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Bio‑heat response of skin tissue 
based on three‑phase‑lag model
Qiao Zhang, Yuxin Sun* & Jialing Yang

In this article, the thermal response of skin tissue is investigated based on three-phase-lag (TPL) 
model of heat conduction. The governing equation of bio-heat conduction is established by 
introducing both the TPL model of heat conduction and a modified energy conservation equation. The 
analytical solution is obtained by adopting the method of separation of variables and a parametric 
study on temperature responses in TPL model is carried out. It is shown that the TPL model can 
predict both the diffusion and wave characteristics of bio-heat conduction. Increasing the phase-lag 
of thermal displacement gradient would result in the rise of thermal propagation speed and decrease 
the temperature in affected zone. The perfusion rate of arterial blood has no obvious effect on thermal 
propagation velocity and thermal propagation lagging. Increasing of the rate of blood perfusion 
contributes to decreasing the temperature of steady state.

The heat transfer in biological tissue such as skin is a complicated process because it involves the heat conduction 
in solid tissues, solid–liquid convection between blood and solid tissues, metabolic heat generation and blood 
perfusion1. The deep research of bio-heat transfer mechanism in skin tissue is significant and helpful for heat 
therapy in medical treatment.

Generally speaking, three kinds of bio-heat transfer models for skin tissue are usually adopted in recent 
literatures2: Pennes model3, thermal wave (C-V) model4,5 and dual phase lag (DPL) model6. The first model of 
bio-heat transfer in biological tissue was presented by Pennes, which is based on the Fourier’s law,

where �q(�r, t) is heat flux vector, T is absolute temperature, k is thermal conductivity, �r is the location vector and 
t represents time.

Because of the simplicity of analysis, Pennes model was widely used in bio-heat transfer. However there are 
some inherent disadvantages for the bio-heat conduction model as it assumes that the thermal propagation speed 
is infinite7. As a matter of fact, heat is always found to propagate with a finite speed in living biological tissues 
within which there are highly non-homogeneous inner structures.

Considering the concept of a finite thermal propagation speed, Cattaneo4 and Vernotte5 almost simultane-
ously modified the Fourier’s law to form the thermal wave model which is also called C-V heat conduction 
model, which is expressed as

The equation indicates that the heat flux and temperature gradient occur at different moments for a specified 
position. The delay time between the heat flux and temperature gradient is defined as the thermal relaxation 
time τ . The thermal wave theory ensures that the heat flux is the consequence of the temperature gradient and 
temperature gradient is the cause so that there is a strong path dependency for the temperature gradient4,5.

Later, Tzou8 proposed a dual phase lag (DPL) model by introducing the phase lag of heat flux which is the 
time delay due to the fast transient effect of thermal inertia. The conduction relation between heat flux vector 
and temperature gradient can be expressed as

where τq is the phase lag time for the heat flux vector, and τT is the phase lag time for the temperature gradient.

(1)�q(�r, t) = −k∇T(�r, t)

(2)�q(�r, t)+ τ
∂�q(�r, t)

∂t
= −k �∇T(�r, t)

(3)�q
(

�r, t + τq
)

= −k �∇T(�r, t + τT )
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The above three heat conduction models are widely used by researchers and the effects of various thermo-
physical properties on thermal responses have been discussed adequately. For example, Lin and Li9 obtained the 
analytical solutions of bio-heat transfer for skin tissue with general boundary conditions in the Pennes, C-V and 
DPL models by using separation variable method. They discussed the effect of phase-lags, boundary conditions 
and heat conduction models on temperature and thermal damage. Xu et al.10 presented a comprehensive literature 
review pertinent to the bio-thermomechanical behavior of skin tissue which reviewed the fundamental concepts, 
methodologies and various thermophysical properties. Based on the Laplace transform method, Liu11 theoreti-
cally investigated the thermal behavior in a living tissue subjected to constant, sinusoidal, or step surface heating 
with the thermal wave model of bio-heat transfer. Babaei and Chen12 utilized the hyperbolic heat conduction 
model in a functionally radius graded hollow cylinder and analyzed the effects of thermal relaxation time and 
nonhomogeneous indices by numerical inversion of the Laplace transform. Akbarzadeh and Chen13 studied heat 
conduction in one-dimensional functionally graded media based on the DPL model.

