Cognitive Computation (2022) 14:900-925
https://doi.org/10.1007/512559-021-09984-w

=

Check for
updates

A Bio-Inspired Multi-Population-Based Adaptive Backtracking Search
Algorithm

Sukanta Nama'2 - Apu Kumar Saha?

Received: 26 May 2021 / Accepted: 17 December 2021 / Published online: 30 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Backtracking search algorithm (BSA) is a nature-based optimization technique extensively used to solve various real-world
global optimization problems for the past few years. The present work aims to introduce an improved BSA (ImBSA) based
on a multi-population approach and modified control parameter settings to apprehend an ensemble of various mutation strat-
egies. In the proposed ImBSA, a new mutation strategy is suggested to enhance the algorithm’s performance. Also, for all
mutation strategies, the control parameters are updated adaptively during the algorithm’s execution. Extensive experiments
have been performed on CEC2014 and CEC2017 single-objective benchmark functions, and the results are compared with
several state-of-the-art algorithms, improved BSA variants, efficient differential evolution (DE) variants, particle swarm
optimization (PSO) variants, and some other hybrid variants. The nonparametric Friedman rank test has been conducted to
examine the efficiency of the proposed algorithm statistically. Moreover, six real-world engineering design problems have
been solved to examine the problem-solving ability of ImBSA. The experimental results, statistical analysis, convergence
graphs, complexity analysis, and the results of real-world applications confirm the superior performance of the suggested

ImBSA.
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Introduction

To solve the nonlinear complex optimization problems, the
backtracking search algorithm (BSA) [1] is one of the most
efficient and powerful tools because of the simplicity and
user-friendly approach of the algorithm. Due to these advan-
tages, numerous attempts have been made towards further
improving the BSA, and at the same time, these improved
versions have been applied to solve various optimization
problems in the past few years [2-9]. For example, based
on self-adaptive strategy design [10—13] and hybridization
mechanism [2, 3, 11, 14], many variants of BSA have been
studied by several authors in the recent past. These improved
and hybridized variants of BSA have been applied to obtain
the optimum solution of various problems from diverse
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fields, such as parameters estimation of photovoltaic models
[11], identifying soil parameters [15], job-shop scheduling
[9], and fuzzy multiproduct multistage scheduling problem
[16].

On the other hand, other than BSA, many biologically
inspired algorithms have been used in numerous real-life
applications. Due to the advantages of these algorithms
to solve various types of optimization problems which are
otherwise very hard to solve by the conventional methods,
many researchers have introduced a variety of bio-inspired
algorithms. Together with their variants, those algorithms
have been used to solve numerous problems from both aca-
demia and industry. For example, Saha et al. [17] applied the
HSOS algorithm on the pseudo-dynamic-bearing capacity of
shallow strip footing; the critical failure mechanisms were
determined via optimization with a genetic algorithm (GA).
Different bio-inspired algorithms have been used to optimize
the factor of safety and other related parameters of slope sta-
bility analysis in [18]. The weight and cost of the cantilever
retaining wall have been minimized using a hybrid algo-
rithm, namely, h-BOASOS in [19]. Sharma et al. proposed
MPBOA [20], appending mutualism and commensalism
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phase in BOA, and used it to segment images using multi-
level thresholding strategy. Chakraborty et al. [21] updated
the whale optimization algorithm (WOA), modifying the
parameters, increasing the exploration ability with random
initialization of solution during the global search phase,
and reducing the population. Later, the updated method
mWOAPR was used to segment COVID-19 X-ray images.
Mohammadzadeh et al. [22] improved the grey wolf opti-
mization (GWO) algorithm with the hill-climbing method
and chaos theory to solve workflow scheduling in green
cloud computing. Trinh et al. [23] used moth-flame optimi-
zation algorithm (MFO) to tune the fuzzy logic controllers
to improve life span, reduce retransmission, and normalize
packet loss percentage in wireless sensor networks. Some
other modifications of bio-inspired algorithms can be found
in [24-26].

One of the exciting findings in the field of nature-inspired
algorithms was “No Free Lunch (NFL) theorems” [27]. Log-
ically, it has been proven that no optimization algorithm is
ideal for solving all optimization problems. Alternatively, a
specific algorithm can produce promising effects on a set of
optimization problems, but it can perform poorly in another
set of problems. This theorem unlocks the field for further
studies on these algorithms, strengthening existing methods
and suggesting new algorithms.

BSA is executed through four significant steps: selection-
I, mutation, crossover, and selection-II operators. It has two
algorithm-specific control parameters: scaling factor (F)
and mixrate parameter (M). The scaling factor controls the
direction of the population in the mutation strategy, and
the mixrate parameter controls the crossover process. The
proper execution of BSA can be done by setting the appro-
priate value of these parameters [13]. The value of these
parameters can be set in many ways [8]. Some parameter
settings can enhance the convergence speed [12], whereas
some other settings are effective for solving separable func-
tions [28]. Besides, solving one specific optimization prob-
lem may require a parameter setting where parameters vary
automatically during the execution process [4].

The works carried out on BSA indicate that the algo-
rithm produces adequate results in solving unimodal and
multimodal problems but does not always provide optimum
solutions. In some cases, it tends to converge in local optima.
Also, in some test functions, when dimensions are increased,
the performance of the BSA decreases. Therefore, in this
work, the core search technique of the traditional BSA has
been updated to answer all these questions and increase the
efficiency to make a better trade-off between exploration and
exploitation.

Also, some of the researchers studied the “multi-swarm”
and “multi-population island models” [29] concept on some
of the state-of-the-art algorithms for improving the perfor-
mance of those algorithms. Basically, in those works, the

initial population is partitioned into several subpopulations
[17]. The core objective behind these works is to maintain the
entire population’s assortment in the search space and maintain
better local and global search abilities.

Motivated by the arguments mentioned above, in this work,
anovel-enhanced BSA variant (ImBSA, in short) is proposed
by utilizing the multi-population-based approach with multi-
ple mutation operators. During the evolutionary process, the
whole population is split into multiple subpopulations. The
study’s main objective is to apprehend the automated param-
eter tuning approach among each mutation strategy over the
populations to produce a new variant of BSA. ImBSA has
applied on single-objective CEC 2014 [30] and CEC 2017 [31]
test functions with dimension 50. The extensive comparative
performance of ImBSA is exhibited with several state-of-the-
art standard algorithms, improved BSA, efficient DE variants,
PSO variants, and some other hybrid variants. Moreover, the
proposed algorithm is applied to solve six real-world engineer-
ing design problems, namely frequency modulation sounds
parameter identification problem, Lennard—Jones potential
problem, Tersoff potential function minimization problem,
speed reducer design problem, I-beam design problem, canti-
lever beam design problem, and speed reducer design problem.
Through the experimental research, we seek to better under-
stand the actions of the algorithm, in particular how explora-
tory and exploitative processes are balanced within this study.

The remaining part of the paper is arranged in the following
way: a brief discussion of the basic BSA is presented in “Over-
view of the Backtracking Search Algorithm” section. The “The
Proposed Algorithm” section offers a detailed description of
ImBSA. The “Performance Results Analysis of CEC 2014 and
CEC 2017 Test Functions” section reports the performance
analysis of the proposed InBSA on CEC 2014 and CEC 2017
test functions. The application of ImBSA to real-world opti-
mization problems has been presented in the “Application of
ImBSA to Real-World Problem” section. Finally, the “Conclu-
sion” section reviews the influence of the present study.

Overview of the Backtracking Search
Algorithm

The BSA is a population-based iterative, evolutionary algo-
rithm that executes the process through five significant com-
ponents: initialization, selection-I, mutation, crossover, and
selection II.

To start with an initial population (Pop), a uniform distribu-
tion U(Ib, ub) is used in BSA, represented by Eq. (1).

Pop;; = Ib + rand(0, 1) * (ub — Ib) (1)

where i=1,2,3,... ... ... .,.NPj=1,2,3,... ... .,D;
Ib and ub are the lower and upper bound of the optimiza-
tion problem; and rand is a uniformly distributed random
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number. NP is the number of population; D is the dimension
of the optimization problem.

Initial, historical population (OldPop) is obtained by
utilizing the Eq. (2). Then selection I operator is used to
redefine OldPop at the beginning of each evolutionary pro-
cess through Eq. (3). Once OldPop is determined, a random
shuffling function is applied to transform each individual’s
position using Eq. (4).

