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Structural and functional changes of the brain occur in many chronic

pain conditions, including chronic low back pain (CLBP), and these brain

abnormalities can be reversed by effective treatment. Research on the

clinical applications of non-invasive brain neuromodulation (NIBS) techniques

for chronic pain is increasing. Unfortunately, little is known about the

effectiveness of NIBS on CLBP, which limits its application in clinical pain

management. Therefore, we summarized the effectiveness and limitations

of NIBS techniques on CLBP management and described the effects and

mechanisms of NIBS approaches on CLBP in this review. Overall, NIBS may

be effective for the treatment of CLBP. And the analgesic mechanisms of NIBS

for CLBP may involve the regulation of pain signal pathway, synaptic plasticity,

neuroprotective effect, neuroinflammation modulation, and variations in

cerebral blood flow and metabolism. Current NIBS studies for CLBP have

limitations, such as small sample size, relative low quality of evidence, and

lack of mechanistic studies. Further studies on the effect of NIBS are needed,

especially randomized controlled trials with high quality and large sample size.

KEYWORDS
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Introduction

Low back pain, which refers to pain and discomfort in the lumbosacral region, is
a highly prevalent condition with high burden worldwide (Balagué et al., 2012; Smith
et al., 2022). The point prevalence and lifetime prevalence of low back pain are 7.83%
(95% confidence interval [CI]: 7.04–8.64) and 84% (Balagué et al., 2012). Moreover, the
prevalence of low back pain and years lived with disability caused by low back pain are
expected to increase as a result of population growth and aging (Hartvigsen et al., 2018).
In the US, the annual expenditures for low back pain exceed $100 billion (Katz, 2006),
and the annual costs for each patient reached $8386 (Gore et al., 2012). Chronic low
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back pain (CLBP) is defined as low back pain with a
course of over 12 weeks or 3 months (Andersson, 1999).
Approximately two-thirds of low back pain cases will develop
CLBP after the first episode (Morlion, 2013). Although
CLBP has been recognized as a crucial global health and
socioeconomic problem, its treatment has tremendous potential
for improvement (Knezevic et al., 2021).

Alterations exist in the structure and function of several
neural networks in patients with CLBP (Kregel et al., 2015;
Ng et al., 2018). Brain imaging studies have confirmed the
structural changes in gray matter in the thalamus, dorsolateral
prefrontal cortex, temporal lobes, insula, and the primary
somatosensory cortex in patients with CLBP (Giesecke et al.,
2004; Vlaeyen et al., 2018). Moreover, patients with CLBP
had increased activities in certain cortical and subcortical
regions (such as the prefrontal cortex and cingulate cortex) and
reduced activities in pain-relief areas. These neuroanatomical
and functional abnormalities in the brain can be reversed by
an effective treatment (Seminowicz et al., 2011). Therefore,
directly targeting the brain region involved in pain processing
may be an effective treatment for CLBP. Non-invasive brain
neuromodulation (NIBS) was defined as any brain stimulation
technique that directly modulates brain activity and the neural
network involved in pain processing but does not require
invasive methods (Jenkins and Tepper, 2011; Romanella et al.,
2020). Repetitive transcranial magnetic stimulation (rTMS)
and transcranial direct current stimulation (tDCS) are the
two most commonly used forms of NIBS (O’Connell et al.,
2018). Recently, NIBS has been used for the management of
chronic pain, including neuropathic pain (Zhang et al., 2021)
and chronic headache (Cheng et al., 2022). Many studies also
explored the effect of NIBS on patients with CLBP and observed
positive results, but the placebo effect should not be ignored
(Ambriz-Tututi et al., 2016; Jiang et al., 2020). However, to our
best knowledge, only one review summarized the effectiveness
of NIBS for chronic non-specific low back pain, and no study
summarized its mechanism (Patricio et al., 2021). Therefore, the
aim of this review is to outline the effect of NIBS on patients with
CLBP and summarize the possible mechanism of action.