Recently, Choudhuri14 established Three-phase-lag (TPL) constitutive model (4) by introducing the phase-
lag of heat flux vector, phase-lag of temperature gradient and phase-lag of thermal displacement gradient in 
heat conduction law based on a model of thermoelasticity developed by Green and Naghdi15,16. If the thermal 
conductivity and phase-lags are assumed as zero, the reduced heat conduction model would be obtained like 
equation (5) which could be regarded as a special C-V heat conduction model when the thermal relaxation 
time τ approaches to infinity. Hence the three-phase-lag model based on G-N model could probably predict the 
non-Fourier phenomenon in medium with large phase lag time, like sand and biological skin. It is necessary to 
investigate the bio-heat transfer behavior of biological skin tissue induced by external heat source in TPL model.

Besides the temperature gradient which serves as a constitutive variable in C-V and DPL heat conduction 
models, thermal displacement gradient is considered as a third constitutive variable in TPL model. The introduc-
tion of TPL model provides a general theoretical heat conduction model and a new approach to predict thermal 
response and damage of structures17. Akbarzadeh et al.17 studied heat conduction in a functionally graded, 
infinitely-long hollow cylinder based on TPL model. Quintanilla and Racke18 obtained conditions on the phase-
lag and material parameters to guarantee the exponential stability for two cases in the heat conduction theory 
with three-phase-lag. And generalized thermoelasticity based on three-phase-lag effect is investigated19–21. Kar 
et al.19 studied the thermoelastic responses in a functionally graded orthotropic hollow sphere due to a sudden 
temperature change in context of three-phase-lag model of generalized thermoelasticity. Kothari et al.20 attempted 
to find the fundamental solutions in the context of generalized thermo-elasticity with three phase-lags. Muk-
hopadhyay et al.21 presented a thorough analysis of effects of phase lags on wave propagation and investigated 
the nature of distributions of different fields in a thick plate based on thermoelasticity with three phase-lags and 
thermoelasticity of type GN-III (without any phase lag). Biswas and coauthors22–25 published a set of researches 
based on TPL model, such as the propagation of Rayleigh waves in orthotropic thermos-elastic half-space, the 
solution in closed form for an electro-magneto thermoelastic coupled two-dimensional problem in orthotropic 
half space, the various heat source responses in a transversely isotropic hollow cylinder, and free vibration of 
homogenous isotropic cylinder panel with voids. Li et al.26 investigated the transient thermoelastic responses of 
bi-layered skin tissue with temperature-dependent thermal material parameters in the context of generalized 
thermoelasticity without energy dissipation.

To the authors’ knowledge, the three-phase-lag effect hasn’t been considered in bio-heat transfer model in 
biological skin tissue. With this motivation in mind the aim of present analysis is to investigate the bio-heat 
transfer model with three-phase-lag effect in biological tissue. The governing equation is established and an 
analytical solution is obtained by using the method of separation of variables. A complete and comprehensive 
analysis on the relative parameters and comparison are presented.

Theoretical formulations
Choudhuri14 introduced a constitutive heat flux relation with three phase lags

in which �q , T and v are heat flux vector, absolute temperature and thermal displacement which satisfies v̇ = T , 
respectively. τq , τT and τv are the phase-lags of heat flux vector, temperature gradient and thermal displacement 
gradient, respectively. t is time and �r is the position coordinate vector. k and k* are the thermal conductivity and 
the rate of thermal conductivity, respectively. ∇ denotes the gradient operator. Equation (6) can be rewritten 
into the following form like DPL model.

in which the term ( T + k∗v/k ) can be viewed as an new integral variable and therefore Eq. (7) could be regarded 
as a kind of extension of DPL heat conduction equation (3).

Now Taylor’s series expansion of Eq. (7) up to the first-order terms in relative with τq , τT and τv leads to the 
following generalized heat conduction equation at a point �r and time t.

(4)�q
(

�r, t + τq
)

= −
[

k∇T(�r, t + τT )+ k∗∇v(�r, t + τv)
]

(5)
∂�q
∂t

(�r, t) = −k∗∇T(�r, t)

(6)�q
(

�r, t + τq
)

= −
[

k∇T(�r, t + τT )+ k∗∇v(�r, t + τv)
]

(7)�q
(

�r, t + τq
)

= −k∇
[

T(�r, t + τT )+
k∗

k
v(�r, t + τv)

]
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By using the relation v̇ = T , equation (8) can be rewritten into the following form which is comprised of two 
variables, namely the temperature T and heat flux �q.

For k* = 0, Eq. (9) would reduce to the following equation

which can be simplified into the DPL heat conduction equation by integrating with time.

Furtherly, it could reduce to the thermal wave model of Eq. (2) when the phase-lag of temperature gradient 
is set to zero, namely τT = 0 . And in the case of k* = 0 and τq = τT = 0 , equation (9) would be reduced to the 
heat conduction equation of Fourier’s law.