OldPop;; = Ib + rand(0, 1)  (ub — Ib) 2)
Ifa < b, then, OldPop = Pop;a,b € (0, 1) 3)
OldPop = permuting(OldPop) 4)

Here, permuting change the position of the OldPop.

To generate the search-direction matrix, OldPop is used,
which means that BSA takes partial advantage of previous
experiences for generating a new trial population. BSA uses
the mutation operator to generate a trial population (Mutant)
during the evolutionary process using Eq. (5).

Mutant = Pop + F * (OldPop — Pop) 5)

Here, (OldPop — Pop) is called the search-direction
matrix, and F controls it. The value of F is defined by
Eq. (6). F is the scaling factor.

F =3 % rndn, where rndn € N(0, 1) 6)

Here, N(0, 1) is the normally distributed random number.

After completing the mutation operator, the BSA crosso-
ver operator is applied to determine the trial population’s
appropriate system (T). Two steps execute it. An NP*D
matrix (map) of binary integer value in the crossover opera-
tor is initially calculated. The map is defined by Egs. (7) and
(8). Moreover, it is controlled by the mixrate parameter (M).
In the second step, the trial population (T) is determined
according to the Eq. (9).

map; . : (Mxrand+D]) = O|u = permutating(< 1,2,3,...,D >);
@)
mapi,randi(D) =1 (8)

Here M is the mixrate parameter, and its value is 1; 'rand'
is a uniformly distributed random number; randi is an integer
between 1 and D.

_ { Mutant;; if map,; =

1
Pop,; ; if map;; =0 ©)

tJ
Next, the determined trial population T is updated into
the population set Pop using the selection II operator. In
the selection II operator, the better objective function value
of the individuals of T is updated to the corresponding
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individual of Pop for producing the current population and
to use in the next step through Eq. (10).

Pop;; = { Ty iF(Tyy) </ (Popy)

Pop;; Otherwise (10)

The Proposed Algorithm

This section discusses the newly suggested improved back-
tracking search algorithm (ImBSA) incorporating the multi-
population strategy, adaptive parameter setting, and a new
mutation operator in the original BSA.

Modified Mutation Operator

For an optimization algorithm’s success, the significant
development of the algorithm’s local and global search capa-
bilities is essential [36, 37]. Global exploration capability
indicates that the population visited the entire search region.
In contrast, local exploitation capability specifies that the
population visited nearer of those potential regions of the
search space where the population visited previously. BSA
mutation operation uses a historical population (OldPop) to
produce new mutants to avoid the local optimums through
their exploration capability. BSA remembers the historical
population until the new population is created. To find the
direction of the population,OldPop is used; thus, BSA takes
partial advantage of the previous best-performing individual
(BestPop) for producing a new trial population. Therefore,
BSA can remember the best previous population (BestPop).
For the above reasons, we have modified the mutation opera-
tor of BSA and formulated the new mutation operator as
follows:

Mutant = Pop + F * (OldPop — Pop) + F * (BestPop — Pop)
(11

Multi-Population-Based Ensemble Mutation
Strategy Approach

The ensemble of the BSA mutation strategy can provide an
efficient algorithm for solving various complex global opti-
mization problems. In this study, two mutation strategies,
“Mutation strategy 1" and ‘“Mutation strategy 2,” are consid-
ered for producing a mutant, each of which has respective
advantage. The “Mutation strategy 17 is used to explore the
whole search space of the optimization problem, and “Muta-
tion strategy 2” is used to exploit the population nearer the
potential solutions.
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Mutation strategy 1:
V| = Mutant = Pop + F * (OldPop — Pop) (12)
Mutation strategy 2:

V, = Mutant = Pop + F * (OldPop — Pop) + F * (BestPop — Pop)
13)

To appreciate the effectiveness of the ensemble of two
mutation strategies, the whole population is divided into
two sub-populations in each evaluation, which may be
equal or unequal in size. In this study, we have considered
equal sub-populations. If Pop denotes the entire population
and Pop, and Pop, represent the two sub-populations, then,
Pop = Pop, U Pop,. After that, a shuffle function is applied
to the whole population to randomly change each popula-
tion’s position. Thus, during the implementation of InBSA,

each population can exchange information by utilizing dif-
ferent mutation strategies in other evaluations.

Parameter Adaptation of BSA

BSA has three algorithm-specific parameters (NP, M, and
F). F controls the direction of the matrix (OldPop — Pop).
The crossover operator is controlled by the mixrate param-
eter M. The mixrate parameter M is adopted in the BSA
crossover operator to control the population that will mutate
in a new trial population [3]. However, for finding BSA’s sig-
nificant performance on different optimization problems, the
appropriate value of control parameters, viz. scaling factor
“F” and mixrate “M,” has until now not been stated by some
authors [4, 7, 8, 10]. Hence finding the appropriate values

Algorithm-1: Pseudo-code of InBSA

. Evaluate value of F using equation (14)

1

2

3

4. Evaluate fitness of each solution in Pop.

5. Identify the best solution “BestPop.”

6. FE= NP; % count the number of fitness value calculation.
7. WHILE (termination criteria is not met)

8. DO

9

Pop2;0ldPop = OldPop1 U OldPop2;
10. F=F1U F2;
// For sub-population Pop1

13. Determine mixrate parameter value using equation (15)

16. Apply selection operator using equation (10).
17. Update value of F using equation (14).

18. End for

19. //For sub-population Pop2

22. Determine mixrate parameter value using equation (15)

25. Apply selection operator using equation (10).
26. Update value of F using equation (14).

27. End for

28.  Pop = Popl U Pop2;

29. 0OldPop = OldPopl U OldPop2;

31. END WHILE

. Initialization: Initialize the value of the parameter: NP, MAX FEs, D;
. Evaluate population (Pop) and historical population (OldPop) according to the equations (1) and (2).

. Divide the population (Pop) and historical population (OldPop) into two sub-population such that Pop = Popl U

11. Determine the final form of OldPop1 according to equations (3) and (4).
12. For each solution in Pop1, apply equation (12) to determine the mutant vector.

14. Apply BSA crossover operator using equations (7), (8) and (9) to obtain the final form of trial population.
15.FE =FE+1; % count the number of fitness value calculation.

20. Determine the final form of OldPop?2 according to equations (3) and (4).
21. For each Pop2, apply equation (12) to determine the mutant vector.

23. Apply BSA crossover operator using equations (7), (8) and (9) to obtain the final form of trial population.
24. FE =FE+1; % count the number of fitness value calculation.

30. Update the best performing individual “BestPop” according to the objective function values of population Pop.

32.Output: The best objective function value and the corresponding optimum solution.

Algorithm 1 Pseudo-code of InBSA

@ Springer
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of F and M are a difficult task in the study of BSA. Under
this consideration, self-adaption schemes for F and M have
been suggested in this work. The self-adaption scheme can
automatically maintain the appropriate value of these two
parameters during the execution. The objective is to develop
a highly tuneable algorithm based on BSA to solve a wide
range of real-world optimization problems. The initial value
of scaling factor F is determined within 0.45 and 2.0 for the
population Pop. Pop’ defines the i solution in the popula-
tion, and the value of “F” is determined by Eq. (14) [4].

prew _ { Fy+rand(0,1) « (F, — F,), f(T;) > f(Pop;)
i F;, otherwise
(14)
If F = 0, then the new trial population is generated by uti-
lizing the crossover operator only but no mutation operator.
The lower and upper values of F are considered as F; = 0.45
and F, = 2.0. Here, f(T;) and f(Pop;) represent the value of
the i trial population and the population’s objective func-
tion. From the observation of the Eq. (14), it can be said that
the proper value of F is evaluated between 0.45 and 2.0. The

value of F is obtained before the mutation operator of BSA
is performed.

The value of the mixrate parameter “M” for the ith popu-
lation is determined by Eq. (15).

M, =1-0.1x%(1-r;) (15)

Here, r; € [0, 1]. From Eq. (15), the value of “M” is
always less than 1. Thus, in the proposed ImBSA, the user
does not need to guess the better values of F and M.

