM, followed by an injection of

PBS alone. The wild-type A1 chain was exposed to all ribosomal

peptide variants. Each concentration of SLT-1 A1 chain variant

was exposed to the NLC chip harboring the ribosomal peptides at

a flow rate of 50 ml/min for 60 s with a dissociation time of 120 s.

A 1 M NaCl wash step was performed for 18 s at a flow rate of

100 ml/min following each protein concentration. The chip was

then equilibrated with PBS at a flow rate of 100 ml/min for 120 s.

Additional SPR experiments measuring (i) the affinities of

charge and hydrophobic A1 chain mutants, (ii) the contributions of

electrostatic interactions by increasing salt concentrations, and (iii)

to establish the anchor residues within the conserved ribosomal

stalk peptide, were performed in triplicate using the same protocol

described above. Only the final 11 residues of the conserved

peptide KEESEESDDDMGFGLFD were used, as the removal of

the six N-terminal residues had no effect on binding and therefore

do not contribute significantly to the interaction (Figure 1).

Equilibrium data was used to calculate peptide binding

constants to the A1 chain in light of fast on- and off-rates. In all

cases, the response data given from the ribosomal peptides was

subtracted from the control peptide as well as PBS alone to

eliminate non-specific binding. The resulting data for each

concentration was averaged and plotted as percent response units

(% RU) versus A1 chain concentration using GraphPad PrismH
(Figure 1). In the cases where binding affinities could not be

calculated, due to a decrease or loss of binding, raw data was

plotted as relative units (RU) compared to the same concentration

(15 mM) of wild-type toxin A1 chain in the same buffer (Figures 2B,

2C, 3B, and 3C).

Protein Synthesis Assay
T7-coupled transcription-translation (TnT) reticulocyte lysate

assays (Promega, Madison, WI) were performed in order to

determine if a decrease in ribosomal stalk binding altered the

toxicity profiles of SLT-1 A1 chain point mutants when compared

to the wild-type toxin. TnT assays were performed, according to

the manufacturer’s instructions, using eight 10-fold serial dilutions

of the wild-type or SLT-1 A1 variants in PBS (starting with 1 mM).

Protein synthesis was measured using a luciferase reporter plasmid

(500 mg) through the incorporation of [35S]-methionine (10 mCi;

GE Healthcare, Piscataway, NJ) after a 90 min incubation at

30uC. Samples (20 ml) were loaded on a gradient (4–12%) SDS

PAGE gel, and labeled protein bands revealed using a StormH
Phosphorimager (GE Healthcare). The addition of PBS alone was

used as a control.

Results

The catalytic A1 chain of SLT-1 binds to the conserved
C-terminal ribosomal peptide

We have previously shown that the A1 chain of SLT-1 binds to

the conserved peptide KEESEESD(D/E)DMGFGLFD found at

the C-terminus of ribosomal stalk proteins P0, P1 and P2 [15].

However, the molecular details of this interaction are unknown

and could provide new evidence surrounding the mechanism of

ribosome-inactivation by RIPs. The binding of the conserved C-

terminal domain of the ribosomal proteins P1 and P2 to the wild-

type SLT-1 A1 chain was thus analyzed by surface plasmon

resonance (SPR). Biotinylated peptides corresponding to the final

17, 11 and 7 residues of ribosomal stalk proteins P1 and P2 were

immobilized on an sensor chip (NLC; Bio-Rad, Hercules, CA) and

each peptide ligand was exposed to increasing concentrations of

the wild-type SLT-1 A1 chain. In light of the fast association and

dissociation times observed for this binding event, equilibrium data

from four independent experiments were instead used to calculate

the dissociation constants of peptides binding to the A1 chain. It

was determined that the A1 chain of SLT-1 interacted with the C-

terminal 17 (KEESEESDDDMGFGLFD) and 11 residues

(SDDDMGFGLFD) of P1 and P2 with comparable binding

affinities of 1165 mM and 1362 mM respectively (Figure 1). The

final 7 residues (MGFGLFD) did not bind to wild-type SLT-1 A1

chain (data not shown), as previously reported by pull-down

experiments [15].

