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Abstract

Background

Electrical impedance tomography (EIT) is used on the thorax to measure impedance

changes due to the presence of air and blood in the lung. This experimental study was per-

formed to investigate the effect of posture on cardiac and respiratory related impedance

changes.

Methods

EIT measurements were performed on 14 healthy subjects in left-, right lateral, prone,

supine and upright positions. Simultaneously, tidal volume was recorded with an ultrasonic

flowmeter. For image reconstruction, the classic Sheffield back-projection and three vari-

ants of the modern GREIT algorithm were applied with two different reference frames.

Amplitudes of cardiac- and respiratory impedance changes were extracted and compared

between the positions.

Results

We found significant differences in both cardiac and respiratory amplitudes between pos-

tures. Especially, supine and upright positions showed dramatic changes in amplitude.

These differences between postures were unaffected by the change of reference frames in

all reconstruction methods except of the classic Sheffield back projection. Possible sources

that explain the observed posture dependency are discussed.

Conclusion

Researchers and clinicians need to be aware of this phenomenon when comparing EIT

amplitudes in different body positions.
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Introduction

Electrical impedance tomography (EIT) has become increasingly important for bedside moni-

toring of ventilation distribution [1]. Typically, an array of electrodes along an electrically con-

ductive body injects small currents and measures voltage differences. Mathematical

transformations then lead to a tomography image that represents impedance change distribu-

tions across a slice of the body. Major changes in resistivity inside the measured tissue, like air-

filling of the lungs, can be located and quantified by EIT [2]. During tidal breathing, imped-

ance changes have a linear relationship with changes in lung volume [3]. At the thorax, not

only the respiratory induced impedance change can be measured, but also cardiac related

changes within the heart region and lung tissue can be observed [4]. These signals, however,

are about one order of magnitude smaller than respiratory related impedance changes and

were attributed to changes in blood volume in the lungs, i.e. changes of cross-sections of larger

vessels due to the pulsatile pressure waveform, movement of tissue or the velocity related con-

ductivity of blood [5]. It is well established that body position influences regional ventilation

distributions [6,7]. Ericsson et al demonstrated the effect of belt and body position on imped-

ance changes [8]. However, the combined effect of body position and reconstruction algorithm

on the amplitude of the EIT signal itself has not yet been studied.

In a clinical setting EIT measurements are performed on spontaneously breathing or

mechanically ventilated subjects. The signals obtained are thus mixtures containing both car-

diac and respiratory components. Consequently, it is important to have tools available that

allow decomposing this signal into its parts. Currently, four major methods have been pro-

posed to separate cardiac from respiratory signals: Electrocardiography (ECG)-gating, breath-

hold, Principal Component Analysis (PCA)-based and frequency-based methods [9].

The most straightforward method relies on filtering of the mixed signal digitally. Typically,

this is performed in the frequency domain using Fourier transforms [10]. After separation in

the frequency domain the cardiac activity related signal might still suffer from interferences of

the impedance changes due to pumping of the heart or due to the fact that the heart rate is

locked into the respiratory rate. The movement of the heart and the subsequent deformations

of neighboring structures complicate the removal of such kind of interference.

In the present study we apply a modified cross-correlation algorithm to compare the ampli-

tudes of cardiac and respiratory related impedance changes within the lung in different body

positions in healthy adults. From observations in a previous study [11], we hypothesize that

these amplitudes are significantly different between body positions not explained by physio-

logical changes alone. Additionally, we evaluate the impact of different reconstruction algo-

rithms on these values.

Materials and methods

Study design

EIT measurements were performed in 14 healthy non-smoking volunteers (7 females) aged 24

to 54. Subjects were recruited from the hospital staff and were approached by a member of the

study team between October and November 2013. Complete measurements could be obtained

from all subjects. No additional demographic characteristics were recorded. Subjects were

placed in upright, supine, prone, left- and right-lateral positions. All subjects were breathing

through a mouthpiece and an ultrasonic flow meter to measure flow and volume during tidal

breathing. A nose-clip ensured complete obstruction of the nasal airways. Body positions were

applied in random order. Randomization was performed using sealed envelopes. Every mea-

surement consisted of ~45 seconds of spontaneous breathing and ~15 seconds of apnea.

EIT signal is position dependent
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Measurements were recorded in triplicates. All results reported are mean values of the three

measurements. A recording session lasted for about one hour. During this time subjects were

at rest. The local ethic committee (Kantonale Ethikkommission Bern) approved the study. All

subjects gave written informed consent.