Boundary Control Operator

If an individual moves outside the search space, it should
be returned into the search space (feasible region). To keep
the individuals in the feasible region, the following rule has
been introduced:

by [ b0 % rand(©,1) % (ub = b), if Pop; < Ib
%Pii =\ ub - 0.5 % rand(0,1) # (ub — Ib), if Pop,; > ub
(16)

Table 1 Performance results of DE, PSO, ABC, BSA, ABSA, and ImBSA at dimension (D) 50 after reaching D*1000 FEs of CEC 2014 test
functions over 51 runs with 100 population size

BSA

ABSA

ImBSA

F DE PSO ABC

F1 5.74e+08 +1.39¢ +08 1.50e + 07 + 3.21e + 07 4.25e+07+1.16e+07
F2 7.90e+07 +3.25e+07 1.56e + 05 + 1.55e + 05 4.84e+06+1.38e+07
F3 1.45¢4+04+3.61e+03 6.90e +04 + 1.00e + 04 1.04e +04 +£3.64e +03
F4 7.17e+02+1.81e+01 7.27e+02+1.28¢ +02 7.26e+02+4.92¢ +01
F5 5.22e+02+3.94e-02 5.22e+02+8.30e — 02 5.22e+02+4.25¢—02
F6 6.75e+02 + 1.65e + 00 6.56e+02+5.12e +00 6.51e+02+2.48e+00
F7 7.04e+02+1.65¢ —01 7.00e + 02 + 1.82¢ - 01 7.03e+02+4.25¢—01
F8 1.21e+03+1.54e+01 1.03e+03+2.12e +01 8.37e+ 02 + 6.20e + 00
F9 1.32e+03+1.47e+01 1.81e+03+3.38e+01 1.22e+03+2.42e+01
F10  1.51e+04+3.73e+02 7.45e+03+1.16e+03 7.87e+03+1.89e+02
F11  1.58e+04+4.69¢+02 5.59¢+04 +2.09¢ +03 7.58e+04 +4.68e +02
F12 1.20e+03+3.94e—01 1.22e+03+7.92e - 01 1.21e+03+8.74e - 02
F13  133e4+03+6.91e—02 1.34e+03+5.43e — 02 1.32e+03+5.11e—-02
Fl4  1.4le+03+2.11e-01 1.42e+03+2.92e - 02 1.43e+03+2.95e - 02
F15  1.55e+03+3.13e+00 1.57e+03+1.34e+01 1.65e+03 +8.89¢ +00
F16  1.64e+03+1.49¢-01 1.65e+03+6.73e—01 1.66e +03 +3.65¢ — 01
F17  2.17e+07 +6.40e+05 2.95e+07 £6.24e+06 2.08e +07 +6.86e +06
F18  8.54e+05+3.67e+05 3.54e+06+2.37e +07 6.44e+05+6.48e +05
F19  2.94e+03+1.05e+00 2.59e+03+3.14e+01 2.95e+03+1.53e+01
F20  3.20e+04+2.02e+03 2.76e+04 +8.78e+ 03 3.30e+04+8.95e +03
F21  2.77e+05+1.11e+05 5.67e+06+9.58e +05 8.27e+06+3.62e +06
F22  4.48e+03+1.87¢+02 3.89e+03 +3.82e +02 4.57e+03+1.96e +02
F23  2.74e+03+1.39e+00 2.75e+03 +7.96e + 00 2.78e+03 +8.83e +00
F24  2.87e+03+3.31e+00 2.89e+03+1.08e+01 2.98e+03+2.53e+00
F25 277¢e+03+1.11e+01 2.79¢+03 +6.89¢ +00 2.83e+03+3.03e +00
F26  2.72e+03+8.54e—02 2.79¢+03+2.85¢+01 2.73e+03+9.77e - 02
F27  4.89¢e+03+4.71e+01 4.84e+03 +2.55e+02 4.94e+03+3.81e+02
F28  5.24e4+03+9.07e+00 5.66e+03+9.98e +02 5.71e+03+3.04e +02
F29  3.23e+05+5.51e+01 5.96e +08 + 8.30e + 08 3.26e+06+2.24e +04
F30  6.00e+04+2.76e+02 4.64e+06+7.42e+06 5.85e+04+5.92e +03

8.23e+07 +1.65e+07
1.26e +09 +4.82e + 08
1.95e404+3.77e+03
9.20e+02 +6.46e+01
5.22e+02+4.36e —02
6.51e+02 + 1.64e+00
7.10e 402 +3.70e + 00
9.92¢+02+1.68e+01
1.24e+03+2.74e+01
6.36e+03+3.15e +02
1.08e+04 +3.83e +02
1.23e+03+1.34e—-01
1.35e+03 +4.48e — 02
1.44e+03+5.48e —02
1.58¢+03 +2.76e+01
1.67e+03 £2.60e - 01
1.79e +07 +6.14e + 06
3.10e +06 +2.99¢ + 06
1.99¢+03 +5.43e+00
2.94e+04+6.01e+03
5.63e+06+1.59¢+06
3.85e+03+2.02e+02
2.76e+03 +9.68e + 00
2.69e+03+3.81e+00
2.75¢+03 +3.99¢ + 00
2.74e+03 +4.85¢ —02
4.31e+03+£8.72¢+01
5.72e+03+1.43e+02
4.31e+06+1.96e+06
8.78e+04+2.41e+04

3.07¢+08 +6.87e +07
2.28e+10+3.12e+09
1.03e 405+ 1.49¢ + 04
3.23e+03+4.75¢+02
5.22e+02+3.60e — 02
6.52e +02 +2.00e + 00
9.09¢+02+3.82e+01
1.03e+03 +1.94e+01
1.35e+03 +£2.83e+01
6.22¢+03+3.19¢+02
1.10e+04 +3.14e + 02
1.20e+03+1.41e—01
1.31e+03+7.61e—01
1.46e+03+1.26e+01
3.91e+05+2.0le+05
1.63e+03+2.73e - 01
1.97e+07+£1.76e+07
9.39e + 08 +2.40e + 08
2.14¢4+03+3.91e+01
2.97e+04 +2.88e + 04
2.26e 407 +6.23e +06
4.47e+03+1.81e+02
2.68e+03+4.09¢+01
2.79e+03+1.67e+01
2.76e+03 +7.19¢ +00
2.71e+03 +3.54e - 01
4.21e+03+4.04e+01
5.6le+03+8.43e+01
9.52e+06 +7.96¢ + 06
1.41e+05+3.08 e+ 04

8.74e +07 +£2.02e + 07

1.0le+08+4.01e+07

1.87e+04+4.15¢+03

7.15e+ 02 +4.69¢ + 01
5.21e+02 +3.49¢ - 02
6.49¢ + 02 + 1.48¢ + 00
7.02e402+3.70e — 01

9.08¢+02+9.45¢+00

1.21e+ 03 + 1.46e + 01
4.06e + 03 + 3.30e + 02
1.07e + 04 + 3.75e + 02
1.20e +03 + 1.32e - 01
1.30e + 03 +5.32¢ — 02
1.40e + 03 + 3.32e — 02
1.54e + 03 + 5.35¢ + 00
1.62e + 03 +3.76e — 01

1.66e + 07 + 5.47¢ + 06
2.56e + 04 +2.76e + 04
1.98e + 03 + 1.08e + 01
2.07e+04 +5.52e+ 03
5.60e+06+1.61e+06

3.84e+03 +1.98e + 02
2.65e+03 +2.63e+ 00
2.68e+03 +2.33e+ 00
2.74e +03 +3.41e+ 00
2.70e +03 +4.77e — 02
4.12¢+03 + 8.99¢ + 01
5.17e +03 + 1.51e + 02
1.59¢ + 05 + 6.09¢ + 04
5.40e + 04 + 8.99¢ + 03
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Table2 The number of occasions where ImBSA is superior to, infe-
rior to, or similar to DE, PSO, ABC, BSA, and ABSA on CEC 2014
functions with dimension 50

Table 3 Friedman test on CEC 2014 benchmark functions with 50
dimensions of the algorithms DE, PSO, ABC, BSA, ABSA, and
ImBSA using their mean performances

Algorithms  Superior to Inferior to Equal to Algorithms  Average rank Variance of rank  Average rank
(ImBSA > (ImBSA < (ImBSA= difference
algorithms) algorithms) algorithms) w.r.t. average rank

DE 27 3 0 DE 3.666666667 2.229885057 2.3

PSO 27 3 0 PSO 4.033333333  2.309195402 2.666666667

ABC 26 4 0 ABC 39 2.989655172 2.533333333

BSA 29 1 0 BSA 3.666666667 2.022988506 2.3

ABSA 29 0 1 ABSA 39 2.851724138 2.533333333

ImBSA 1.366666667  0.722988506
F-Score 3.625
wherei=1,2,3,... ... ... .,NPyj=1,2,3,... ... ..,D. Critical difference (CD) 1.239978804
Incorporating the above modifications in the basic BSA,  F-statistics 2.567

an improved BSA algorithm called ImBSA has been pro-
posed to search the maximum possible region and exploit
the population information. The framework of ImBSA is
given in Algorithm 1.