Delineating key residues within the ribosomal peptide
recognized by the SLT-1 A1 chain

The SLT-1 A1 chain docks within the ribosomal stalk by

binding to specific residues within the peptide sequence

SDDDMGFGLFD. A series of synthetic peptides containing

alanine substitutions were generated by solid-phase peptide

synthesis, to establish which residues within the peptide motif

were important for its interaction with the A1 chain of SLT-1.

Specifically, alanine was introduced at each position within the

Figure 1. The A1 chain of SLT-1 binds to a conserved C-terminal
ribosomal peptide. (A) Amino acid sequence representing the 17-
residue C-terminus common to ribosomal stalk proteins P1 and P2. The
last 11 amino acids (underlined) delimit the shortest peptide element
shown to interact with the A1 chain [15]. (B) Relative surface plasmon
resonance (SPR) signals for the A1 chain of SLT-1 binding to
immobilized, biotinylated monomeric synthetic peptides were plotted
as a function of SLT-1 A1 chain concentration. The calculated
dissociation constants (Kd) suggest that both monomeric peptides
have similar affinities for the A1 chain. Each point on the curve
represents the average relative SPR signals from experiments per-
formed in quadruplicate.
doi:10.1371/journal.pone.0031191.g001
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peptide SDDDMGFGLFD. These peptides were modified at their

N-terminus with biotin, immobilized on an NLC sensor chip

(BioRad), and exposed to graded concentrations of the SLT-1 A1

chain. The SPR equilibrium data was collected, in triplicate, and

responses were plotted as a function of A1 chain concentration to

calculate dissociation constants. It was determined that mutations

Figure 2. Surface plasmon resonance analysis of alanine-containing peptide variants of the conserved C-terminal ribosomal stalk
peptide SDDDMGFGLFD confirms that the interaction with the A1 chain of SLT-1 requires both electrostatic and hydrophobic
contacts. The peptide sequence corresponding to the final 11 residues of the conserved C-terminal peptide (SDDDMGFGLFD) was substituted at
each position for an alanine residue. Individual peptides corresponding to a substitution of charged (Panel A) or other residues (Panel B) were
biotinylated and immobilized on an NLC SPR sensor chip. Each monomeric peptide was exposed to ten 2-fold serial dilutions of the A1 chain of SLT-1
in triplicate and the responses were subtracted from buffer alone and a control peptide. The SPR responses for the single and double/triple alanine
variants were graphed and compared to the control natural peptide. Amino acid substitutions that resulted in a peptide that lacked an interaction
with the A1 chain of SLT-1 could not be plotted. Calculated dissociation constants are reported in Table 1.
doi:10.1371/journal.pone.0031191.g002
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of any of the five C-terminal residues to alanine

(SDDDMGFGLFD) resulted in a decrease or complete loss of

binding to the A1 chain. (Table 1 and Figure 2). Interestingly,

individual mutations of the N-terminal, negatively charged

aspartyl residues to alanine did not show any significant effect

on the affinity suggesting that such interaction with the A1 chain

may require the removal of more than one aspartic acid residues

within the DDD tripeptide regardless of their position (Figure 2A).

Therefore, the contribution of the charged aspartic acid residues

within the peptide was further assessed through the generation of

double and triple aspartate-to-alanine SLT-1 A1 chain mutants.

It was observed that mutations to any two aspartic acid residues

to alanines, particularly involving residues at positions 3 and 4

caused at least a two-fold decrease in binding (Table 1 and

Figure 2A). This comprehensive binding analysis confirmed that

both the charge and hydrophobic elements (Figures 2A and B,

respectively) of the conserved peptide SDDDMGFGLFD are

required for the optimal binding of the A1 chain of SLT-1 to the

ribosomal stalk.

The binding between the SLT-1 A1 chain and the
conserved peptide SDDDMGFGLFD involves electrostatic
interactions