Non-invasive brain
neuromodulation for chronic low
back pain

Repetitive transcranial magnetic
stimulation for chronic low back pain

Repetitive transcranial magnetic stimulation, an FDA-
approved NIBS technique, alters the excitability of the cerebral
cortex by generating strong magnetic and electric fields through
the stimulation coil applied over the scalp (Klomjai et al.,

2015). Generally, rTMS can be divided into high-frequency
rTMS (>1 Hz, HF-rTMS) and low-frequency rTMS (≤1 Hz,
LF-rTMS) according to their frequencies (Pascual-Leone et al.,
1999; Haraldsson et al., 2004; Guse et al., 2010).

Johnson et al. (2006) recruited 17 patients with CLBP and
observed a decrease in brief pain ratings after a single session of
HF-rTMS stimulation. They also found a remarkable decrease
in the temperature for cold pain thresholds and a significant
increase in the temperature for heat pain thresholds after a
single session of HF-rTMS stimulation (Johnson et al., 2006;
Table 1). And pain intensity was remarkably decreased in CLBP
patients after repeated HF-rTMS session stimulation. Besides,
rTMS had a greater analgesic effect without evident side effects
compared with physical therapy (Ambriz-Tututi et al., 2016).
Many lines of evidence suggested that the presence of attendant
symptoms, such as depression and sleep disturbance, interferes
with CLBP treatment and were associated with worse treatment
outcomes (Sullivan et al., 1992; Nijs et al., 2018). Park et al.
(2014) attempted to explore the effects of rTMS in treating
depression and insomnia with CLBP and observed positive
results. Therefore, rTMS maybe yield an optimal result in the
concurrent treatment of these symptoms in patients suffering
from CLBP and depression.

These investigations provided preliminary confirmation of
the therapeutic effects of rTMS on CLBP. According to the
updated guidelines on the therapeutic use of rTMS, level A
(definite efficacy) evidence strongly suggested that rTMS is
effective for managing neuropathic pain (Lefaucheur et al., 2020;
Leung et al., 2020). However, more high-quality and large-scale
randomized controlled trial (RCT) studies are needed to further
support the benefit of rTMS for CLBP. Besides, no study has
compared the effects of different NIBS techniques for CLBP.
Whether the use of rTMS may offer more advantages than other
NIBS techniques is unknown.

Transcranial direct current stimulation
for chronic low back pain

Transcranial direct current stimulation modulates cortical
excitability by passing positively or negatively charged currents
(a weak current, 0.5–2 mA) using at least two surface electrodes
on the scalp (Luedtke et al., 2012b; Chase et al., 2020). In many
countries, tDCS can be used as an off-label treatment, and its
official regulatory status is under development (Fregni et al.,
2015). In the United States, no clinical indications have been
approved for the use of tDCS, but tDCS is widely studied for
the treatment of chronic pain, and CLBP is not an exception
(Pacheco-Barrios et al., 2020).

Some studies used a single session to explore the therapeutic
effect of tDCS on CLBP. A single, 20-min session of anodal
tDCS stimulation at 2 mA targeting M1 remarkably improved
the pain in the tDCS group compared with the sham group
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TABLE 1 Non-invasive brain neuromodulation (NIBS) studies for chronic low back pain.

Study
author,
year

Study
type

Sample
size (E
vs. C)

Gender
(F/M)

Age Control Pain
duration
(month)

Parameters and
dosage

Session
schedule

NIBS combined
with other
interventions

Outcome
measure

Follow-
up

rTMS

Ambriz-
Tututi et al.,
2016

RCT 67
(41 vs. 26)

rTMS: 27/14
sham: 18/8

rTMS:
52.57 ± 10.5
sham:
51.5 ± 12.3

Sham rTMS:
85.2 ± 31.2
sham:
58.8 ± 30

Coil type: F-8
stimulation site: M1
frequency: 20 Hz (10 pulse trains
of 10 s with 28 s inter-train
interval)
intensity: 95%RMT