According to Pennes model3, the energy conservation equation of classical bio-heat transfer could be writ-
ten as

where the subscript ‘t’ denotes skin tissue and ‘b’ represents arterial blood flowing into tissue. ρ and c are density 
and specific heat, respectively. ωb is the perfusion rate of blood which represents the volume of blood flowing into 
unit volume skin tissue per unit time. Ta is the reference temperature of arterial blood entering skin tissue, which 
keeps the same as constant temperature of inner body, hence the second term on the right-hand side is regarded 
as heat exchange between arterial blood and the local tissue. Qm and Qlaser are heat generation contributions to 
tissue which are provided by metabolic process and external laser heating, respectively.

It is worthwhile to mention that Eq. (12) cannot be used directly for the TPL model of bio-heat transfer, and 
a modification is needed to introduce. The necessity and reason of the modification and substitution to energy 
conservation equation is illustrated in Appendix. According to Eq. (7), the term (T + k∗v/k) is viewed as an 
integral variable, so it takes place of the temperature T in Eq. (12) as well. Then the following energy equation 
would be adopted in the present study,

It is easy to find that Eq. (13) could reduce to the classical energy conservation Eq. (12) in the case of k* = 0. 
The thermal displacement v can be eliminated from Eq. (13) by using the relation v̇ = T and a partial differential 
equation of T and �q can be obtained as

By eliminating heat flux �q from Eqs. (9) and (14), the bio-heat transfer equation for temperature based on 
TPL model in homogeneous skin tissue can be obtained as

When k* = 0, equation (15) can also reduce to DPL bio-heat conduction by integral over time, which is

By introducing the temperature increment θ = T – Ta and considering Ta keeps constant, equation (15) can 
be changed into the following equation solved in the paper.

(8)
(

1+ τq
∂

∂t

)

�q = −k �∇
[(

1+ τT
∂

∂t

)

T +
(

1+ τv
∂

∂t

)(

k∗

k
v

)]

(9)
(

∂

∂t
+ τq

∂2

∂t2

)

�q = −
[

kτT
∂2

∂t2
+

(

k + k∗τv
) ∂

∂t
+ k∗

]

∇T

(10)
(

∂

∂t
+ τq

∂2

∂t2

)

�q = −k

(

∂

∂t
+ τT

∂2

∂t2

)

∇T

(11)
(

1+ τq
∂

∂t

)

�q = −k

(

1+ τT
∂

∂t

)

∇T

(12)ρt ct
∂T

∂t
= −∇ · �q+ ωbρbcb(Ta − T)+ Qm + Qlaser

(13)ρt ct
∂

∂t

(

T + k∗

k
v

)

= −∇ · �q+ ωbρbcb

[

(Ta − T)+ k∗

k
(va − v)

]

+ Qm + Qlaser

(14)ρt ct

(

∂

∂t
+ k∗

k

)

∂T

∂t
+ ωbρbcb

(

∂

∂t
+ k∗

k

)

(T − Ta) = −∇ · ∂�q
∂t

+ ∂

∂t
(Qm + Qlaser)

(15)
ρt ct

(

1+ τq
∂

∂t

)(

∂2T

∂t2
+ k∗

k

∂T

∂t

)

+ ωbρbcb

(

1+ τq
∂

∂t

)(

∂

∂t
+ k∗

k

)

(T − Ta) =
[

kτT
∂2

∂t2
+

(

k + k∗τv
) ∂

∂t
+ k∗

]

∇2T +
(

∂

∂t
+ τq

∂2

∂t2

)

(Qm + Qlaser)

(16)
ρt ct

∂T

∂t

(

1+ τq
∂

∂t

)

+ ωbρbcb

(

1+ τq
∂

∂t

)

(T − Ta) = k

(

1+ τT
∂

∂t

)

∇2T

+
(

1+ τq
∂

∂t

)

(Qm + Qlaser)
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Solution to the problem
In this section, the method of separation of variables is taken to solve the problem and obtain analytical solution 
for the three-phase-lag bio-heat transfer model. Two kinds of boundary conditions are under consideration to 
stimulate two load cases in reality.

Case I: Constant temperature on the surface of skin.  This case stimulates the bio-heat transfer of 
skin tissue when the external surface of skin is abruptly attached to a high temperature object and the tem-
perature of outer surface is viewed as the temperature of the object’s temperature. A step heating on the outer 
surface is adopted, which means the outer surface is heated to reach the specific temperature of T0 and then it 
keeps constant temperature for simplicity. The inner surface contacts with the arterial blood of the body, so it is 
assumed to keep the same constant temperature as the body temperature Ta. The thickness of the skin is L. The 
boundary conditions are defined as

where H(t) is the Heaviside function and θ0 = T0—Ta.