In view of the negatively charged nature of the conserved

ribosomal C-terminal peptide (aspartic acid [D] residues), we

investigated whether a complementary positively charged surface

was present on the A1 chain of SLT-1 that would promote

electrostatic interactions with this ribosomal peptide. Surface-

exposed arginine residues were mutated to alanine (R-A) in order

to assess their importance as anchoring residues for the conserved

ribosomal stalk peptide. SLT-1 A1 domain constructs with point

mutations at arginine residues were generated by PCR using a

catalytically-inactive SLT-1 A1 chain (CIA1) gene for their non-

lethal expression in yeast. These R-A mutants were assessed for

their ability to bind the full-length P2 protein in a yeast two-hybrid

(Y2H) assay where co-transformation of each mutant with P2 were

then serially diluted on medium which selected for an interaction

between the two proteins (SD 2Trp/2Leu/2His). Alanine

mutations at residues R172, R176, R179, and R188 in the A1

Figure 3. The A1 chain of SLT-1 harbors a cationic surface composed of a cluster of arginine residues that interact with the
ribosomal stalk protein P2 and the conserved C-terminal peptide. (A) A vector expressing a catalytically inactive variant of the SLT-1 A1

domain (CIA1) or one of the arginine-to-alanine point mutants as fusion partners with the GAL4 DNA-BD domain were co-transformed in the yeast
strain AH109 with a vector expressing ribosomal protein P2 as a fusion construct to the GAL4-AD. The transformed yeast cells were plated on SD agar
2Trp/2Leu. The resulting yeast colonies were grown overnight, and spotted (10 ml) as 10-fold serial dilutions onto SD medium lacking Trp and Leu to
select for the presence of each plasmid followed by spotting on SD media lacking Trp, Leu, and His to select for interacting partners leading to colony
growth. (B) SPR profiles illustrating the decrease in relative units for the arginine-to-alanine SLT-1 A1 chain variants in relation to the wild-type A1

chain, at a concentration of 15 mM, when presented to the immobilized peptide SDDDMGFGLFD. (C) Increasing salt concentrations led to a decrease
or loss of binding of wild-type SLT-1 A1 chain when exposed to the peptide SDDDMGFGLFD. SPR traces were plotted for the wild-type SLT-1 A1 chain
(15 mM) as a function of increasing salt concentrations.
doi:10.1371/journal.pone.0031191.g003
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domain led to a loss of growth, implying that these arginines interact

with the ribosomal peptide (Figure 3A). Alanine mutations at other

arginine sites within the A1 domain did not affect yeast survival

suggesting that they are not involved in ribosomal docking

(Figure 3A). Importantly, residues R172, R176, R179, and R188

are clustered on the surface of the A1 chain suggesting the existence

of a complementary positively charged surface within the A1 chain.

To further define the effect of charged residues on the binding

strength of A1 chain to the peptide SDDDMGFGLFD, we

expressed and purified recombinant SLT-1 A1 chain variants,

which showed a loss of interaction with the P2 protein by Y2H

(R172A, R176A, R179A, R188A, and R176/179/188A), to

directly assess their binding affinities towards this peptide by

SPR. As expected, the binding affinity of the SLT-1 A1 chain R-A

mutants for the peptide ($50 mM, no measurable binding) was

lower than the affinity observed for the wild-type toxin

(Kd = 13 mM). The SLT-1 R188A A1 chain mutant was the only

variant with a measurable binding constant (approximately

50 mM), while the other SLT-1 A1 chain variants (R172A,

R176A, R179A, and R176/179/188A) lacked detectable SPR

responses even at high concentrations and were determined to be

weaker than 50 mM (Figure 3B), In addition, when the

concentration of salt in the running buffer (PBS) was increased,

the interaction between the wild-type SLT-1 A1 chain and the

peptide SDDDMGFGLFD was decreased, further confirming the

importance of electrostatic interactions (Figure 3C).

Hydrophobic interactions also contribute to binding the
conserved C-terminal domain of ribosomal stalk proteins

The presence of a hydrophobic tetrapeptide motif

(SDDDMGFGLFD) led us to hypothesize that a hydrophobic

patch on the A1 chain of SLT-1 may also contribute to its

interaction with the ribosomal stalk peptide. To test this

hypothesis, several hydrophobic and serine residues namely,

L185, V191, I224, S225, F226, L233, and S235 on the surface

of the A1 chain that are in the vicinity of the previously defined

arginine cluster were mutated to alanine residues. These point

mutants were generated by PCR using a catalytically-inactive

SLT-1 A1 chain (CIA1) gene serving as a template in order to

subsequently express them as non-toxic variants in yeast. Their

binding to the ribosomal protein P2 was examined by Y2H

(Figure 4A). Yeast transformations were serially diluted on SD-

media lacking Trp, Leu, and His, which selects for the interaction

between the two proteins. It was determined that residues V191,

F226, L233, and S235 are important for the A1 chain – ribosomal

peptide interaction, while residues L185, I224 and S225 do not

participate in these interactions (Figure 4A). The contribution of

the hydrophobic and serine residues located on the surface of the

A1 chain was investigated by SPR to confirm the interactions of

recombinant A1 chain variants with the C-terminal peptide

SDDDMGFGLFD. It was found that the V191A and L233A

variants exhibited a large decrease in binding while variants

harboring either a F226A or a S235A mutation displayed different

binding kinetics and binding affinities of 3 and 5 mM, respectively.