Five sessions during the first
week and 8 more sessions on
weeks 3, 4, 6, 8, 12, 20, 28,
and 36. At the end of
protocol, sham group
received real rTMS for a
week, rTMS group received
sham session.

none VAS;
SF-MPQ;
SF-36

none

Park et al.,
2014

Case report 2 2/0 Patient 1: 65
Patient 2: 61

NA Patient 1: 60
Patient 2: 12

Coil type: F-8
Stimulation site: PFC
Frequency: 1 Hz (1200
pulses/session)
Intensity: 100%RMT

Patient 1: 5 sessions/week;
4 weeks;
Patient 2: 5 sessions/week;
3 weeks

None NRS;BDI;
ISI, PDI

None

Johnson
et al., 2006

RCT
(cross-over)

17
(17 vs. 17)

10/7 Mean age:
43.5 (range:
28–74)

Sham NR (over
12 m)

Coil type: F-8
stimulation site: M1
Frequency: 20 Hz (12.5 trains
with 28 s inter-train interval, total
500 pulses/session)
Intensity: 95%RMT

A single session None BPI; QST None

tDCS

McPhee and
Graven-
Nielsen,
2021

RCT
(cross-over)

12
(12 vs. 12)

9/3 All:
28.6 ± 5.9

Sham All:
63.6 ± 31.2

Mode: Anodal
stimulation site: Anodal over
medial prefrontal region (Fz),
Cathode over the forehead (Fp1,
Fp2, F7, and F8)
Intensity: 2 mA
Session duration: 20 min

Daily stimulation; 3
consecutive days

None VAS,
RMDQ,
MPQ, PPT

21 days

Jiang et al.,
2020

RCT 51
(26 vs. 25)

27/24 tDCS:
39.9 ± 14.2
sham:
44.1 ± 13.0

Sham All:
27.5 ± 47.6

Mode: Anodal
stimulation site: Anodal over
C3/C4 (contralateral of pain),
Cathode over the contralateral
supraorbital area
Intensity: 2 mA
session duration: 20 min

A single session None NRS None

(Continued)

Fro
n

tie
rs

in
M

o
le

cu
lar

N
e

u
ro

scie
n

ce
0

3
fro

n
tie

rsin
.o

rg

https://doi.org/10.3389/fnmol.2022.1032617
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnm
ol-15-1032617

O
ctober13,2022

Tim
e:16:50

#
4

C
h

an
g

e
t

al.
10

.3
3

8
9

/fn
m

o
l.2

0
2

2
.10

3
2

6
17

TABLE 1 (Continued)

Study
author,
year

Study
type

Sample
size (E
vs. C)

Gender
(F/M)

Age Control Pain
duration
(month)

Parameters and
dosage

Session
schedule

NIBS combined
with other
interventions

Outcome
measure

Follow-
up

Jafarzadeh
et al., 2019

RCT 36
(12 vs. 12 vs.
12)

6/30 All:
31.6 ± 4.9

Sham +
postural
training;
postural training

NR
(chronic)

Mode: Anodal
stimulation site: Anodal over left
M1 (C3), Cathode over the right
contralateral supraorbital area
intensity: 2 mA
Session duration: 20 min

3 session/week, 2 weeks Concomitant with
postural training for
20 min, 3
sessions/week,
2 weeks

VAS, BBS 1-month

Mariano
et al., 2019

RCT 21
(10 vs. 11)

7/23 All:
63.1 ± 10.5

Sham NR
(chronic)

Mode: Cathodal
Stimulation site: Cathodal over
dACC (C3), Anodal over the right
contralateral mastoid
Intensity: 2 mA
session duration: 20 min

Daily stimulation; 10
consecutive weekdays

None DVPRS,
RMDQ,
PHQ-9,

6 weeks

Straudi
et al., 2018

RCT 35
(18 vs. 17)