Case II: Constant heat flux exerted on the surface of skin.  This case predicts the bio-heat transfer 
behavior when the highly absorbing skin suffers from a laser light irradiance. In such a case, the absorbed laser 
energy could be viewed as boundary heat flux 27,28 as

where Rd is the diffuse reflectance of light at the irradiated surface. φin is the intensity of laser irradiance varying 
with time as follows.

where Q0 is the maximum intensity of laser. The internal surface is still assumed as constant temperature Ta 
like the second term of Eq. (18). Therefore the boundary condition for the case of constant heat flux could be 
written as

Solution of the problem.  In practice, a one-dimensional model of the tissue is sufficient as the size of 
laser beam is much larger than the thickness of tissue. The x-axis points inwards the skin tissue with the original 
point positioned on the outer surface of tissue. The temperature increment governing equation (17) turns to the 
following form considered in this paper.

The initial conditions are set as

To deal with the nonhomogeneous boundary condition and find out the steady state of eigen mode of temper-
ature increment, the following equation is deduced by setting all the time derivative terms in Eq. (22) to be zero,

The general solution of above equation is θ = c1e
�x + c2e

−�x.
Firstly with the boundary condition (18) of case I, the solution of Eq. (24) can be expressed as

(17)
τqρt ct

∂3θ

∂t3
+

[

ρt ct

(

1+ τq
k∗

k

)

+ τqωbρbcb

]

∂2θ

∂t2
+

[

ρt ct
k∗

k
+ ωbρbcb

(

1+ τq
k∗

k

)]

∂θ

∂t

+ ωbρbcb
k∗

k
θ =

[

kτT
∂2

∂t2
+

(

k + k∗τv
) ∂

∂t
+ k∗

]

∇2θ +
(

∂

∂t
+ τq

∂2

∂t2

)

(Qm + Qlaser)

(18)
{

θ(0, t) = θ0 ·H(t)
θ(L, t) = 0

(19)q(0, t) = ∂θ(0, t)

∂x
= φin(1− Rd)

(20)φin = Q0 ·H(t)

(21)
{

∂θ(0,t)
∂x = φin(1− Rd)

θ(L, t) = 0

(22)
τqρt ct

∂3θ

∂t3
+

[

ρt ct

(

1+ τq
k∗

k

)

+ τqωbρbcb

]

∂2θ

∂t2
+

[

ρt ct
k∗

k
+ ωbρbcb

(

1+ τq
k∗

k

)]

∂θ

∂t

+ ωbρbcb
k∗

k
θ =

[

kτT
∂2

∂t2
+

(

k + k∗τv
) ∂

∂t
+ k∗

]

∂2θ

∂x
+

(

∂

∂t
+ τq

∂2

∂t2

)

(Qm + Qlaser)

(23)θ(x, t)|t=0 = 0,
∂θ

∂t
(x, t)

∣

∣

∣

∣

t=0

= 0,
∂2θ

∂t2
(x, t)

∣

∣

∣

∣

t=0

= 0

(24)ωbρbcb
k∗

k
θ = k∗∇2θ
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where � = √
ωbρbcb/k . The steady state solution that satisfies boundary conditions equation (18) can be 

expressed as

Therefore temperature increment can be expressed as the following form.

By substituting Eq. (27) into Eqs. (22), (18) and (23), the following equation for the transient temperature 
increment θ1(x, t) is obtained.

where kq = 1+ τqk
∗/k . And the corresponding boundary conditions and initial conditions of θ1(x, t) are

The characteristic equation of Eq. (28) is

By utilizing the method of separation of variables, the solution of Eq. (31) is expressed as

Substituting Eq. (32) into Eq. (31) and considering the boundary conditions equation (29), one can obtain 
the eigen-function as

where �n = nπ
/

L, n = 1, 2, 3 . . . is the eigen-value. And the eigen function satisfies

Therefore the temperature increment θ1(x, t) could be expressed as

Applying Eq. (35) into Eq. (28), the time terms Bn(t) needs to satisfy the following equation

where the coefficients are defined as

(25)ϕ(x) =
(

e−�x − e�(x−2L)

1− e−2�L

)

θ0

(26)θ2(x, t) = ϕ(x) ·H(t)

(27)θ(x, t) = θ1(x, t)+ ϕ(x) ·H(t)