These affinities are comparable to that of wild type A1 chain and

may be attributed to the altered binding kinetics (Figure 4B and

Figure S2).

Altering the cationic or hydrophobic surfaces of the
catalytic domain of SLT-1 is sufficient to lower its ability
to inhibit protein synthesis

We have shown by both Y2H and SPR that positively charged

and hydrophobic residues located on the surface of the A1 chain

form cationic and hydrophobic patches allowing for its binding

to ribosomal stalk proteins via the C-terminal peptide

SDDDMGFGLFD. These interactions were measured as mono-

meric events, meaning that such interactions and affinity constants

reflect complexes involving a single ribosomal peptide binding to a

single SLT-1 A1 chain. In reality, the peptide SDDDMGFGLFD

is repeated five times within the context of the ribosomal stalk

suggesting that even a dissociation constant in the low mM range

could be significant due to the higher concentration of low affinity

targets that could maintain the docking of the A1 chain to the stalk.

To determine the effects of avidity on the binding and

subsequent cytotoxicity of the A1 chain of SLT-1, we further

tested whether the charged or hydrophobic residues that are

responsible for the interaction with the stalk peptide were also

required for its full effect on protein synthesis inhibition. It was

thus hypothesized that decreasing the affinity of the A1 chain to

the ribosomal stalk proteins by introducing arginine-to-alanine (R-

A) or hydrophobic-to-alanine mutations, which have previously

been shown to perturb the interaction, would result in a decrease

in its ability to inhibit protein synthesis when compared to the

wild-type A1 chain. To test this hypothesis, ten-fold serial dilutions

of each A1 chain variant (R172A, R176A, R179A, R188A, R176/

179/188A, V191A, F226A, L233A, and S235A) were added to a

T7-coupled rabbit reticulocyte lysate transcription-translation

system to quantify their ability to block the biosynthesis of [35S]-

methionine-labeled luciferase. As predicted, A1 chain mutants that

exhibited a drastic decrease in affinity for the ribosomal stalk

peptide (namely R172A, R176A, R179A, R188A, R176/179/

188A, V191A, and L233A) displayed an increase in protein

expression as compared to the wild-type toxin (Figure 5). These

findings suggest that the binding of the A1 chain to the ribosomal

stalk, in the context of a functional eukaryotic ribosome, correlates

Table 1. Binding of synthetic, alanine-containing peptide
variants of the ribosomal stalk peptide SDDDMGFGLFD to the
A1 chain of SLT-1 as measured by surface plasmon resonance.

Peptide Kd (mM)

SDDDMGFGLFD 10.662.4

ADDDMGFGLFD 12.764.3

SADDMGFGLFD 9.7562.4

SDADMGFGLFD 11.662.8

SDDAMGFGLFD 15.963.5

SDDDAGFGLFD 7.560.2

SDDDMAFGLFD 9.960.5

SDDDMGAGLFD $50

SDDDMGFALFD $50

SDDDMGFGAFD 41611

SDDDMGFGLAD $50

SDDDMGFGLFA $50

SAADMGFGLFD 23.961.6

SADAMGFGLFD 28.261.9

SDAAMGFGLFD $50

SAAAMGFGLFD $50

Dissociation constants (Kd) were calculated from curves relating changes in
relative surface plasmon resonance signal observed as a function of SLT-1 A1

concentration (Figure 2). Each Kd value was derived from an average of three
experiments. A Kd value of $50 mM was assigned to peptides displaying no
measurable binding to the A1 chain of SLT-1.
doi:10.1371/journal.pone.0031191.t001
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with its ability to inhibit protein synthesis with all SLT-1 A1 chain

mutants able to block protein synthesis at high concentrations. As

expected, the S235A mutant did not significantly alter cytotoxicity

profiles when compared to the wild type A1 chain. The translation

inhibition effects were also smaller for the R188A mutant, which

can be attributed to the retention of approximately 30% of the

binding compared to the wild-type toxin (Figures 3B and 5).