Measurements

Electrical impedance tomography. A GoeMFII EIT tomograph (CareFusion, The Neth-

erlands) was used with a frame rate of 44 Hz. 16 Ambu1 Blue Sensor T self-adhesive electrodes

(Synmedic, Switzerland) were equally distributed around the chest at the xyphoid level. An

additional reference electrode was placed on the abdomen.

Spirometry. In order to synchronize the EIT signal with the flow, we connected an ultra-

sonic flowmeter (Spiroson Scientific, Ecomedics, Switzerland) to the analog input of the

GoeMFII EIT device. This ensured sampling frequency matching of both signals. The voltage

differences through the coaxial cable were between -1 and +1V corresponding to the voltage

input limits of the GoeMFII (no saturation occurred at normal tidal breathing). The software

provided by the manufacturer (Spiroware 2.0) and a 500ml syringe was used to calibrate the

flowmeter at the beginning of each measurement day. A low resistance bacterial filter (Hygro-

vent S, Medisize, The Netherlands) was placed between the subject and the flow head. The val-

ues obtained through the analog input were calibrated to correspond to the ones obtained

using Spiroware 2.0. Typically, calibration involved offset correction and scaling of the values.

The respiratory volume curve was determined by cumulative trapezoidal numerical integra-

tion of the flow signal (MATLAB 2013b (MathWorks, Natick, Massachusetts, U.S.A.).

Data analysis

Reconstruction. Reconstruction was dynamic, i.e. impedance differences from a refer-

ence were used as a basis for reconstruction. Reconstruction was performed in duplicate using

two different reference frames. First, the reference frame was defined as the mean of a stable

phase of the first scan in upright position during spontaneous breathing (“Global reference”).

Second, the reference frame was defined as the mean of a stable phase of the first scan within

each body position during spontaneous breathing (“Local reference”). We used different

reconstruction methods, in order to rule out any artifacts introduced by the reconstruction

algorithm itself. First, the original, proprietary algorithm of the GoeMFII EIT system was used

(RG). Here, reconstruction is performed using a weighted back-projection algorithm to map

the impedance differences onto a 32x32 pixel matrix of cylindrical shape [12]. Uniform back-

ground is assumed, which might provoke misleading results [13]. Additionally, we used a

more sophisticated and modern reconstruction technique: the Graz consensus Reconstruction

algorithm for EIT (GREIT) [14], included in the Electrical Impedance Tomography and Dif-

fuse Optical Tomography Reconstruction Software (EIDORS) package [15]. In this approach,

a detailed finite element model of an adult thorax is used. Reconstruction accuracy can be

improved by using prior conductivity information about the probable locations of the inner

organs of the chest [16]. Three thorax shaped finite-element models (FEM) were used: One

containing a uniform conductivity (R0), one considering a lung region of 30% of background

conductivity (RL), and finally one containing the lung region of 30% as well as a heart region

of 200% of background conductivity (RHL).

Separation of cardiac and respiratory related impedance changes. All data analysis

described next was implemented in MATLAB 2013b (MathWorks, Natick, Massachusetts,

U.S.A.). After reconstruction, the raw impedance values were converted to a three-

dimensional matrix format: 32x32xN, where N is the number of frames of the movie. First, the
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impedance data was manually separated into spontaneous respiration and apnea phases. After-

wards, the respiration data was roughly filtered to accentuate cardiac and respiratory charac-

teristics respectively. This was achieved using a bandpass filter with predefined cutoffs of 2 and

40bpm for the respiration and 40 and 400bpm for the cardiac activity. Once the two roughly

filtered signals were obtained, we searched the peak frequency of respiration and cardiac activ-

ity in order to refine our bandpass window. Matlab’s built in periodogram function was used to

construct the frequency power spectra of the two signals. The maximal peaks of the two power

spectra were then defined as the respiratory rate fRR and the heart rate fHR. Sometimes, higher

order harmonics of the respiratory rate interfere with the heart rate peak. Therefore, all heart

rate peaks were visually inspected to ensure correct detection. Those newly obtained peak fre-

quencies are then used to refine the temporal filtering of the impedance data. Briefly, the raw

data was bandpass filtered between 0.5�f and 2.5�f, where f corresponds to the peak frequency

of either the respiratory rate fRR or the cardiac rate fHR.