Performance Results Analysis of CEC 2014
and CEC 2017 Test Functions

The proposed ImBSA is applied on CEC 2014 and CEC
2017 functions to justify the better performance of the algo-
rithm and compared with various state-of-the-art algorithms.
In the following subsections, we will discuss the results
obtained by ImBSA and other algorithms on different test
functions cited above.

Result and Discussion on CEC 2014 Test Function

The proposed ImBSA is executed on a suit of thirty test
functions of the CEC 2014 special session and competition.

Fig. 1 Ranks obtained by 4.5
Friedman test on CEC 2014 test
function at D=50 4

3.5
3
2.5
2
1.5
1
0.5
0

Mean rank

DE

PSO

A detailed description of these thirty functions can be seen
in [30]. For a comprehensive comparison, each comparative
algorithm runs 51 times over the test functions with dimen-
sion 50, population size 100, and maximum function evalu-
ations D*1000. All the algorithms are run in the MATLAB
R2010a platform. The lower and upper bound of each test
function is considered as —100 and 100, respectively.

Comparison with State-of-the-Art Algorithms

Computational results of thirty CEC 2014 test functions with
dimension 50, obtained by BSA [1], PSO [32], ABC[33],
DE [34], ABSA [13], and ImBSA, are presented in Table 1.
Results obtained by ImBSA are given in boldface if they
are the best among the compared algorithms. From this
table, several observations and conclusions can be made.
Table 2 presents the performance results of InBSA where
it is inferior to, similar to, and superior to other compared

ABC BSA
Algorithms

ABSA ImBSA

Fig.1. Ranks obtained by Friedman test on CEC2014 test function at D =

50
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algorithms. From Table 2, it is seen that the performance of
ImBSA is superior to DE, PSO, ABC, BSA, and ABSA on
27, 27, 26, 29, and 29 test functions, respectively; inferior
to DE, PSO, ABC, and BSA on 3, 3, 4, and 1 test functions
respectively; and equal to ABSA on one occasion.

The Friedman rank test is conducted by utilizing each
benchmark function’s mean results obtained by all algo-
rithms. For each algorithm, the average ranks and variance
of positions are obtained and presented in Table 3. At 95%
confidence level, the critical value, i.e., the F-statistic value,
is 2.576. Based on the average rank of all CEC 2014 test
functions, the calculated Friedman statistics, i.e., F-Score
values, are reported in Table 3. In Table 3, it is noticed that,

[
[\

—
(e

o0

Function value (Log Scale)

6 . , . .

0 1 2 3 4 5

Fitness Evaluations (FEs)  10*
(a)F4
25
°
B
3 20
o
1S
=
.13) 15
<
S
ié 10
23 ———— ImBSA
—— PSO
s . .
0 1 2 3 4 5

Fitness Evaluations (FEs 4
BYar: (FEs) x10

at a 95% confidence level, the F-statistics value (2.576) is
less than the calculated F-Score value (3.625). Hence, the
null hypothesis is rejected, and it indicated that the aver-
age ranks obtained by ImBSA utilizing the average perfor-
mance of all the benchmark test functions are statistically
significant.

Next, we apply a pairwise post hoc Bonferroni-Dunn
test [35] to identify the significant performance of the
proposed ImBSA compared to other existing algorithms.
Bonferroni-Dunn test states that “if the average ranks dif-
ference is superior to the critical difference (CD) value,
then the algorithm is statistically significant.” From the
observation of Table 3, it is seen that, at a 95% level of

6 54’L —¥— ImBSA
> 2 —%— PSO
Ei
S 6.52
o0
o)

2

.GE) 6.5
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>
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Fig.2 Convergence graph of four functions (F4, F6, F18, and F24) with dimension D =50 and D*1000 FEs over fitness value vs. fitness evalua-

tion
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Table 5 The number of

Co . Algorithms Superior to Inferior to Equal to
occasions where .IrnBSA 1s (ImBSA > algorithms) (ImBSA <algorithms) (ImBSA =algorithms)
superior to, inferior to, or
similar to DE/rand/2/bin, DE/ DE/rand/2/bin 28 1 1
best/1/bin, DE/target-to-best/1/ .
bin, DE/target-to-best/2/bin/, DE/best/1/bin 23 6 !
jDE, and CoDE on CEC 2014 DE/target-to-best/1/bin 24 5 1
benchmark suite with dimension DE/target-to-best/2/bin 24 5 1
50 jDE 28 1 1
CoDE 26 3 1

confidence, the obtained average rank difference is supe-
rior to the calculated CD (1.239978804). Therefore, from
the above discussion and as shown in Fig. 1, it can be
concluded that the performance of InBSA on thirty CEC
2014 special session and competition test functions is sta-
tistically significant. Some graphical representations of the
convergence performance of ImBSA are reported in Fig. 2.

Results from Fig. 2 show that InBSA converges sub-
stantially more quickly than BSA in all functions. The con-
vergences of both methods are somewhat comparable for
several functions in the beginning stages, while the InBSA
convergence is superior for later stages.

Comparison with Some Self-Adaptive DE Variants

Computational results of thirty test functions with dimen-
sion 50, obtained by DE/best/1/bin [36], DE/rand/2/bin [37],
DE/target-to-best/2/bin [37], DE/target-to-best/1/bin [38],
JDE [39], CoDE [40], and ImBSA, are reported in Table 4.
Results obtained by ImBSA are given in boldface if they are
the best among the compared algorithms. From this table,
several observations and conclusions can be made. The num-
bers of occasions where ImBSA is inferior to, equal to, and
superior to other comparative algorithms are presented in
Table 5. From the observation of Table 5, it is seen that
ImBSA is superior to DE/rand/2/bin, DE/best/1/bin, DE/

target-to-best/1/bin, DE/target-to-best/2/bin/, jDE, CoDE on
28, 23, 24, 24, 28, and 26 test functions respectively; infe-
rior to DE/rand/2/bin, DE/best/1/bin, DE/target-to-best/1/
bin, DE/target-to-best/2/bin/, jDE, and CoDE on 1, 6, 5, 5,
1, and 3 test function respectively; and equal to one test
function with each algorithms.

The Friedman rank test is also applied to thirty CEC 2014
special session and competition test functions (P) and seven
algorithms (A) in this study. For each algorithm, the aver-
age ranks, the variance of ranks, and the average rank dif-
ference obtained by utilizing the average results of all test
functions are presented in Table 6. At 95% confidence level,
the critical value, i.e., F-statistic value, is 2.638. The calcu-
lated F-Score, i.e., Friedman statistics based on the average
rank of all CEC2014 test functions, is shown in Table 6. It
is observed that, at a 95% confidence level, the calculated
F-Score value (3.543640898) is greater than the F-statistics
value (2.638). Hence, the null hypothesis is rejected, and it is
indicated that the mean ranks obtained by utilizing the aver-
age results of all the test functions are statistically different.
Table 6 shows that, at a 95% confidence level, the computed
critical difference value (1.4714061) is less than the mean
rank difference. Hence, from the analysis of the result in
Fig. 3, it is observed that ImBSA’s performance on thirty
CEC 2014 special session and competition test functions is
statistically significant at a 95% confidence level.