(28)

τqρt ct
∂3θ1

∂t3
+

�

ρt ctkq + τqωbρbcb
�∂2θ1

∂t2
+

�

ρt ct
k∗

k
+ ωbρbcbkq

�

∂θ1

∂t
+ ωbρbcb

k∗

k
θ1

=
�

kτT
∂2

∂t2
+

�

k + k∗τv
� ∂

∂t
+ k∗

�

∇2θ1 +
�

∂

∂t
+ τq

∂2

∂t2

�

(Qm + Qlaser)

− ϕ(x)















τqρt ct
∂3H(t)

∂t3
+

�

ρt ctkq + ωbρbcb
�

τq − τT
��∂2H(t)

∂t2

+
�

ρt ct + ωbρbcb
�

τq − τv
��k∗

k

∂H(t)

∂t















(29)B.C.

{

θ1(0, t) = 0

θ1(L, t) = 0

(30)I.C.







































θ1(x, t)|t=0 = −ϕ(x) ·H(0)

∂θ1

∂t
(x, t)

�

�

�

�

t=0

= −ϕ(x) · Ḣ(0)

∂2θ1

∂t2
(x, t)

�

�

�

�

t=0

= −ϕ(x) · Ḧ(0)

(31)τqρt ct
∂3θ1

∂t3
= k∗

∂2θ1

∂x2

(32)θ1(x, t) = Y(x)B(t)

(33)Yn(x) = sin (�nx)

(34)
� L

0
Yn(x)Ym(x)dx =







0 n �= m

L

2
n = m

(35)θ1(x, t) =
∞
∑

n=1

Yn(x)Bn(t)

(36)a
∂3Bn(t)

∂t3
+ b

∂2Bn(t)

∂t2
+ c

∂Bn(t)

∂t
+ dBn(t) = f (t)
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And the nonhomogeneous term is expressed as

The corresponding initial conditions are obtained by substituting Eq. (35) into Eq. (30), which is

Based on Cardans formula and general solutions of nonhomogeneous linear differential equation, the solu-
tion of Eq. (36) is

where V0(t), V1(t), V2(t) are effect functions of initial conditions on the temperature response, which has four 
different formulations decided by the coefficients of Eq. (36). By defining

the four cases are shown in the following:
Case 1 � < 0 , α + iβ = 3

√

− q
2 + i

√
−�

α, β are the real part and imaginary part of the complex number 3
√

− q
2 + i

√
−� respectively.

Case 2 � > 0

(37)

a = τqρt ct

b = ρt ctkq + τqωbρbcb + kτT�
2
n

c = ρt ct
k∗

k
+ ωbρbcbkq +

(

k + k∗τv
)

�
2
n

d = ωbρbcb
k∗

k
+ k∗�2n

(38)

f (t) =
�

∂

∂t
+ τq

∂2

∂t2

�

2

L

� L

0
Yn(x)(Qm + Qlaser)dx

− 2

L

� L

0
Yn(x)ϕ(x)dx















τqρt ct
∂3H(t)

∂t3
+

�

ρt ctkq + ωbρbcb
�

τq − τT
��∂2H(t)

∂t2

+
�

ρt ct + ωbρbcb
�

τq − τv
��k∗

k

∂H(t)

∂t















(39)



































Bn(0) = −H(0)
2

L

� L

0
Yn(x)ϕ(x)dx

Ḃn(0) = −Ḣ(0)
2

L

� L

0
Yn(x)ϕ(x)dx

B̈n(0) = −Ḧ(0)
2

L

� L

0
Yn(x)ϕ(x)dx

(40)

Bn(t) = V0(t)Bn(0)− V1(t)Ḃn(0)+ V2(t)B̈n(0)

+1

a

t
∫

0

f (η)V2(t − η)dη

(41)p = 3ac − b2

3a2
, q = 2b3 − 9abc + 27a2d

27a3
,� =

(q

2

)2
+

(p

3

)3

,

(42)

r1 = 2α − b

3a

r2 = −α −
√
3β − b

3a

r3 = −α +
√
3β − b

3a

(43)

V0(t) =
r2r3e

r1t

(r1 − r2)(r1 − r3)
+ r3r1e

r2t

(r2 − r3)(r2 − r1)
+ r1r2e

r3t

(r3 − r1)(r3 − r2)

V1(t) =
(r2 + r3)e

r1t

(r1 − r2)(r1 − r3)
+ (r3 + r1)e

r2t

(r2 − r3)(r2 − r1)
+ (r1 + r2)e

r3t

(r3 − r1)(r3 − r2)