Three filtered impedance movies were calculated:

A respiratory domain filtered movie using cutoffs of:

0.5 � fRR > f< 2.5 � fRR

A cardiac domain filtered movie using cutoffs of:

0.5 � fHR > f < 2.5 � fHR

A more stringent cardiac domain filtered movie using cutoffs of:

0.8 � fHR > f < 1.2 � fHR

The signal in the heart domain was subject to noise not corresponding to the pulsatile

period of the heartbeat. The strictly filtered signal is used to automatically detect start- and

endpoints of the pulsatile period. Amplitudes were calculated using the less strictly filtered car-

diac signal. In contrast, respiratory domain signals didn’t require strict filtering due to their

steady period.

A custom written code was used to extract individual breaths and heart beat signals from

the global signal. The mean pixel value within the region of interest (lung) was calculated for

every frame. First and second derivatives were then used to find the minima and maxima of

the signal. The amplitude of a particular breath or heartbeat was defined as the change in

impedance value between its minima and maxima. The following amplitudes were extracted:

ΔZCR: Cardiac related impedance changes during respiration extracted by filtering the respira-

tion signal in the heart rate domain.

ΔZRR: Respiratory related impedance changes during respiration extracted by filtering the res-

piration signal in the respiratory domain.

ΔZCA: Cardiac related impedance changes during apnea extracted on the untouched signal

obtained during apnea.

VT: Tidal breathing extracted from spirometer.

We had one amplitude value per breath or heart pulse for each subject, position and repli-

cate. The values were then first averaged over all breaths/pulses of a given subject, position and

replicate. Finally, the reported values were mean values over the triplicate, leaving two ampli-

tude values (cardiac and respiratory) per subject and position. Units of impedance changes

were arbitrary, i.e. different reconstruction methods produced different orders of magnitude.

To facilitate presentation, we multiplied values obtained through reconstruction RG with 1000.

EIT signal is position dependent
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In order to compare respiratory amplitudes between subjects, we normalized respiratory

related impedance changes to tidal volumes ΔZRR / VT.

Spatial separation of heart and lung. In order to spatially separate the impedance change

due to the heart from cardiac activity related impedance changes and ventilation we exploited

a result described by Grant et al. [9]: the authors found that the impedance changes due to the

heart itself are subject to a phase shift (150˚-180˚) with respect to cardiac related signals inside

the lung. This cross-correlation method has also previously been used by different authors for

the elimination of the heart region [17,18,19].

In a first step, we defined a group of pixels that corresponded to cardiac related impedance

changes inside the lung. To do so, we determined the pixel with the maximum impedance

change within the lung domain filtered image. This ensured that we chose the reference inside

the lung. The 4-connected pixels from the maximal value made up the reference region.

In a second step, the mean signal of the reference location was correlated with the time

trace of all other pixels. The distance of the maximal correlation to the zero lag point corre-

sponds to the phase shift. The phase shift of each pixel was then converted to a phase angle. In

a last step, all pixels that had more than ±30˚ shift were considered to be due to the heart itself.

Using this threshold, a binary image specifying the location of the heart was then created. In

order to achieve a coherent heart shape, the binary image was treated with closing and opening

operations in order to fill holes and remove isolated single pixels [20]. Fig 1 illustrates the

main steps described above.

Filter effect on amplitude. To assess the effect of extracting the cardiac related signal

from the mixed signal, we compared ΔZCR and ΔZCA.

Filter design. A band-pass finite impulse response (FIR) filter was implemented to filter

the individual pixels in lung and heart domain. This filter was used for all filtering purposes

described here. In comparison to infinite impulse response (IIR) filters, the FIR has two crucial

advantages: It is always stable and it has a linear phase response. The filter is applied in a for-

ward-backward manner in order to improve performance at the edge and remove lag [21].

The bandpass filter was constructed using Matlab’s fdesign.bandpass function.

Statistics. Anderson-Darling test was used to test data for normality. The non-parametric

Friedman’s test was employed to compare the different groups of interest. Each block in the

test corresponded to a subject, whereas the columns corresponded to the test repetitions, i.e.