26/9 All:
55.1 ± 12.5

Sham +
group exercise

All:
104.4 ± 92.4

Mode: Anodal
stimulation site: Anodal over M1
(contralateral of pain), Cathode
over the contralateral
supraorbital area
Intensity: 2 mA
Session duration: 20 min

Daily stimulation; 5
consecutive days

After 5 sessions
tDCS, 1 h
neurophysiology
lesson; and 10 h
muscle stabilization
and mobilization
exercise (1 h/session;
2–3 sessions/week,
4 weeks, total 10
sessions)

VAS,
RMDQ,
EQ-5D,
PHQ-9

1-month

Hazime
et al., 2017

RCT 92
(23 vs. 23 vs.
23 vs. 23)

69/23 Real
tDCS +
sham PES:
51.9 ± 9.9;
sham
tDCS +
real PES:
53.0 ± 9.9;
real tDCS +
real PES:
51.3 ± 9.9;
sham
tDCS +
sham PES:
54.1 ± 9.8

Sham Real
tDCS +
sham PES:
91.6 ± 108.3;
sham
tDCS +
real PES:
59.7 ± 59.7;
real tDCS +
real PES:
37.3 ± 39.4;
sham
tDCS +
sham PES:
69.2 ± 92.7

Mode: Anodal
stimulation site: Anodal over C3
or C4 (contralateral of pain),
Cathode over the contralateral
supraorbital region
Intensity: 2 mA
Session duration: 20 min

3 sessions/week; 4 weeks Concomitant with
real or sham PES
(100 Hz, 40 min);
PES electrodes
placed over lumbar
segment (most
painful site); 3
sessions/week; 4
week

NRS,
RMDQ

12, 24 weeks

(Continued)
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TABLE 1 (Continued)

Study
author,
year

Study
type

Sample
size (E
vs. C)

Gender
(F/M)

Age Control Pain
duration
(month)

Parameters and
dosage

Session
schedule

NIBS combined
with other
interventions

Outcome
measure

Follow-
up

Luedtke
et al., 2015

RCT 135
(67 vs. 68)

63/72 tDCS:
45 ± 9
Sham:
44 ± 10

Sham tDCS:
23 ± 49
Sham:
19 ± 29

Mode: Anodal
stimulation site: Anodal over M1
(contralateral of pain), Cathode
over the contralateral
supraorbital region
Intensity: 2 mA
Session duration: 20 min

Daily stimulation; 5
consecutive days

After 5 sessions
tDCS stimulation,
the
cognitive-behavioral
management
program was
performed (5 h/day,
4 weeks, total 80 h)

VAS, ODI None

Schabrun
et al., 2014

RCT (cross-
over)

16
(16 vs. 16 vs.
16 vs. 16)

7/9 All:
30 ± 2

Sham All:
50.4 ± 8.4

Mode: Anodal
Stimulation site: Anodal over M1
(contralateral of pain), Cathode
over the contralateral
supraorbital region
Intensity: 1 mA
Session duration: 30 min

A single session Concomitant with
real or sham PES
(2 Hz, 30 min); PES
electrodes placed
over lumbar
segment, a single
session

NRS, PPT,
TPD

3 days

O’Connell
et al., 2013

RCT
(cross-over)

8
(8 vs. 8)

7/1 All:
45 ± 10

Sham NR (over
12m)

Mode: Anodal
Stimulation site: Anodal over M1,
Cathode over the contralateral
supraorbital region
Intensity: 2 mA
session duration: 20 min

5 sessions/week, 3 weeks None VAS,
RMDQ,
cognitive
function

3 weeks

Luedtke
et al., 2012a

RCT (cross-
over)

15
(15 vs. 15 vs.
15)

9/6 Mean age:
48.7 (range:
30–70)

Anodal vs.
cathodal vs.
sham

All: 134.4 m
(mean
value)

Mode: Anodal or Cathodal
Stimulation site: Anodal over left
M1, Cathode over the right
supraorbital region
Intensity: 1 mA
Session duration: 15 min

A single session None QST None

tACS

Ahn et al.,
2019

RCT
(cross-over)