Table 6 Friedman test on

Average rank

Variance of rank Average rank difference

w.r.t. average rank

. . Algorithms
CEC 2014 functions with 50
dimensions of DE/rand/2/bin,
DE/best/1/bin, DE/target-to- DE/rand/2/bin
best/1/bin, DE/target-to-best/2/ DE/best/1/bin

bin/, jDE, CoDE, and ImBSA
using mean performances

@ Springer

DE/target-to-best/1/bin
DE/target-to-best/2/bin
jDE

CoDE

ImBSA

F-Score

Critical difference (CD)

F-statistics

5.133333333 2.050574713 3.433333333
39 1.886206897 2.2
3.666666667 2.643678161 1.966666667
3.766666667 3.357471264 2.066666667
5.433333333 5.288505747 3.733333333
3.666666667 3.471264368 1.966666667
1.7 2.148275862

3.543640898

1.4714061

2.638
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Fig.3 Ranks obtained by
Friedman test on CEC 2014 test
function at D=50

Mean rank

Comparison with some PSO variants

Table 7 shows the comparison of computational results
obtained by PSO-cf [32], FI-PS, CLPSO [41], DNLPSO,
PSOGSA [41], DE-PSO, and ImBSA of thirty CEC2014 test
functions with dimension 50. Results obtained by ImBSA
are bolded if they are the best among the compared algo-
rithms. From this table, the performance results of InBSA,
where it is inferior to, equal to, and superior to the above
algorithms, are presented in Table 8. From Table 8, it is seen
that the performance of ImBSA is superior to PSO-cf, FI-PS,
CLPSO, DNLPSO, PSOGSA, DE-PSO on 24, 27, 29, 24,
23, and 22 test functions; inferior on 6, 2, 0, 6, 7, 8, and 6
occasions; and similar to FI-PS, CLPSO, and DNLPSO on
1 case, respectively.

Next, the Friedman rank test has been conducted on
thirty CEC2014 benchmark functions on ImBSA and
seven above algorithms. For each algorithm, the average
ranks and variance of positions obtained by utilizing all
test functions’ average results are presented in Table 9.
Here, at 95% confidence level, the critical value, i.e.,

Table 8 The number of occasions where ImBSA is superior to, infe-
rior to, or similar to PSO-cf, FI-PSO, CLPSO, DNLPSO, PSOGSA,
and DE-PSO on CEC 2014 benchmark suite with dimension 50

Algorithms  Superior to Inferior to Equal to
(ImBSA > (ImBSA < (ImBSA =
algorithms) algorithms) algorithms)

PSO-cf 24 6 0

FI-PSO 27 2 1

CLPSO 29 0 1

DNLPSO 24 6 1

PSOGSA 23 7 0

DE-PSO 22 8 0

W& i
QQ» Algorithm

F-statistic value, and the calculated F-Score, i.e., Fried-
man statistics, are reported in Table 9. From Table 9, it is
seen that, at a 95% confidence level, the calculated F-Score
value (4.243870263) is greater than the F-statistics value
(2.638). Hence, the null hypothesis is rejected, and it
indicates that the average ranks obtained by utilizing the
average results of all the test functions are statistically
different. Also, it is observed from Table 9 and Fig. 4 that
the mean rank difference is superior to the calculated CD
value (1.4714061). Moreover, the analysis summarized
that ImBSA presents acceptable performance on thirty
CEC 2014 special session and competition test functions.

Results and Discussion on CEC 2017 Test Function

In CEC 2017 test functions, there are unimodal functions,
simple multimodal functions, hybrid functions, and com-
position functions. One can see the details of these func-
tions in [40]. The obtained results of ImBSA are compared

Table 9 Friedman test on CEC 2014 functions with 50 dimensions of
the algorithms PSO-cf, FI-PSO, CLPSO, DNLPSO, PSOGSA, DE-
PSO, and ImBSA using their mean performances

Algorithms Mean rank Variance of rank  A.V. difference
PSO-cf 4.2 3.682758621 2.233333333
FI-PSO 4.1 2.575862069 2.133333333
CLPSO 4.966666667  3.343678161 3

DNLPSO 4 3.862068966 2.033333333
PSOGSA 4.566666667  3.21954023 2.6

DE-PSO 3.966666667  4.929885057 2

ImBSA 1.966666667  2.309195402

F-Score 4.243870263
CD 1.4714061
F-statistics (critical value) 2.638

@ Springer
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Fig.4 Ranks obtained by 6
Friedman test on CEC 2014
function at D =50

Mean rank

PSO-cf

FI-PSO CLPSO DNLPSO PSOGSA DE-PSO ImBSA

Algorithm

Fig.4. Ranks obtained by Friedman test on CEC2014 function at D = 50

with ABSA [13], IBSA [4], OBSA [42], HBSA [2], SCA
[43], and HSCA [44] respectively. For fare comparison, the
parameter setting for all the algorithms is kept the same. The
performance results of these algorithms on the test functions
are presented in Table 10. Table 11 presents the counting
number that ImBSA is better than, worse than, and similar
to the compared algorithms. This table shows that InBSA is
superior to ABSA, IBSA, OBSA, HBSA, SCA, and HSCA
on 27, 28, 24, 26, 29, and 27 test functions.

For statistical analysis, the Friedman rank test has been
conducted based on the mean performance on CEC 2017
for each algorithm. By utilizing the average results of all
CEC2017 test functions, the obtained average ranks and
variance of ranks are presented in Table 14. At 95% con-
fidence level, the obtained critical value (F-statistic value)
and Friedman statistics (F-Score) are reported in Table 12.
Table 12 shows that, at a 95% confidence level, the cal-
culated F-Score value (37.86853147) is greater than the
F-statistics value (2.638), which indicates that the average
ranks obtained by utilizing the average results of all the test
functions are statistically different. It is also observed from

Table 11 The number of occasions where ImBSA is superior to, infe-
rior to, and similar to the compared algorithms on 10-dimension CEC
2017 benchmark functions

Algorithms  Superior to Inferior to Equal to
(ImBSA > (ImBSA < (ImBSA =
algorithms) algorithms) algorithms)

ABSA 27 2 0

IBSA 28 1 0

OBSA 24 5 0

HBSA 26 3 0

SCA 29 0 0

HSCA 27 2 0

Table 12 and Fig. 5 that the mean rank difference is superior
to the calculated CD value (1.496560163). Hence, it is sum-
marized that InBSA presents outstanding performance on
the CEC2017 special session and competition test functions
from the analysis.

Complexity Analysis

This section details the complexity of our InBSA algorithms
with dimensions 50 and 10 correspondingly for IEEE CEC
2014 and 2017 test functions. Analysis of an algorithm’s
complexity is useful for comparing the suggested algorithm
with other algorithms regarding the time consumed to solve
a problem. The algorithm with lower complexity is consid-
ered efficient. The present work calculates the complexity
according to the definition presented in IEEE CEC 2014 and
2017. Algorithms 2 and 3 represent the simple codes used

Table 12 Friedman test on CEC2017 real-world benchmark functions
with 10 dimensions of ABSA, IBSA, OBSA, HBSA, SCA, HSCA,
and ImBSA based on their mean performances

Algorithms Average rank Variance of rank Average rank
difference w.r.t.
average rank

ImBSA 1.482758621 0.75862069

ABSA 4379310345 1.815270936 2.896551724

IBSA 4.379310345 1.958128079 2.896551724

OBSA 3.103448276 2.596059113 1.620689655

HBSA 3.275862069 2.63546798 1.793103448

SCA 6.793103448 0.384236453 5.310344828

HSCA 4.586206897 2.179802956 3.103448276
F-Score 37.86853147
Critical difference (CD) 1.496560163
F-statistics 2.638

@ Springer
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Fig.5 Ranks obtained by
Friedman test on CEC 2017 test
functions of 10D

Mean rank

ImBSA

to evaluate the value of 70 in IEEE CEC 2014 and 2017
functions, respectively. These codes were recommended in
the problem definition and evaluation criteria of [IEEE CEC
2014 and 2017, respectively. The calculated algorithm com-
plexity of the test function IEEE CEC 2014 [34] and 2017
[35] is shown in Tables 13 and 14.

Algorithm 2

fori=1:1,000,000

x=0.55+(double)i;
X=x+x; x=x/2; x=x*x;

x=sqrt(x); x=Ilog(x); x=exp(x); x=x/(x+2);
end

Algorithm 3

x=0.55;
for i=1:1,000,000
X=X4+Xx; Xx=X/2; x=x*%x; x=sqrt(x); x=1og(x); x=exp(x); x=x/
(x+2);
end

e T1is the time to execute 200,000 evaluations of bench-
mark function F18 by itself with D dimensions.

e T2 is the time to execute ImBSA with 200,000 evalua-
t/igns of F18 in D dimensions.

e T2 is the average T2 value of 5 runs.

Table 13 Runtime complexity of IEEE CEC 2014 test function with
D =50 (in seconds)

ABSA

IBSA OBSA

Algorithm

HBSA SCA HSCA

According to Tables 13 and 14, both T'1 and T2 scaled lin-
early higher of BSA than ImBSA for the respective dimen-
sions, as shown by the paired comparison of the value of
(T2 - T1)/TO0.