Interestingly, the F226A mutation displayed an increase in

catalytic activity as measured by TnT, an observation that is

currently under investigation (Figure 5).

Discussion

The catalytic domains of ribosome-inactivating proteins (RIPs)

such as SLT-1, ricin, and TCS [15,20,22,23,39] have been shown

to interact with the eukaryotic ribosomal stalk, a heteropentamer

composed of two heterodimers of the proteins RPLP1 (P1) and

RPLP2 (P2) non-covalently associated to the protein RPP0 (P0)

[27,28,29,30,31,32,33]. One known docking site for these catalytic

chains on ribosomes is through their binding to a C-terminal

peptide KEESEESDXDMGFGLFD (where X is either D or E)

encoded by all three stalk proteins P0, P1, and P2. The

pentavalent display of this peptide sequence within the stalk

provides in theory up to five docking sites for RIP catalytic chains

such as the A1 chain of SLT-1 to orient themselves on ribosomes,

an event that may facilitate ribosome depurination leading to the

inhibition of protein synthesis and apoptosis. The presence of five

copies of this peptide motif suggests that valency is a critical factor

and that the peptide-RIP interaction may be transient and of low

affinity. In the present study, we have established by surface

plasmon resonance that the A1 chain of SLT-1 binds to the

conserved monomeric 17-residue long C-terminal peptide (KEE-

SEESDDDMGFGLFD) and its truncated 11-residue form

(SDDDMGFGLFD) with comparable modest affinities (Kd of

1165 mM and 1362 mM, respectively) (Figure 1). Interestingly,

the on- and off-rates could not be measured for the A1 chain

interacting with the monomeric peptide and such fast association

and dissociation rates were expected since the binding of other

RIPs namely saporin, restrictocin, and ricin to ribosome also show

unusually fast kinetics and catalytic efficiencies [39,40,41,42]. The

rapid on- and off-rates are plausible in light of the fact that the

interaction between RIPs and the ribosome must be a transient

event in order for one ricin molecule to depurinate ,2000

mammalian ribosomes/min and for a single SLT-1 A1 toxin

molecule being required to enter the cytosol to elicit cell death

[43,44].

A previous study by our group had indicated that the C-

terminal peptide inhibits the catalytic activity of the SLT-1 A1

chain in blocking protein synthesis in an in vitro transcription-

translation assay (McCluskey et al., 2008). This finding suggested

that such a peptide may serve as a template in designing a new

class of inhibitors able to block the action of RIPs. We thus further

analyzed the key components of this peptide involved in its

interaction with SLT-1 A1 chain. Specifically, synthetic peptide

analogues of this sequence were used to define that the anionic tri-

aspartyl sequence DDD and the four C-terminal residues FGLF

within the C-terminal peptide (SDDDMGFGLFD) represent the

two major anchors that interact with complementary cationic

(Figure 2A) and hydrophobic (Figure 2B) surfaces on SLT-1 A1

chain. As in the case of most ER-routed toxins, the A1 chain of

SLT-1 contains very few lysines (only 2 lysines located at its N-

terminus) [45]. Therefore, arginine residues were projected to

contribute to the creation of a positively charged surface on the A1

chain that may interact with the anionic aspartic acid residues of

SDDDMGFGLFD. Arginines at positions 172, 176, 179, and 188

were mutated to alanines leading to A1 chain variants that were

Figure 4. The interaction of the A1 chain of SLT-1 with the ribosomal stalk protein P2 and the C-terminal peptide SDDDMGFGLFD
also involves hydrophobic residues within the A1 chain. (A) Bait vectors expressing either a catalytically inactive variant of the wild-type SLT-1
A1 domain (CIA1) or one of the hydrophobic mutants were co-transformed in the yeast strain AH109 with a prey vector expressing ribosomal protein
P2. The transformed yeast cells were plated on SD agar 2Trp/2Leu. The resulting yeast colonies were grown overnight, and spotted (10 ml) as 10-fold
serial dilutions onto SD medium lacking Trp and Leu to select for the presence of each plasmid followed by spotting on SD media lacking Trp, Leu,
and His to select for interacting partners. (B) SPR profiles (plotted at 15 mM) demonstrate that hydrophobic mutants F226A and S235A in the SLT-1 A1

chain have a minor effect on the binding to the conserved peptide SDDDMGFGLFD and the SLT-1 V191A and L233A A1 chain mutants cause a drastic
decrease in binding. Experiments were performed in triplicate.
doi:10.1371/journal.pone.0031191.g004
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unable to interact in a yeast-2-hybrid experiment with