20
(20 vs. 20)

12/8 NS Sham 84.8 ± 70 Stimulation site: 2 electrode on F3
and F4 and 1 at Pz
Frequency: 10 Hz
Intensity: 1 mA
Session duration: 40 min

A single session None DVPRS,
ODI

None

E, experimental group; C, control group; M1, primary motor cortex; PFC, prefrontal cortex; RMT, resting motor threshold; F-8, figure-of-8 coil; VAS, visual analog scale; NRS, numerical rating scale; SF-MPQ, Short Form McGill pain questionnaire; SF-36,
Short Form 36 Health Survey; BDI, Beck Depression Inventory; ISI, Insomnia Severity Index; PDI, the Pain Disability Index; QST, quantitative sensory testing; BPI, Brief Pain Inventory; PPT, pressure pain thresholds; RMDQ, Roland Morris Disability
Questionnaire; ODI, Oswestry disability index; DVPRS, defense and veterans pain rating scale; BBS, Berg Balance Scale; MPQ, McGill Pain Questionnaire; TPD, two-point discrimination; PHQ-9, The Patient Health Questionnaire-9; EQ-5D, EuroQuol-5
Dimension; Hz, hertz; NR, not reported; NA, not applicable.
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(Straudi et al., 2018; Jiang et al., 2020). Schabrun et al. (2014)
observed that the analgesic effect of tDCS (a single session,
30 min, 1 mA) was maintained for at least 3 days. But
Luedtke et al. (2012a) used a single, 15-min session of M1-tDCS
stimulation in CLBP patients, they found that tDCS does not
dramatically change the experimentally induced pain. Although
they choose the stimulation paradigm most commonly used in
most studies on experimentally induced pain in healthy subjects,
this stimulation intensity and duration may not be sufficient for
patients with chronic pain (Fregni et al., 2006; Soler et al., 2010).
Only one meta-analysis summarized the effect of NIBS on CLBP
and also found that a single session of NIBS remarkably reduced
the pain intensity in patients with CLBP (Patricio et al., 2021).
Therefore, these pieces of evidence showed that a single session
of tDCS seem to be effective in CBLP treatment.

The effects of multiple sessions of tDCS on CLBP have been
investigated, but the immediate changes after intervention are
not remarkable (Alwardat et al., 2020; McPhee and Graven-
Nielsen, 2021). The therapeutic effect of rTMS could be
enhanced by multiple sessions of stimulation (Quesada et al.,
2018). Similarly, the effect of tDCS may accumulate over
time but may take a longer period to fully manifest (Bikson
et al., 2018; Sampaio-Junior et al., 2018). Although Mariano
et al. (2019) did not observe an immediate reduction in
pain in the tDCS group after 10 sessions of tDCS, there
was a remarkable decrease in disability, pain interference, and
depression symptoms at 6 weeks of follow-up. Besides, the
cognitive function of patients with CLBP appears to have
a promotion at 3 days of follow-up after multiple tDCS
intervention (O’Connell et al., 2013). This delayed effect
also appears in the treatment of depression using rTMS or
electroconvulsive therapy. In addition to the delayed effect, the
negative results were associated with the less rigid inclusion
criteria because of the complexity and heterogeneity of CLBP
(Luedtke et al., 2015).

In addition to tDCS as monotherapy, some studies also
explored the combined effect of tDCS and other interventions in
the treatment of CLBP (Luedtke et al., 2015; Hazime et al., 2017).
An increased treatment effect in postural stability, balance,
and pain was found by adding tDCS to postural training in
patients with CLBP (Jafarzadeh et al., 2019). tDCS remarkably
improved the therapeutic effect of group exercises on pain and
psychological well-being (particularly depression) in patients
with CLBP (Straudi et al., 2018). In addition, a single session
of combined tDCS and peripheral electrical stimulation (PES)
could significantly increase the pressure pain thresholds and
pain-free range of lumbar flexion and decrease the two-point
discrimination threshold in CLBP patients compared with PES
alone, and the effect was maintained for at least 3 days (Schabrun
et al., 2014). Recently, Fregni et al. (2021) proposed that anodal
tDCS should be moderately recommended (level B) in reducing
chronic pain, such as neuropathic pain, fibromyalgia pain, and
migraine pain. But for CLBP, the analgesic effect of tDCS appears