Fig 1. Heart mask. A) The standard deviation over the length of the recording was calculated for each pixel. Regions of high impedance

change are in red, regions of low impedance change in blue. The region with the highest impedance change corresponds with a high

probability to lung tissue and was used as a reference for cross-correlation. B) Phase image depicting the obtained phase after cross-

correlating all pixels with the reference region. Red corresponds to a phase shift of about 150˚ whereas blue denotes -150˚. C) Binary heart

mask obtained after thresholding the phase image at ±30˚ and applying morphological operators. The dashed lines illustrate the different

anatomical regions: lung (black), heart (green) and great vessels (red).

https://doi.org/10.1371/journal.pone.0188313.g001
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body positions. A block contained the mean amplitude of the triplicate. In cases where Fried-

man’s test picked up a significant difference between at least one group with at least one other

group, post-hoc analysis after Conover [22] was performed to determine which groups are sig-

nificantly different. Significance was defined at α = 0.05 after correction for multiple

comparisons.

The Wilcoxon signed rank test for paired data [23] was used to assess whether extracting

cardiac related impedance changes by filtering the signal during respiration influences the

amplitude significantly compared to raw amplitudes of the apnea phase. Pearson correlation

coefficient was calculated between changes in heart rate and changes in amplitude between

upright and recumbent positions to test for heart rate dependency.

Results

Cardiac related impedance changes

Cardiac related amplitudes were about an order of magnitude smaller than respiratory related

amplitudes. We first calculated the amplitudes of cardiac related impedance changes of the RG

reconstruction. The upright and supine positions yielded a significant decrease (p<0.05) in

amplitude with respect to left, right lateral or prone when image reconstruction was

referenced to upright position (Fig 2 left panel, A). No difference was found between left lateral

and prone position. Additionally, significant differences were found between right lateral and

prone. When image reconstruction was referenced to the corresponding body position no dif-

ferences in amplitudes between the different postures could be demonstrated (Fig 2 middle

panel, A).

Next, we used different reconstruction algorithms to determine their effect on position-

dependence of the cardiac related signals. Independent of the reconstruction method used, the

main trend in the data was conserved, i.e. the upright and supine positions showed signifi-

cantly lower amplitudes than the other postures. These findings were basically unaffected by

the reference method used. (Fig 2A–2D). Differences in amplitudes between upright and

recumbent positions revealed only very weak or weak negative correlation with differences in

heart rate in R0, RL and RLH (Pearson’s coefficient -0.16 –-0.28). R0 revealed a moderate posi-

tive correlation (Pearson’s coefficient 0.46).

Filter effect on amplitude

Using RG, RL or RLH we detected significant differences between cardiac related impedance

changes ΔZCR and ΔZCA for supine position (Wilcoxon signed rank test). Furthermore, using

RG a significant difference was found in right-lateral position. Using the GREIT reconstruction

containing uniform conductivity (R0) resulted in a significant difference between ΔZCR and

ΔZCA in prone position (Fig 3).

Respiratory related impedance changes

Tidal volumes measured with the spirometer varied significantly between subjects but yielded

no significant differences between body positions (Friedman test), i.e. tidal volumes were con-

stant over different positions.

Concerning EIT amplitudes upright position was significantly different from left (R0, RL

and RLH), right (R0, RL and RLH), prone (R0, RL and RLH) and supine (R0). Fig 4 shows the

results obtained using RG reconstruction where no differences could be detected.

EIT signal is position dependent
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Discussion

Summary

We present evidence that the amplitudes of cardiac related impedance changes are dependent

on body position and also on the reconstruction algorithm used. The demonstrated differences

Fig 2. Cardiac related impedance changes. Left side: Boxplots of amplitude levels of cardiac related impedance changes:

Image reconstruction referenced to upright position (“Global reference”). Middle: Boxplots of amplitude levels of cardiac

related impedance changes: Image reconstruction referenced to the corresponding body position (“Local reference”). Right:

Depiction of the corresponding reconstruction algorithm. The cylindrical uniform shape describes the back-projection used

with the software provided with the GoeMF II tomograph (A) whereas thorax shaped meshes were used with GREIT

reconstruction (B-D). The red lines denote median values, the blue box encompasses values between the 25th and 75th

percentile. Whiskers cover 95% of the data. Positions that are significantly different (Friedman’s test) are labeled with their

appropriate number.

https://doi.org/10.1371/journal.pone.0188313.g002
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are not explained by physiological changes of the cardio-vascular system alone. Especially

supine and upright positions presented significantly lower amplitudes. In contrast to a recent

publication of Zhao et al. [24] we do find significant differences between the most common

reconstruction methods (R0, RG and RL).