SDDDMGFGLFD presented in the context of P2 (Figure 3A).

These same SLT-1 A1 chain variants were also expressed and the

resulting purified recombinant proteins were shown to have a

decreased affinity or loss of binding to the conserved peptide

SDDDMGFGLFD as determined by SPR (Figure 3B). In

addition, increasing salt concentrations inversely correlated with

binding of the wild-type A1 chain to the peptide as measured by

SPR (Figure 3C). These findings coincide with recent evidence

that shows that electrostatic interactions are critical for the binding

of ricin to whole ribosomes and for the targeting of restrictocin to

the sarcin-ricin loop [39,40,46]. Moreover, several surface-

exposed hydrophobic or serine residues on the A1 chain in close

proximity to the previously defined arginine cluster were mutated

to alanine. Residues V191, F226, L233, and S235 were identified

by Y2H as critical in maintaining the interaction with the

conserved peptide SDDDMGFGLFD, the only docking site on the

full length ribosomal protein P2 (Figure 4A). It was confirmed by

SPR that residues V191, and L233 serve important roles in the

interaction, whereas alanine mutations to residues F226 and S235

had no effect on binding (Figure 4B).

Structural data of a type I RIP, trichosanthin (TCS), and a type

III RIP from maize supports our previous hypothesis and

experimental data that charged and hydrophobic residues are

important for the interaction with the C-terminus to occur [47,48].

When the structure of SLT-1 A1 chain is compared to that of TCS

it reveals the presence of a similar complementary surface-exposed

groove theoretically predicted to involve residues R176, R179, and

S235 of the A1 chain of SLT-1 [47]. Two of the three residues

(R176 and R179) have been identified in this study as being

essential for the interaction with the C-terminal peptide. Recent

evidence has also been published highlighting the importance of

R176 on the depurination activity of SLT-1 [49]. In addition, we

have observed that V191, R172, R188, and L233 also contribute

to the binding of the A1 chain to the conserved ribosomal peptide.

However, the predicted A1 chain-peptide interaction appears to be

unique when compared to the known structure of TCS in complex

with the conserved peptide [47].

The SLT-1 A1 chain variants harboring R-A or hydrophobic

mutations, which display striking decreased affinities for the

ribosomal stalk peptide also show a reduction in their abilities to

inhibit protein synthesis as measured by in vitro protein translation

assays (Figure 5). These variants still retain their catalytic activity

at high concentrations suggesting that a single substitution does

not affect the overall three-dimensional fold of the A1 chain

(Figure 5). These results suggest that depurination may still occur

at high concentrations due to rRNA binding or that the

pentavalent presentation of the conserved ribosomal peptide in

the context of the intact ribosomal stalk still favors A1 chain

docking to the stalk. Specifically, it may be sufficient for the A1

chain of SLT-1, and other related RIPs cytotoxic domains, to bind

directly to rRNA since the depurination of the sarcin-ricin loop

has been observed in protein-depleted ribosomes, although the

depurination rate is remarkably reduced [19].

This conserved ribosomal peptide represents a docking site for

RIPs as it has been previously shown to interact with the catalytic

domains of SLT-1, ricin, TCS, and maize RIP [15,20,47,48]. It is

therefore highly likely that SLT-2, an SLT-1 homologue that is

produced by clinically more severe bacterial strains [50], would

possess similar docking residues as we have shown for SLT-1. Even

though the two catalytic domains share only a 55% homology

based on amino acid sequence [51], it was observed that most of

the surface residues important for the SLT-1-ribosomal peptide

interaction were conserved on the surface of SLT-2 when the two

toxins were aligned based on their respective tertiary structures

(Figure 6). Specifically, five of the six residues shown to be

important for the SLT-1 interaction (R172, R176, R179, V191,

and L233) were conserved on SLT-2 (R172, R176, R179, Y189,

and L232) (Figure 6, panels B and C). The only missing A1 chain

interacting residue is arginine 188 of SLT-1, which is absent in

SLT-2 (Figure 6, panels B and C). However, the A1 chain variant

R188A displayed a catalytic activity comparable to that of wild

type A1 chain (Figure 5).