to be inadequate. Given the pain relief after a single session of
tDCS and the additional effect of tDCS in combination with
other therapies on CLBP, the analgesic effect of tDCS for CLBP
cannot be entirely denied based on the limited studies (Schabrun
et al., 2014; Straudi et al., 2018; Jiang et al., 2020).

Transcranial alternating current
stimulation for chronic low back pain

Transcranial alternating current stimulation (tACS) can
regulate neural oscillation by applying an alternating current
with a sinusoidal pattern to the scalp (Woods et al., 2016).
Although it shares basic electrode montage and low-intensity
features with tDCS, the functional interpretations of the
two electrodes are different (Elyamany et al., 2021). Anodal
and cathodal tDCS provide positive and negative currents,
respectively. One electrode is an anode, and the other one is a
cathode during the half cycle of the tACS oscillation cycle, and
this pattern is reversed during the other half of the cycle (Antal
and Herrmann, 2016). The use of tACS has a strong theoretical
foundation and context for the treatment of chronic pain (Tan
et al., 2019; Zhou et al., 2019a). The neural oscillation signals
in the alpha and gamma bands during the pre-stimuli period
negatively regulate the perception of nociceptive stimuli (Tu
et al., 2016). Previous studies suggested a remarkable reduction
in the experimental pain induced by pressure pain stimulator
in healthy subjects after tACS at alpha frequency (Arendsen
et al., 2018). tACS regulates pain intensity by altering neural
oscillations (especially in alpha and gamma neural oscillation
signals) in patients with chronic pain (Helfrich et al., 2014;
Vossen et al., 2015). Although it is appealing, the application of
tACS seems to be rare in pain management. Only one study has
explored the analgesic effect of tACS on CLBP. Ahn et al. (2019)
recruited 20 patients with CLBP and performed a crossover
RCT. They observed a substantial pain reduction after a single
session of 10 Hz tACS stimulation over the F3 and F4 (10–20
international coordinate system) for 40 min. Moreover, tACS
stimulation induced an increase in the intensity of the alpha
oscillation signal in the somatosensory area, which was closely
associated with pain relief in patients with CLBP (Ahn et al.,
2019).

Mechanisms of non-invasive brain
neuromodulation for chronic low
back pain

Regulation of pain-related signal
pathway

Patients with CLBP exhibit changes in brain networks,
including pain modulation network, attention network, and
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default mode network (Kregel et al., 2015; Ng et al., 2018;
Vlaeyen et al., 2018). There was a significant difference in
functional connectivity in the periaqueductal gray–centered
pain modulation network between the patients with CLBP and
healthy controls (Yu et al., 2014). This was compatible with
the impairments of the descending pain modulation reported in
patients with CLBP (Hemington and Coulombe, 2015; Yu et al.,
2020). These pieces of evidence indicated the dysfunction in the
pain modulatory system in patients with CLBP. Many studies
have shown that rTMS and tDCS can modulate neural activity
in brain structures associated with pain processing.

HF-rTMS increases cortical excitability in the stimulation
site, whereas LF-rTMS stimulation decreases cortical
excitability. rTMS can produce a local effect by stimulating
neurons directly below the coil and induce distant effects
through structural white matter connectivity (Valero-Cabré
et al., 2017). Many studies have shown that rTMS can regulate
neural activity in certain cortical and subcortical areas (e.g.,
thalamic and various remote structures) to achieve analgesic
effects. In particular, rTMS directly stimulates the thalamus
through the corticothalamic projection system to inhibit the
transmission of injury information through the spinal thalamic
pathway (Bestmann et al., 2004). And the bilateral analgesic
effects induced by unilateral rTMS stimulation may be due to
the activation of certain structures (e.g., periaqueductal gray)
involved in the descending inhibitory controls (Pagano et al.,
2012; Moisset et al., 2015).