V2(t) =
er1t

(r1 − r2)(r1 − r3)
+ er2t
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Case 3 � = 0 and 
( q
2

)2 = −
( p
3

)3 �= 0

Case 4 � = 0 and p = q = 0

Since the solution of θ1(x, t) is obtained, the veritable temperature increment θ(x, t) is expressed as

As for the case II of constant heat flux, only some modifications needs to perform to obtain the analytical 
solution by the method of separation of variables. With boundary condition equation (21), the solution of equa-
tion (24) can expressed as

Then the transient problem θ1(x, t) cooperate with the following homogeneous boundary condition and 
nonhomogeneous initial condition equation (30).

The eigen function for the boundary condition is written as

where �n = 2k−1
2

π
L , k = 1, 2, 3... . The eigen function satisfies the following relation

(44)
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V0(t) =
1

(α − r1)
2 + β2

{

(
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)
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β
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The other procedure and statement are the same as those mentioned in case I.

Results and discussions
In this section, the analytical results would be presented and illustrated. For case I, the outer skin surface is 
specified to be heated to a temperature of T0 = 80 °C, and the temperature of arterial blood keeps constant as 
Ta = 37 °C. For case II, the maximum intensity of laser irradiance is considered as Q0 = 2 W/cm2 and the diffuse 
reflectance is taken as Rd = 0.0528. The thickness of the tissue is deemed as L = 9 mm. The thermophysical param-
eters of the tissue and blood are18,29–31: ρt = 1190kg/m3 , ct = 3600J/

(

kg · K
)

 , ρb = 1060kg/m3,cb = 3770J/
(

kg · K
)

,ωb = 1.87× 10−3s−1,k = 0.235W/(m · K),k∗ = 0.1W/(m · K · s) . The three phase lags τq , τT and τv may be 
assumed as different values in the following discussions, and their values will be given together with the dis-
cussions. The rate of thermal conductivity hasn’t been studied in bio-transfer of biological tissue before, so the 
constant value of the constant rate of conductivity is assumed based on request of solution18 and relative value 
to thermal conductivity23,25.

Convergence of series solutions.  Figure 1 depicts the time-history of temperature with different num-
ber of terms in series solutions in TPL model. The phase lags are τq = 16 s, τT = 6 s32 and τv = 2 s18, which satisfy 
the inequality 0 ≤ τv < τT < τq

14. It is necessary to mention that τv is assumed as 2 s based on the stable request 
of solution18 and relative size of numerical value between the phase lags of heat flux, temperature gradient and 
thermal displacement gradient14,22,24. It is shown in the figure that the results converge quickly as the number 
increases. The curves for the cases of n = 300 and n = 400 are almost coincided together, so 300 terms in series 
solution could be adopted in the present calculation and analysis.

Validation of the solving method.  To check the validation of the solution procedure and method used 
in this paper, the same problem in Liu’s work11 is calculated with the same parameters being used. According to 
reference11, the following parameters are applied: ρt = 1000 kg/m3, ct = 4200 J/(kg·K), ρb = 1000 kg/m3, cb = 4200 J/
(kg·K), k = 0.2 W/(m·K), ωb = 0.5 × 10-3 s-1, and L = 0.0012 m. These parameters are just used in this subsection. 
The comparison between the present results and Liu’s results is depicted in Fig. 2.

In Liu’s work11 the Pennes model and C-V model are adopted. In this present model, with assumption of 
τv = 0 s and τT = 0 s, the model can reduce to C-V bio-heat transfer model. Furtherly, it reduces to Pennes model 
when τq = 0 s. The time history of temperature at the location of x = 0.002 m for the Pennes model and C-V model 
of present model and Liu’s model are shown in Fig. 2. Temperature in the skin increases immediately when the 
outer surface is heated. The C-V model is adopted with phase lag of heat flux taken as τq = 20 s. It is shown that 
the temperature doesn’t change at once, while it jumps to a high value at the time of t = 41 s. The thermal wave 
speed in C-V model is given by VC−V =

√

k
/

τqρt ct  , which gives the value of 4.88× 10−5m/s under present 
configuration. At the time of t = 41 s, the thermal wave arrives at the location of x = V·t = 0.002 m, which is just 
the location under study in Fig. 2. Good agreement is obtained between this work and Liu’s results in Fig. 2. 
Hence the method used in present study is efficient and will be adopted in the following calculations.