Figures 6 and 7 have been drawn to depict the intricacy
better. From these two figures, it can be observed that the
height of the cone of ImBSA is lower than the height of the
cone of BSA. This indicates that BSA is more complex than
ImBSA. Thus, in terms of runtime complexity, InBSA has
a superior algorithm than BSA.

State-of-the-Art Recent BSA Variants

In this section, the proposed ImBSA is compared with some
recently proposed variants of BSA, namely GWO-BSA [45],
e-SOSBSA [46], BS-DE [47], LFBSA [11], IBS [10], and
hDEBSA [48]. For this comparison, the CEC 2017 test func-
tions with ten dimensions have been considered.

The details of these functions can be seen in [31]. For fare
comparison, the parameter setting of all the algorithms is
kept the same. The performance results of these algorithms
on the test functions are presented in Table 15. Table 16
presents the number of functions where the proposed
ImBSA is better than, worse than, and similar to the com-
pared algorithms. This table shows that ImBSA is superior
to GWO-BSA, BS-DE, LFBSA, IBS, and hDEBSA on all
the twenty-nine test functions, whereas ImBSA is superior
to e-SOSBSA on 20 test functions.

Table 14 Runtime complexity of IEEE CEC 2017 test function with
D =10 (in seconds)

Algorithm T0 T1 T (ﬁ —T1)/T0 Algorithm T0 T1 T (ﬁ —T1)/T0
BSA 0.1134 5.0699 16.5214 100.9832 BSA 0.0439 3.183 10.6769 170.7039
ImBSA 0.1134 3.1012 3.6397 4.748677 ImBSA 0.0439 2.0938 7.4529 122.0752

@ Springer
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Fig.6 Algorithm complexity on
CEC 2014 test functions with
50D
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For statistical analysis, the Friedman rank test has been  each algorithm. By utilizing the average results of all CEC
conducted based on the mean performance on CEC 2017 for 2017 test functions, the obtained average ranks and variance

Fig.7 Algorithm complexity
of CEC 2017 test function with
10D
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Fig.7.Algorithm complexity of cec17 test function with 10D
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of ranks are presented in Table 17. At 95% confidence level,
the obtained critical value (F-statistic value) and Friedman
statistics.

(F-Score) are reported in Table 17. Table 17 shows that,
at a 95% confidence level, the calculated F-Score value
(13.149847095) is greater than the F-statistics value (2.638),
which indicates that the average ranks obtained from the
mean results of all the test functions are statistically dif-
ferent. It is also observed from Table 17 and Fig. 8 that the
mean rank difference is superior to the calculated CD value
(1.496560163). Hence, it is summarized that InBSA pre-
sents outstanding performance on CEC 2017 special session
and competition test functions than its competitors consid-
ered in this study.

Application of ImBSA to Real-World Problem

In this part, six recognized engineering test problems [49]
are tested with the proposed updated version of BSA,
namely, (i) frequency modulation sounds parameter iden-
tification problem, (ii) Lennard—Jones potential problem,
(iii) Tersoff potential function minimization problem, (iv)

Table 16 The number of occasions where ImBSA is superior to, infe-
rior to, and similar to the compared algorithms on 10-dimension CEC
2017 benchmark functions

Algorithms  Superior to Inferior to Equal to
(ImBSA > (ImBSA < (ImBSA =
algorithms) algorithms) algorithms)

GWO-BSA 29 0 0

e-SOSBSA 20 9 0

BS-DE 29 0 0

LFBSA 29 0 0

IBS 29 0 0

hDEBSA 29 0 0

speed reducer design problem, (v) I-beam design problem,
(vi) cantilever beam design problem, and (vii) speed reducer
design engineering problem. The following can be summa-
rized in the numerical engineering test problem:

Frequency Modulation Sounds Parameter
Identification Problem [49]

The sound wave is a widespread optimization issue and
plays a significant part in numerous current music systems.
Frequency-modulation (FM) fusion is skillful in producing
unique sounds but is not always properly regulated. A small
number of factors can play a crucial role in delivering an
extensive range of sound tones. Noises that are compara-
ble to the goal sounds can be produced; therefore, using
ImBSA for FM synthesis, the FM matching FM approach is
described to identify optimum parameter values. Initially,

Table 17 Friedman test on CEC 2017 real-world benchmark func-
tions with 10 dimensions of GWO-BSA, e-SOSBSA, BS-DE,
LFBSA, IBS, hDEBSA, and ImBSA based on their mean perfor-
mances

Algorithms Average rank Variance of rank Average rank
difference w.r.t.
average rank

ImBSA 1.310344828 0.221674877

GWO-BSA 4.689655172 1.793103448 3.379310345
e-SOSBSA  3.793103448 5.955665025 2.482758621
BS-DE 4.586206897 2.036945813 3.275862069
LFBSA 4.965517241 2.320197044 3.655172414
IBS 4.275862069 2.635467980 2.965517241
hDEBSA  4.344827586 4.305418719 3.034482759
F-Score 13.149847095

Critical difference (CD)

F-statistics

1.496560163
2.638
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a set of parameters is established by ImBSA, and the FM
synthesizer generates the sound.

The distances between the target and synthesized sounds
are treated as the fitness value in this task (or objective
function value). This engineering benchmark problem is a
tough multimodal challenge. Six of the sound waves are the
dimension of this problem. The objective function has the
following definition:

100 2
Minimize f(y) = )" " (¥(5) = yo(0)) (17

where Eqgs. (18) and (19) give the primary sound wave and
target sound.

y(t) = alsin(co]tﬁ + azsin(a)ztﬁ + a3sin(w3t9) )) (18)

Vo) = 1.0 % sin(5.0 * 10 + 1.5 * sin(4.8 * 10 + 2.0 * sin(4.9 * 10)))
(19)

Six variables are y = {a,,wl,az,wz,a3,w3}, and the
domain of these variables is [— 6.4, 6.35]. Here 6 = 2z /100.

Lennard-Jones Potential Problem [49]

The potential challenge of Lennard—Jones (LJ) is to mini-
mize the molecular power potential of the pure LJ cluster.
An icosahedral core and a combination of surface grid
points are present in the grid structure of the LJ cluster.
The algorithm ImBSA is implemented to make the parti-
cle less energy-efficient to adapt its molecular structure
to construct the atoms. This hypothetical challenge of
multimodal optimization energy reduction involves an
endless number of local minimum levels. The Cartesian
coordinates provide the cluster setup of “n” atoms in LJ
problems.

pi={%v.5}.i=123,....N (20)

The following are given for the mathematical creation
of Lennard—Jones’ atom “N” pair potential:

_ NN N -12 -6
V() = Zi:l Zj:i+l (r"zi B 2'r’?/' ) @D
Where, r;; = ||p; = p;ll (22)
And the gradient is

_ N-1 -14 8\ (= _ =) i
Ve =-12)0 <rw ~2r )(pj —P)j=1.23.....N
(23)
Ten atomic issues were taken into account, and a total
of 30 variables were added. Any allowing and translating
the {pj} order lead to the identical functional value, as

Vy(p) only depends on the pair distances. The search space

of first three variables are (0, 4), (0, 4), and (0, ), and for
other variables are:|—4 — % % 4+ i % where [r]is

the nearest integer of r.

Tersoff Potential Function Minimization Problem
for Model Si(B) [49]

The total Tersoff potential energy function of the system is
the sum of individual potentials of atoms and is defined as

(BT Ty ) =B (BT B By )

%)
24

(T

SN N NN N NN

Fig.9 Cantilever beam design problem
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The Tersoff potential of individual atoms can be formally
defined as follows:

E = % Zi;éjﬂ(ri,j)(VR(ri,j) - BiJVA(riJ))’ Vi (25)

Here r;; is the distance between atoms i and j, Vp is a
repulsive term, V, is an attractive term, f,(r;;) is a switching
function, and B, ; is a many-body term that depends on the
positions of atoms i and j and the neighbors of atom i. The
term B, ; is given by

I —1/2n,

In Eq. (26), n; and y are known fitted parameters, and
the term &, J for atoms, i and j (i.e., for bond), are given by:

&ij = Zk;éifrc(ri,i)g(eijk)eXP('@ = (ry - rik)3> 27)

In Eq. (27), the term 6 is the bond angle between bonds
ij and ik, and the function g is given by:

2(0;) = 1+ 2/d* = & /<d2 +(h- cos(e,.jk)f) (28)

The quantities A and ¢, d, h which appear in Egs. (27) and
(28) are also known as fitted parameters. The terms Vj (ri ,j)’
V4 (ri J-) and the switching function f, (ri J-), appear in Eq. (25)
are given by:

Vi(r;) = Ae™™i (29)
Vy(r;;) = Be ™ (30)
1 9 rl,]SR_D
filry) =3 4= Lsin(22)  R-D <1y <R+D
0 B r,‘JZR'i‘D
(31

where A, B, 4, R, D, and 4, are given fitted parameters.
Thus, the cost function now can be redefined as:

S =E x)+E)(x)+ -+ Ey(x),x € Q (32)

In general, for N atoms, the no. of unknown variables is
n=3XxN-—6. Now the cluster X of N atoms can be redefined as

x= {xl,xz,x3,...xn},xEIR3N_6 (33)
The search region for Si(B) model of Tersoff potential is

Q={{x.x0,%5,...x,} 1 =425 <x;,x; <425i=45,...,
m0<x, <40<x; <7}

The number of atoms is therefore regarded to be 10, with
the total no variables being 30. Reference [49] provides a com-
plete overview of this problem.