Cathodal tDCS decreases cortical excitability, whereas
anodal tDCS increases cortical excitability; the net effect
depends on variations in the overall network balance (Truong
and Bikson, 2018). In addition to the modulation of the activity
in the stimulated region, tDCS can induce changes in structural
and functional connections in unstimulated brain regions
(Cummiford et al., 2016; Lin et al., 2017). A single session of M1-
anodal tDCS can activate the activity of the left medial prefrontal
cortex, right caudate, and pontine nuclei and inhibit the activity
of the left precentral gyrus (Meeker et al., 2019). Moreover, pain
reduction was related to the decreased functional connectivities
of the ventral lateral thalamus to the posterior insula, primary
motor cortex, and primary somatosensory cortices (Cummiford
et al., 2016). These studies indicated that rTMS and tDCS can
induce pain relief by regulating the activity of the primary
nociceptive processing and inhibitory regions of the brain
(Figure 1).

Synaptic plasticity

The subsequent effects of rTMS and tDCS beyond the
stimulation period have been considered as the result of long-
term synaptic plasticity (Hosomi et al., 2013; Agboada et al.,
2020; Sudbrack-Oliveira et al., 2021). The mechanisms of
synaptic plasticity are very complex, and many factors can

induce long-term synaptic plasticity, especially the long-term
potentiation (LTP) and long-term depression (LTD) phenomena
(Connor and Wang, 2016). Similar to basic synaptic physiology,
LTP enhances synaptic strength, whereas LTD results in the
reduction of synaptic strength (Duffau, 2006). LTP is usually
caused by high-frequency rTMS, whereas LTD is induced by
low-frequency rTMS (Stanton and Sejnowski, 1989; Artola
and Singer, 1993). rTMS and tDCS interact with a variety of
neurotransmitters, such as the glutamatergic and GABAergic
agents. N-methyl-D-aspartate (NMDA) receptor is among the
major molecular channels controlling synaptic plasticity, and
the after-effects of rTMS and tDCS are dependent on the
NMDA receptor (Stagg and Nitsche, 2011; Muller et al., 2014).
Furthermore, the analgesic effect of rTMS is attenuated by
the use of glutamate antagonists (such as ketamine) prior
to rTMS stimulation (Ciampi de Andrade et al., 2014).
rTMS enhanced and reduced motor cortex excitability after
using type A receptors for gamma-aminobutyric acid (GABA)
receptor agonist and antagonist, respectively (Hsieh et al.,
2012). The enhanced and prolonged effects of tDCS are also
observed after the administration of GABA receptor agonist,
lorazepam (Nitsche et al., 2004). rTMS/tDCS regulates NMDA
expression and GABA release to induce LTP or LTD, leading
to synaptic plasticity. In addition, brain-derived neurotrophic
factor (BDNF) is believed to be an important driving force
behind synaptic plasticity (Kowiański et al., 2018; Zhou et al.,
2019b). Animal studies also showed that rTMS and tDCS could
modulate BDNF expression to enhance synaptic plasticity (da
Silva Moreira et al., 2016; Shang et al., 2016).