This surface pocket and its affinity for the conserved C-terminal

peptide may help explain why different RIP family members have

the ability to bind the stalk conserved peptide and also why some

RIPs such as pokeweed antiviral protein (PAP) do not require the

stalk proteins for ribosome inactivation [52]. For example, the RIP

saporin has a homologous tertiary structure to that of TCS, the A

chains of SLT-1 and ricin, and was predicted to bind to the C-

terminal tail of ribosomal stalk proteins [47]. Yet, we did not

observe any measurable interactions between the C-terminal

peptide SDDDMGFGLFD and the RIP saporin or the ribonu-

clease alpha-sarcin, which both target the sarcin-ricin loop, by

either pull-down experiments, SPR, or by isothermal titration

Figure 5. Arginine-to-alanine and hydrophobic variants of SLT-
1 A1 that bind weakly to the monomeric conserved C-terminal
motif display altered ribosome-inactivating activities when
compared to the wild-type A1 chain. Eight ten-fold serial dilutions
of the wild-type and each charge and hydrophobic A1 chain variant was
dispensed into an in vitro transcription and translation-coupled rabbit
reticulocyte lysate system to monitor their ability to block protein
synthesis (methods section). The level of in vitro protein synthesis was
assessed by measuring the incorporation of [35S]-methionine into the
reporter protein luciferase during its synthesis. The expression of
radiolabeled luciferase (arrow) was then resolved by SDS-PAGE and
quantified using a phosphorimager. The addition of PBS alone (- lane)
was used as a control.
doi:10.1371/journal.pone.0031191.g005
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calorimetry (Figure S3). The A1 chain of SLT-1 was confirmed to

interact with the C-terminal peptide by both isothermal

calorimetry and pull-down experiments (Figure S3). Although

the on and off rates for the toxin-peptide interaction could not be

measured by SPR, the HiCaM-tethered peptide was able to

interact with the toxin most likely due to the excess (10:1) of the

HiCaM-peptide used in the pull-down experiments in relation to

the SLT-1 A1 chain. Thus, the identified surface on the SLT-1 A1

chain may therefore represent only one docking element that may

not be generalized to the docking process of all RIPs.

Gastrointestinal disease outbreaks caused by infection with

Shiga toxin-producing E. coli strains remain very common and

suggest the need for post-infection therapeutic inhibitors

[53,54,55]. The charged and hydrophobic surfaces mapped in

this study provide a binding interface that is distinct from the

catalytic site and are required for the full toxicity of SLT-1 in vitro.

This structural information can be used for the generation of

therapeutic inhibitors for both SLT-1 and SLT-2. For example, it

has been shown that small molecule virtual-docking can be

exploited to generate chemical compounds directed towards the

catalytic domains of ricin, shiga toxins, and Clostridium botulinum

neurotoxin [56,57,58]. These studies may provide molecular

‘‘leads’’ that may be more suited in terms of cell-permeability,

affinities and in vivo stability than ribosomal stalk C-terminal

peptide mimics as RIP antidotes.