Spread Spectrum Radar Polyphase Code Design
Problem[49]

The spectrum radar polyphase code design challenge is
one of the most frequent design optimization issues for
global optimization techniques. The choice of proper
waveform must be given close attention when a radar sys-
tem is designed using pulse compression. There are several
modulation methods of radar pulse that allow pulse com-
pression. Polyphase codes are appealing because they give
reduced side globes in the compressed signals and make
digital processing techniques easier to apply. This syn-
thesis is based upon the features of the aperiodic autocor-
relation function, assuming that the receiver is being con-
sistently radar pulse processed. The problem has constant
variables and a min—-max nonlinear non-convex optimiza-
tion problem with several local solutions. This problem is
mathematically formed as follows:

Minimize f(X) = max{¢, (x), ¢,(x), $3(x). ... b, ()} (34)

= aa

Fig. 10 I-beam design problem
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Fig. 11 Speed reducer design problem

e

where X = {(xl,xz,x3, ,x4) ERD’O <x; < 2r,j = 1,2,

,3,....D},and m = 2D — 1, with
D J .
0= cc;s(Z‘”(:lzi_j_1|+1 xk>,z =1.2.3.....D

(35)
—_— D j Y —
¢, (X) =05+ Zj:i+l COS(Zk:IZi—jHl Xk>,z =1,2,3,...,D—1
(36)
¢m+i(X) = _()bz(X)?l: 1’25 39"'9m; (37)

In this context, the objective is to optimize (minimize)
the most extensive module among the autocorrelation
function linked to the compressed radar pulse at optimum
recipient output. At the same time, the variables indicate
symmetry phase differences. This is a problem of NP-hard
optimization. Due to its objective function, the problem

o

-

\

Cantilever Beam Design Engineering Problem [49]

The topic is the optimization of the weight of a square cross-
sectional cantilever beam depicted in Fig. 9. At node 1, the
beam is firmly held, while at node 5, a vertical force exists.
The five design variables include the heights (or widths)
of the beam and the thickness of the fixed elements of the
beams. The analysis of the problem is as follows:

Minimize f;(ii) = 0.0624(u; + uy + uz + uy + us) (38)
Subject to,
- 61 37 19 7 1
=2 +2+—=+_-4+—-1<0

) =t et ety (39

Where 0.01 < u; < 100G = 1,2,3,4,5),7 = (u;, uy, uy, uy, us)

may be characterized as a class of continuous minimal (40)

global optimization problems. The problem includes 20

variables, and the variable domain is [0, 2x].

Table 18 Parameter estimation Algorithms Best Medians Worst Mean SD

for frequency-modulated (FM)

sound waves ImBSA 1.83e+ 001 2.17e+ 001 2.81e+ 001 2.13e+001 2.01e+ 000
mISOS 1.97e+001 2.60e+001 2.90e+001 2.58e+001 2.06e + 000
ISOS 2.41e+001 2.72e+001 2.92e+001 2.71e+001 1.28e+ 000
SOS 2.44e+001 2.62e+001 2.79e+001 2.64e+001 9.89e —001
ASOS_BF1 2.39e+001 2.64e+001 2.78e+001 2.63e+001 1.11e+000
ASOS_BF2 1.95e¢+001 2.64e+001 2.82e+001 2.61e+001 1.93e+000
ASOS_BF1&2 2.15e+001 2.61e+001 2.85e+001 2.61e+001 1.41e+000
BSA 2.37e+001 2.82e+001 2.99¢+001 2.79e+001 1.45e+000
ABSA 2.56e+001 2.83e+001 3.05e+001 2.82e+001 1.42e+ 000
DE 2.54e+4001 2.65e+001 2.87e+001 2.65e+001 8.92e-001
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Table 19 Lennard-Jones

. Algorithms Best Median Worst Mean SD
potential problem
ImBSA —6.17¢+000 —4.35¢+ 000 —2.98¢ + 000 —4.85¢+000 7.19¢ —-001
mISOS —6.04e 4+ 000 —4.23e+000 —2.93e+000 —4.37e 4000 7.76e —001
ISOS —6.28¢ 4000 —3.40e 4+ 000 —2.11e+000 —3.48¢ 4000 9.39e —001
SOS —6.42e 4000 —4.03e 4000 —2.47e+000 —4.12e 4000 8.74e —001
ASOS_BF1 —4.41e+000 —3.29¢ 4000 —2.43e+000 —3.29e 4000 5.40e —001
ASOS_BF2 —5.42e+ 000 —3.31e4+000 —2.30e+ 000 —3.42e 4000 7.56e —001
ASOS_BF1&2 —3.46e+ 000 —2.56e 4000 —2.04e+000 —2.59¢ 4000 3.53e—001
BSA —4.37e+000 —2.51e+000 —2.03e+000 —2.71e+000 5.81e—001
ABSA —4.37e+000 —2.51e+000 —2.03e 4000 —2.71e+000 5.81e—001
DE —3.91e+000 —2.78e 4000 —2.14e 4000 —2.84e+000 4.28¢—001

I-beam Design Engineering Problem [46]

The ImBSA algorithm tested a new design problem, i.e.,
the problem of I-beam design, incorporating four variables,
in addressing actual engineering difficulties. The goal of
I-beam design optimization is to decrease vertical I-beam
deflection, as seen in Fig. 10. With the I-beam design opti-
mization issue, cross-sectional areas and stress limits are
concurrently fulfilled with specified loads. The following are
the formulation of the [-beam optimization problem:

ﬁ = (ul, uz, u3, u4) = (h, b, tW’ tf)

Speed Reducer Design Engineering Problem

The proposed ImBSA is employed to determine the speed
reducer design problem [46]. Various components of this
problem are the number of teeth on pinion (z), the module
of teeth (m), face width (b), the diameter of shaft 1 (d;), and
diameter of shaft 2 (d,), length of shaft 1 between bearings (7)),
and length of shaft 2 between bearings (/,) as shown seen in