Neuroprotective effect

Glial activation is present in various chronic diseases,
including CLBP (Grace, 2019; Albrecht et al., 2021). Loggia
et al. (2015) found an increased level of glial cell activation
marker (translocator protein) in the brains of patients with
CLBP. Some studies confirmed that glial cell activation is the
key factor in the development of chronic pain (Grace, 2019;
Torrado-Carvajal et al., 2021). Activated glial cells (such as
microglia and astrocytes) can produce various toxic substances,
such as cytokines and nitric oxide, thereby aggravating apoptosis
(Watkins et al., 2007). Suppression of microglia and astrocyte
activation can reverse or reduce chronic pain (Raghavendra
et al., 2003; Zheng et al., 2021). Some studies suggested
that rTMS may reduce pain by inhibiting the activity and
proliferation of microglia and astrocyte in the L4–L6 dorsal
and ventral horns of the spinal cord (Kim et al., 2013; Yang
et al., 2018). Besides, the activation level of astrocytes in the
cerebrospinal fluid was significantly decreased after a single
session of tDCS stimulation (Callai et al., 2022). In addition,
tDCS and rTMS improved the B-cell lymphoma-2/Bcl2-
associated X ratio and decreased apoptosis (Yoon et al., 2011;
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FIGURE 1

Neurophysiological mechanisms of NIBS. CLBP, chronic low back pain; LTD, long-term depression; LTP, long-term potentiation; NMDA
receptor, N-methyl-D-aspartate receptor; GABA receptor, gamma-aminobutyric acid receptor; BDNF, brain-derived neurotrophic factor; IL,
interleukin; TNF, tumor necrosis factor.

Zhang et al., 2020). The above studies suggested that rTMS and
tDCS may induce a neuroprotective effect.

Modulation of neuroinflammation

Mounting evidence suggests that neuroinflammation is
associated with CLBP (Torrado-Carvajal et al., 2021; Alshelh
et al., 2022). Variations in neuroinflammation level were found
in tDCS studies (Cioato et al., 2016; Zhang et al., 2020;
Callai et al., 2022). Zhang et al. (2020) found a remarkable
reduction in the levels of pro-inflammatory cytokines, such
as IL-1β, IL-6, and TNF-α, and a substantial increase in the
level of anti-inflammatory cytokines, such as IL-10, after tDCS
stimulation. Animal studies also revealed an increase in IL-10 in
the prefrontal cortex after rTMS stimulation. This variation in
neuroinflammation level may be related to the partial reversal
of mechanical ectopic pain and hyperalgesia by rTMS (Toledo
et al., 2021). These pieces of evidence may be suggested that
NIBS can modulate neuroinflammation.

Variations in cerebral blood flow and
metabolism

Some studies reported that the analgesic effects of rTMS
and tDCS may be correlated to variations in regional cerebral
blood flow and metabolism. After M1-rTMS stimulation,

cerebral blood flow was remarkably increased in the right
anterior cingulate cortex and contralateral premotor area but
substantially decreased in the right medial prefrontal cortex.
Pain reduction was considerably associated with variations in
the cerebral blood flow in the anterior cingulate cortex (Tamura
et al., 2004). Similarly, the tDCS also induced changes in
regional cerebral blood flow (Zheng et al., 2011). Additionally,
compared with sham stimulation, active tDCS caused an
increase in metabolism in the subgenual anterior cingulate
cortex, insula, and medulla and a reduction in metabolism in the
left dorsolateral prefrontal cortex in patients with chronic pain
(Yoon et al., 2014).

Conclusion and future directions

This review described the effect of NIBS in patients with
CLBP and discussed its possible mechanism of action. Overall,
NIBS may be effective for CLBP management, and further
studies on the effect of NIBS are needed, particularly RCTs
with high quality and large sample size. Relatively few studies
have examined the analgesic effect of rTMS on patients with
CLBP and found promising results. The analgesic effect of tDCS
appears to be suboptimal, but the effect of tDCS on CLBP
cannot be entirely denied based on the limited studies. No
study has compared the efficacy of different NIBS techniques
in patients with CLBP. Further studies are warranted to fill
this gap, and more different stimulus paradigms are needed to
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explore the optimal parameters of tDCS and rTMS. In addition,
although the analgesic mechanism of NIBS is not understood,
the mechanism of NIBS may involve the regulation of pain
signal pathway, synaptic plasticity, neuroprotective effect,
neuroinflammation modulation, and variations in cerebral
blood flow and metabolism. The mechanisms of NIBS for CLBP
can be investigated in the future by combining NIBS with
imaging or electrophysiology.
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