Cardiac related impedance changes

Cardiac related impedance signals within the lung are often called “pulmonary perfusion” in

the literature. It is, however, very controversial whether perfusion is actually the source of this

Fig 3. The effect of filtering on the amplitude. A) Comparing ΔZCA (red) and ΔZCR (blue) using reconstruction RG. Note

the significantly lower amplitude obtained with ΔZCA in upright position. B) Only in prone position a significant difference

was found using GREIT reconstructions RL and RLH. Here, as an example the values of RL reconstruction are shown.

Black circles denote median values, the body box encompasses values between the 25th and 75th percentile. Whiskers

cover 95% of the data. * p<0.01.

https://doi.org/10.1371/journal.pone.0188313.g003
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Fig 4. Tidal volumes and respiratory related impedance changes. A) Tidal volumes in liters. B) Amplitude

changes due to respiration were normalized to tidal volume [AU/L]. The example shows data reconstructed

using RG. The red lines denote median values, the blue box encompasses values between the 25th and 75th

percentile. Whiskers cover 95% of the data. Positions that are significantly different (Friedman’s test) are

labeled with their appropriate number.

https://doi.org/10.1371/journal.pone.0188313.g004
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signal. Both, the size of the microvascular bed [25] and stroke volume [26] were linked to the

amplitude of cardiac related impedance changes. Considering the observed impedance

changes depend on cardiac output, i.e. stroke volume. The more the heart muscle is stretched

during filling, the greater is the quantity of blood ejected [27]. Gravity is thus a great determi-

nant of stroke volume, e.g. a recumbent position removes hydrostatic pressure effects and

facilitates filling of the heart and thus increases stroke volume. Studies showed that changing

from recumbent to upright position can decrease the stroke index up to 40% by affecting

venous return [28]. To keep cardiac output constant, changes in stroke volume will therefore

lead to changes in heart rate. The gravity dependence of the stroke volume could thus explain

parts of the differences between the recumbent and upright positions, but not in supine posi-

tion. We observe decreases in ΔZCR in upright position of up to 50% with respect to lateral

positions (Fig 2). Given the fact that there was no relevant correlation between the change in

heart rate and the change in amplitude from upright to recumbent position and under the

assumption that cardiac output did not significantly change in between body positions this

cannot be the sole explanation for the differences in EIT amplitude in different body positions.

It is possible, that the weight of the heart compresses the pulmonary microvascular bed and

thus decreases cardiac related impedance changes. In prone position, a great part of the weight

of the heart is resting on the sternum, leaving the microvascular bed untouched and thus

allowing the highest perfusion. Effectively, we can see similar or higher impedance amplitudes

for supine positions compared to left or right lateral. Both left and right lateral sides would

foreseeably provoke similar effects on microvascular compression. Indeed, we do not see any

differences in impedance amplitude when the more recent reconstruction algorithms are used.

The supine position leaves the heart resting on some parts of the lungs and thus compresses

the microvascular bed most. As a matter of fact, we observe decreases in impedance ampli-

tudes in supine position. Arguably, in the upright position the gravitational force on hydro-

static pressure is greater than the effect due to the weight of the heart.Several other

physiological mechanisms occur when changing body position. Changes in intrathoracic pres-

sure might also affect the microvascular system and potentially lead to different EIT ampli-

tudes. Furthermore, the size of the large vessels is possibly variable in different body positions,

as well leading to differences in cardiac-related amplitudes measured by EIT. Differences of

the shape, position and movement of the diaphragm and consequently the abdominal organs

will influence the distribution of cardiac-related impedance changes as suggested by Ericsson

and colleagues [8]. In their publication they present similar position-dependent differences in

amplitudes compared to our study, unfortunately without discussing these findings.

We propose two main lines of explanation: First, the size of the microvascular bed defines

the size of impedance changes. Secondly, stroke volume determines the amount of impedance

change. Both try to explain the effect seen in cardiac related impedance changes. It is very

likely that both effects exist in reality. It is, however, unclear whether EIT and our analysis set-

up pick up these effects.

Respiratory related impedance changes

Most of the above-mentioned hypotheses cannot explain the differences we observed in respi-

ratory related impedance. Tidal volumes measured with the spirometer were unchanged for

different postures. EIT only measures volume changes within parts of the lung which might be

different in different body positions. Effects like diaphragmatic and abdominal wall move-

ments will change in different body positions and therefore potentially influence the EIT signal

especially with the electrodes placed relatively low like in our study [8]. This effect would be

greatest in prone position. We found no differences between all the recumbent positions

EIT signal is position dependent
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which cannot completely be explained with this phenomenon. Additionally, differences were

not consistent between the reconstruction algorithms. This observation points to a general

technical issue regarding EIT signal acquisition or at least image reconstruction.