Parametric study of influences on temperature response in TPL model for the case of constant 
surface temperature.  Comparison between TPL model and former models.  Figure 3 shows the compari-

(54)
∫ L

0
Yn(x)Ym(x)dx =

{

0 n �= m

L
2 n = m

Figure 1.   Time-history of temperature for different number of series solutions at x = 0.5L.
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son of temperature response of the TPL model, Pennes model, C-V model and DPL model. Figure 3a shows the 
time-history of temperature at the location x = 0.5L for the bio-heat models under discussion. It is found that the 
thermal propagation speed is the largest in Pennes model and C-V model predicts the lowest one. It is apparent 
that the curve in TPL model is between the curves of C-V model and DPL model, which means that the TPL 
model can show both the diffusion and wave characteristics of bio-heat transfer. The thermal propagation speed 
in TPL model is smaller than that in DPL model so that the thermal response in TPL model occurs later than 
that in DPL model. Figure 3b depicts the temperature distribution for the above models at the time t = 50 s. It 
can be seen that there is a drop of temperature in C-V model, which shows the location where the thermal wave 
arrives. Before this location, the temperature in C-V model is larger than those in the other three models, while 
the temperature predicted in Pennes model is the largest after this location. These could be reasonable because 
in C-V model the lowest thermal propagation speed would lead to more heat concentrated in the affected area 
by surface heating and on the contrary, the more thermal energy would transfer to the unaffected zone quickly 
due to the infinite wave propagation speed in Pennes model.

Effect of τv on temperature response.  Due to the uninvestigated problem in biological tissue and lack of specific 
value for the phase lag of thermal displacement gradient, the influence of the phase-lag of thermal displacement 
gradient τv needs to be investigated and the results are shown in Fig. 4. In present paper, all the values of phase 
lag times attempt to be determined by the stable request of temperature solution18, the fundamental inequality 
0 ≤ τv < τT < τq

14,23.

Figure 2.   Comparison of the present model and Liu’s results.

Figure 3.   Results of different heat conduction models for the case of constant surface temperature. (a) time-
history of temperature at location x = L/2; (b) temperature distribution at time t = 50 s.
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Figure 4a shows variation of temperature with different phase-lag τv for TPL model at the location x = L/3. 
For comparison, the result of C-V model is also shown in the figure. Figure 4b depicts the temperature distri-
bution at the time t = 50 s for different phase-lags of thermal displacement gradient. It can be found that the 
temperature response behavior would get closer to the C-V model of wave characteristic when the phase-lag of 
thermal displacement gradient τv is getting smaller. It is apparent that the decreasing of τv requires more time 
to motivate thermal response at the same location from Fig. 4a and the larger τv leads to the longer thermal 
propagation distance at the same time from Fig. 4b. That indicates the increasing of τv would increase the ther-
mal propagation speed and accelerate thermal propagation process so that there would be more thermal energy 
transfer to the unaffected area from the affected zone. Therefore it can be seen from Fig. 4b that the temperature 
with large τv is lower than that with small τv at the location near to the surface while temperature is lower with 
small τv away from the surface.

It is worthwhile noticing that small oscillation occurs in temperature response when τv is zero, which hasn’t 
been shown in former bio-heat transfer model before. This phenomenon is more obvious at the location nearer 
to the heating surface in Fig. 4c,d which results from the thermal propagation wave by instantaneous heating. The 
wave characteristic in space is similar to the vibration phenomenon of a string motivated by constant transverse 
displacement at left end abruptly in Fig. 4d. Therefore the wave characteristic would be more obvious for heat-
ing way of instant temperature rise when phase lag of thermal displacement gradient is taken as zero (τv = 0 s). 
This indicates the phase lag of thermal displacement gradient will be small if the wave characteristic of bio-heat 
transfer in some biological tissue and the phase lag τv  is significant in bring about the oscillation characteristic.

Effects of τq and τT on temperature response.  The effect of τq on temperature response is illustrated in Fig. 5a,b. 
As mentioned in C-V model, τq indicates a lag phenomenon of heat flux which means thermal energy would not 
transfer instantly. The larger τq is, the more obvious the lagging characteristic of thermal behavior, which results 
in higher temperature in affected area (Fig. 5b) and steeper rise of temperature (Fig. 5a). Comparing with τq, 
the influence of τT is smaller on lag characteristic and thermal propagation speed, which is shown in Fig. 5c,d.