In summary, the A1 chain of SLT-1 interacts transiently

(Kd,13 mM with rapid on and off rates) with a short 11- amino

acid conserved peptide located at the C-terminus of three

Figure 6. Primary and tertiary structural comparisons between SLT-1 and SLT-2 highlighting the conservation of important
ribosomal stalk peptide contact sites. (A) Left Panel - Surface rendering of the SLT-1 A1 chain (PDB# 1DM0) depicting the cationic (blue) and
hydrophobic (yellow) residues essential for optimal binding to the conserved stalk peptide SDDDMGFGLFD as well as Arg-188 (light blue) which has a
modest effect on peptide binding. Right Panel – Structure as shown in the left panel rotated by 140u, highlighting the catalytic residues in green.
(B) Three-dimensional stick structures of SLT-1 (left panel), SLT-2 (PDB# 1R4P; middle panel), and the structural alignment of the two toxins (right
panel). Cationic residues are labeled in blue and red, while hydrophobic residues are labeled in yellow and orange for SLT-1 and SLT-2 respectively.
(C) Primary amino acid sequence alignment of SLT-1 and SLT-2 within residues 158 and 250. Catalytic residues are highlighted in green and cationic
and hydrophobic residues in blue and yellow, respectively. Surface and stick renderings and alignments were performed using the The PyMOL
Molecular Graphics System (Version 1.3, Schrödinger, LLC), whereas amino acid sequences were aligned using BioEdit software [59].
doi:10.1371/journal.pone.0031191.g006
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ribosomal stalk proteins (P0, P1, and P2). The interaction involves

both electrostatic and hydrophobic surfaces on both the A1 chain

of SLT-1 and the ribosomal peptide SDDDMGFGLFD. Con-

versely, a cluster of positively charged arginine residues within the

A1 chain in spatial proximity to a series of hydrophobic residues

were defined as being critical for A1 chain binding to the peptide

SDDDMGFGLFD and to inhibit protein synthesis in vitro. Thus,

the catalytic A chain of Shiga toxins and other related RIPs may

have evolved to interact rapidly and with low affinity to proteins

constituting the ribosomal stalk in order to properly orient

themselves towards their substrate, the sarcin-ricin loop.

Supporting Information

Figure S1 SDS-PAGE gel showing the relative purities of
recombinantly expressed and purified SLT-1 A1 chain
mutants. Each SLT-1 variant was expressed and purified as

described in the methods section. Purified wild-type SLT-1 A1 and

point mutants were analyzed by SDS-PAGE and protein bands

visualised by Coomassie blue staining. Numbers below each lane

correspond to the purity of the major protein band (as a

percentage) in relation to minor contaminating proteins as derived

from densitometry measurements using the ImageJ software

package.

(TIF)

Figure S2 The SLT-1 A1 chain mutants F226A and S235A
bind to the conserved C-terminal ribosomal peptide
with similar affinity to wild-type SLT-1 A1. Relative surface

plasmon resonance (SPR) signals for the F226A and S235A

SLT-1 A1 chain variants binding to immobilized synthetic

SDDDMGFGLFD peptide were plotted as a function of SLT-1

A1 chain concentration. The calculated dissociation constants (Kd)

suggest that the F226A and S235A mutations in the A1 chain do

not affect their affinity for the ribosomal stalk peptide

SDDDMGFGLFD. Each point on the curve represents the

average relative SPR signals from experiments performed in

quadruplicate.

(TIF)

Figure S3 The conserved peptide SDDDMGFGLFD
interacts with the A1 chain of SLT-1 but may not be a
generic contact site for all ribotoxins. (Top Panel) Phenyl

Sepharose bound HiCaM [60] fusion constructs (100 mg) display-

ing the C-terminal 7 amino acids (Lanes 4–5), 11 amino acids

(Lanes 6–7), 17 amino acids (Lanes 8–9) of P1 and P2, or HiCaM

alone (Lanes 2–3) were incubated briefly with 10 mg of SLT-1 A1

chain (Lane 1; Panel A), 20 mg saporin (Lane 1; Panel B), or 20 mg

sarcin (Lane 1; Panel C) and separated on SDS-PAGE followed by

Coomassie blue staining, as described previously [15]. The

presence of a protein band in the thrombin cleavage (TC) lanes

indicates an interaction and is only seen when the RIP A chain

interacts with the final 11 or 17 residues of the conserved peptide.

Legend: FT, column flow-through (unbound RIP); TC, thrombin-

cleaved peptide. (Lower Panel) Synthetic peptide (starting with

500 mM) was titrated into a sample cell containing a 25 mM

solution of degassed recombinant RIP and heat changes were

measured using a VP-ITC (MicroCal Inc., Northampton, MA).

The resulting calorimetric titration curves, minus the first injection

of only 2 ml, were fitted using a single site binding model using the

ORIGINH software.

(TIF)

Table S1 Primers used to construct expression vectors.
Restriction endonuclease sites are underlined and
amino acid substitutions are in bold.

(TIF)
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