Potential back-projection issues

A major issue in EIT image reconstruction is the frame or period the measurement is refer-

enced to. Depending on the parameters that are compared (amplitude, end-expiratory lung

impedance,. . .), a different reference frame might be necessary. We therefore included two ref-

erence methods in our study. One would argue that for the comparison of amplitudes a refer-

ence frame within the same body position needs to be defined. Except for one reconstruction

algorithm we could demonstrate the same main outcome, independent of the reference frame.

The more recently developed reconstruction algorithms seem to be less sensitive to the

“wrong” reference frame.It is very likely that both cardiac- and respiratory changes are at least

partly subject to the same effect. An alternative explanation, taking into account observations

from both sources of impedance changes is thus needed.

Grychtol et al. created sensitivity maps of an RLH reconstruction computationally [13].

These sensitivity maps correspond to the amplitude response of the GREIT reconstruction

[14]. They revealed lowest sensitivities at the location of the heart and highest on the dorsal

side of the left lung. It seems like having a higher a priori conductance on the ventral side of

the body would lead to amplified effects on the impedance changes, i.e. the ventral side would

be more sensitive to impedance changes. This combined with the fact that ventilation and

potentially also perfusion is greater on the dependent part of the lung might explain differences

in supine and prone position, which we do see in R0, RL and RLH. Still, this does not explain

the differences seen between recumbent and upright positions. In a further publication, the

same group showed that the choice of reconstructed tissue properties will affect the resulting

images [29]. We could demonstrate an increase of impedance change in prone position com-

pared to supine when using R0, RL or RLH. Seeing this difference in all three reconstruction

algorithms makes it very unlikely that our findings can be explained only by having chosen the

wrong a priori conductance values (Fig 2B–2D).

Filter effect on amplitude

We were able to quantify the effect of frequency filtering by comparing those values with raw

data from apnea. We did not find a consistent pattern of differences due to filtering in the dif-

ferent reconstruction algorithms. In prone position filtering decreases the amplitude for one

reconstruction method (RL). Given the fact, that the change in amplitude due to filtering is

very inconsistent, it is very unlikely that this is the reason for positional differences. Our analy-

sis was spatially restricted to the lung.

Limitations

All subjects were at rest during the whole acquisition session (< 1 hour). We assumed stable

cardio-vascular conditions during data acquisition, but did not measure pulse or stroke vol-

ume to confirm this assumption. We see however no reason why cardiac output should signifi-

cantly change in recumbent positions during such a short period of time. Furthermore, using

spirometry we showed that pulmonary activity did not change between postures. There were

significant differences in tidal volumes between subjects suggesting that not all subjects were

studied during quiet tidal breathing. Review of the individual results showed one subject

breathing at significantly higher tidal volumes. There was no change in differences between

body positions and reconstruction algorithms with or without this subject. We proposed a

EIT signal is position dependent

PLOS ONE | https://doi.org/10.1371/journal.pone.0188313 November 16, 2017 11 / 14

https://doi.org/10.1371/journal.pone.0188313


novel way to exclude impedance changes related to the activity of the heart. For our analyses

we only used the lung region. A possible source of error could be the algorithm used for the

spatial separation of heart and lung region. We compared the automatically generated heart

masks over the triplicate. The location and the size of the heart were not only consistent

through the repetitions, but also through the different postures.

Relevance

The results of this study might have several consequences for future EIT studies. Especially

researchers studying perfusion or V/Q have to be aware of the possibility of positional effects

when comparing results taken in different body positions. More research is needed to under-

stand the source of these effects. It is possible that position-dependent reconstruction parame-

ters need to be developed to counteract positional effects.

Conclusions

The amplitudes of cardiac and respiratory related impedance changes depend on body posi-

tion and reconstruction algorithm in healthy adults. Prone, supine, upright, left and right lat-

eral positions were investigated. Significant differences in cardiac related impedance

amplitudes not fully explained by physiological mechanisms were observed between different

postures. The nature of these changes is not yet elucidated, we presented possible explanations

that need further testing.
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