Figure 4.   Effect of τv with constant surface temperature. (a) time-history of temperature at location x = L/3; (b) 
temperature distribution at time t = 50 s; (c) time-history of temperature at different location with τv = 0 s; (d) 
temperature distribution at different time with τv = 0 s.
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Figure 5.   Effects of τq and τT with constant surface temperature. (a) Time-history of temperature at location 
x = L/2 with different τq; (b) temperature distribution at time t = 50 s with different τq; (c) time-history of 
temperature at location x = L/2 with different τT ; (d) temperature distribution at time t = 50 s with different τT.

Figure 6.   Effect of the perfusion rate of blood on (a) time-history of temperature at location x = L/2; (b) 
temperature distributions at time t = 50 s and t = 600 s.



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16421  | https://doi.org/10.1038/s41598-020-73590-3

www.nature.com/scientificreports/

Effect of ωb on thermal response.  Finally, the influence of the perfusion rate of blood ωb is shown in Fig. 6. The 
development of temperature in TPL model for different perfusion rates of blood ωb at location x = L/2 are shown 
in Fig. 6a and the corresponding temperature distribution at time t = 50 s and t = 600 s are shown in Fig. 6b which 
represents the transient and steady states in heat transfer. The most obvious characteristic of the effect of ωb on 
temperature is that the increasing of ωb could decrease temperature of steady state after time t = 600 s from Fig. 
Figure 6a and has no obvious effect on Non-Fourier effect at time t = 50 s from Fig. 6b. It could be reasonable and 
acceptable that heat transfer quantity increases with the increasing of perfusion rate of blood because the flow-
ing blood would take more thermal energy away from subjected skin tissue which leads to the lower steady-state 
temperature in local tissue.

Parametric study of influences on thermal behavior in TPL model for case of constant surface 
heat flux.  Due to limitation of the paper length, only the influences of τv and ωb on temperature response 
are discussed for this case.

Figure 7a depicts the variation of temperature at x = L/2 with different phase lag times of thermal displacement 
gradient. Reduction of τv makes the variation of temperature closer to C-V model but in a smoother way, which 
indicates the increasing of τv could enhance the speed of thermal propagation a little. This could be concluded 
in Fig. 7b which plots the temperature distribution at time t = 50 s. However the discrepancy with Fig. 4 is the 
oscillation phenomenon doesn’t arise under the present configuration, which is attributed to the difference of 
boundary conditions. A specific temperature is applied on the surface of skin tissue in Fig. 4, while a specific heat 
flux is loaded on the surface in Fig. 7. One case is field variable increment, while the other is gradient rise of the 
corresponding field variable which leads to gentle increment of the field variable rather than abrupt increment 
or oscillation increment.

The effect of ωb on temperature response is shown in Fig. 8. Blood perfusion in energy conservation equation 
means the heat transfer to blood from affected skin tissue. Hence enhancement of ωb represents more blood flow-
ing and participating heat convection, which leads to lower temperature in the same location at the same time, 
as is shown in Fig. 8a. In Fig. 8b no difference between different blood perfusion rate at time t = 50 s is attributed 
to fact that the blood perfusion primarily affects the stable solution of temperature according to equation (25) 
and hardly shows discrepancy in short time transient process.

Conclusions
The thermal response behavior in a one-dimensional skin tissue model which is subjected to surface heating and 
heat source of laser irradiance is investigated based on the TPL bio-heat conduction model. By combining the 
TPL heat conduction equation and the modified energy conservation equation, a new temperature governing 
equation has been obtained in the heat transfer process of skin tissue. The influences of the phase-lags of heat 
flux, temperature gradient and thermal displacement gradient and the rate of perfusion of arterial blood on 
temperature responses are investigated emphatically. The comparison between TPL, DPL and C-V and Pennes 
models has been made to find more attractive phenomenon about TPL bio-heat conduction theory. The follow-
ing conclusions can be drawn from the results and analysis:

(a)	 The new bio-heat conduction model with three phase-lags predicts both diffusion and wave characteristics 
of bio-heat transfer. Therefore the behavior of temperature obtained from TPL model is between that of 
the C-V model and DPL model.

(b)	 Increasing of the phase-lag of heat flux determines the lagging characteristic of thermal behavior and the 
phase lag of temperature gradient would gentle the process and temperature rise.

Figure 7.   Temperature response for different τv with constant surface heat flux.
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(c)	 The phase lag of thermal displacement gradient τv is helpful to decrease local tissue temperature. And 
temperature increment oscillates for a while with constant temperature of surface boundary condition 
when the phase lag of thermal displacement gradient is assumed as zero (τv = 0).

(d)	 The increase of the rate of perfusion of arterial blood ωb leads to more heat taken away from local affected 
tissues resulting in lower temperature of steady state.

Data availability
The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or 
time limitations.
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