Minimize f; (ﬁ) = 5900 @1 Fig. 11. The objective of this engineering benchmark design
W + % + 2uyu,( ”‘;”4 )2 optimization problem is to minimize the total weight of the
speed reducer. The constraints included in this problem are
Subject to, bending stress, surface stress, and transverse deflections. The
N analytical expressions of this problem are as follows:
gl(u) = 2u,u +u3(ul —2u4) -300<0 (42)
Minimize f; (@) =0.7854u,12(3.3333u> + 14.933u; — 43.0934)
@ 181, x 10* — 1.508u, (ug + u3) + 74777 () + u3)
8&2\U) = 2 2
uy(uy —2u,)® + 2uyuy(4uf + 3uy (uy — 2u,)) + 0.7854 (wgug + usi3),
5 (43) (45)
15u, x 10 .
+ 3 -56<0 Subject to
(g = 2uy)u3 + 2uzu,’
i) = 2 1<0
g (i) =—5—-1< (46)
Where, 10 < h < 80,10 < u, <50,0.9 <uy <5,and 0.9 <u, <5, Uy uyus
(44
TabIe'ZO T'erlso'ff pgtential Algorithms Best Median Worst Mean SD
function minimization problem
ImBSA —1.99¢ + 001 —1.79¢ + 001 —1.73e+ 001 —1.68e+001 2.52e+ 000
mISOS —1.93e+001 —1.36e+001 —1.02e+001 —1.40e+001 2.22e4000
ISOS —1.59¢+001 —1.21e+001 —8.77e+000 —1.28e+001  1.70e+ 000
SOS —1.48e+001 —1.19¢+001 —8.56e+ 000 —1.18e+001  1.69e+000
ASOS_BF1 —1.77e+001 —1.16e+001 —4.66e+ 000 —1.15e+001  2.48e+000
ASOS_BF2 —1.71e+001 —1.12e+001 —8.39¢+000 —1.15e+001  1.92e+000
ASOS_BF1&2 —1.60e+001 —1.11e+001 —8.35e+ 000 —1.14e+001  1.89e+ 000
BSA —2.03e+4001 —1.32e+4001 —1.01e+001 —1.33e+001  2.09¢+ 000
ABSA —1.85e+001 —1.35e+001 —1.10e+4001 —1.37e4+001 1.73e+000
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Table 21 Spread spectrum radar Algorithms Best Medians Worst Mean SD
polyphase problem
ImBSA 1.59¢ + 000 2.13e+ 000 2.65e+ 000 2.17e¢+ 000 2.19¢—-001
mISOS 1.76e + 000 2.24e +000 2.59e + 000 2.25e+000 2.27e—-001
ISOS 2.17e+000 2.39e+ 000 2.59e + 000 2.39¢e + 000 1.19¢ - 001
SOS 2.07e +000 2.36e+ 000 2.65e+000 2.36e + 000 1.63e —001
ASOS_BF1 2.04e +000 2.33e+000 2.59e + 000 2.31e+000 1.44e—001
ASOS_BF2 2.02e +000 2.34e+000 2.54e+000 2.32e+000 1.49e — 001
ASOS_BF1&2 1.90e + 000 2.33e+000 2.66e + 000 2.35e+000 1.70e — 001
BSA 1.81e+000 2.33e+000 2.58e +000 2.27e+000 2.16e — 001
ABSA 1.90e + 000 2.32e+000 2.60e + 000 2.30e+ 000 1.64e — 001
DE 2.01e+000 2.33e+000 2.59¢e + 000 2.31e+000 1.63e —001
- 397.5 Su
fll) = oy~ 120 @7 (@) =72 -1<0 (53)
3 - Uy
2, (1) = 19?““ ~1<0 ay S =1, 1=0 (54)
Uyllgit
- 1.5uc+ 1.9
1.93u3 gio(il) = ———-1<0 (55)
ga(il) = —=-1<0 (49) .
Uyl Uty
- 1.1u; +1.9
, gn () = ———-1<0 (56)
[(m)2+16.9x106]2 ’
gs (i) = —22 - —1<0 50 where 2.6<u; <36, 07<u, <08, 17<u; <28,
110.; 73<u, <83, 73<u;<83, 29<u,<39, and
50<u; <55, u= (ul,uz,u3,u4,u5,u6,u7) =(z,m, b, 1,
(—> +157.5% 10
oy [N (51)
86(7) = 85.03 —1<0 Results and Discussions on Real-World Problems
il The ImBSA has calculated 1000 function evaluations of
g, (i) = % -1<0 (52) 50 population sizes and 25 runs for the first four tasks.
Tables 18, 19, 20, and 21 describe the result of four issues,
Table 22 Comparison of Algorithms  Optimum decision variables Objective function value
performance result of the
cantilever beam design problem U Uy Uz Uy us
ImBSA 6.0157385 5.3090857 4.4927465 3.5019894 2.1534867 1.33991812032
e-SOSBSA  6.0160377 5.3091474 4.4943187 3.5014931 2.1526627 1.3399564
m-SCA 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
SCA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
GCA (D) 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
GCA (II) 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
CONLIN 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
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Table 23 Comparison of
performance result of the

Optimum decision variables

Objective function value

I-beam design problem Algorithms u u, U3 Uy Jonin
ImBSA 80 50 1.7646138 5.0000000 0.007100487920316
e-SOSBSA 80 50 1.7647059 5.0000000 0.0071005
Cauchy-GWO 80 50 0.9 2.2599 0.013075
ARSM 80 37.05 1.71 231 0.01570
Improved ARSM 79.99 48.42 0.9 2.40 0.1310
CS 80 50 0.9 2.3216715 0.0130747
GWO 80 42.8154 0.9 2.7179 0.013202

i.e., the optimal solution. The findings of the problems men-
tioned above are derived from the reference [49].

The result achieved is compared to ISOS, SOS, ASOS_
BF1, ASOS_BF2, ASOS_BF1&2, BSA, ABSA, DE, and
ImBSA for the frequency-modulated (FM) parameter esti-
mation problem. Table 18 contains the best, median, worst,
median, and SD obtained by ImBSA and some other algo-
rithms on this problem. Table 18 shows that InBSA receives
the best solution. Therefore, the findings of Table 18 suggest
that the performance of the ImBSA for this problem is best
compared to other methods.

The outcomes achieved by the proposed algorithm are
compared with ISOS, SOS, ASOS BF1, ASOS BF2, ASOS
BF1&2, BSA, ABSA, DE, and ImBSA for Lennard-Jones
potential problem. Table 19 presents the best, median, worst,
average, and SD showing the performance outcomes of this

Table 24 Comparison of performance result of the speed reducer problem

problem by ImBSA and aforesaid algorithms. Table 19
displays that ImBSA obtains the best, median, and mean
results. Thus, one can readily sum up from the findings that
the performance of the ImBSA is the best compared to other
techniques.

The findings obtained are compared with other algorithms
like ISOS, SOS and ASOS BF1, ASOS BF2, ASOS BF1&2,
BSA and ABSA, and ImBSA for Tersoff’s Si(B) potential.
Table 20 contains the best, median, worst, mean, and SD
performance outcomes of this optimization task. Table 20
shows that the BSA obtains the best answer, although
ImBSA obtains the best median and mean outcomes. The
results suggest that the InBSA version demonstrates a supe-
rior way than some algorithms compared here.

The comparison table of the results obtained by ISOS,
SOS, ASOS BFI1, ASOS BF2, ASOS BF1&2, BSA,

Algorithm u, u, u, u, us U u, Fnin

ImBSA 3.5008989  0.7000000 17.0000000 7.3007000 7.7159679  3.3538547 5.2846039  2994.4710501
e-SOSBSA 3.5000000  0.7000000  17.0000000  7.3000000 7.7153199  3.3502147 5.2866545 2994.4710661
SC-GWO 3.50064 0.7 17 7.30643 7.80617 3.35034 5.28694 2996.9859
PSO 3.58147 0.7 17.8282 7.98445 7.82083 3.15398 5.1873 3005.3248
GWO 3.6 0.8 28 7.3 8.3 2.9 5.0 3020.2331
SCA 3.51889 0.7 17 7.3 8.3 3.35899 5.30519 3028.8657
wPSO 3.50662 0.7 17 7.44735 7.88468 3.2725 5.38998 3003.7983

CS 3.50150 0.7 17 7.6050 7.8181 3.3520 5.2875 3000.9810
Ray and Saini 3.51418 0.700005 17 7.497343  7.8346 2.9018 5.0022 2732.9006 (infeasible)
Akhtar et al 3.50612 0.700006 17 7.549126  7.85933 3.36558 5.289773  3008.08

Ku et al 3.6 0.7 17 7.3 7.8 34 5 2876.1176 (infeasible)
Montes and Coello  3.50616 0.700831 17 7.46018 7.962143  3.3629 5.3090 3025.005
mGWO 3.50128 0.7 17 7.34965 7.80177 3.35087 5.28712 2997.7748
wGWO 3.50008 0.7 17 7.3193 7.81168 3.35072 5.28692 2997.085
m-SCA 3.52394 0.7 17 7.3 7.8 3.36280 5.32467 3033.2845
OBSCA 3.00576 0.72755 21.8423 7.30835 8.15455 3.36452 5.25164 3027.5130
MFO 3.59093 0.70554 19.7972 8.08267 7.84181 3.70621 5.48167 3836.2164
WOA 3.52111 0.7 17 7.3 7.8 3.35021 5.29533 3010.1480
SSA 3.50031 0.7 17 7.80001 7.85001 3.35247 5.2867 3002.5678
ISCA 3.50081 0.7 17 7.3 7.8 3.35129 5.28698 2997.1295
Chaotic SSA 3.50031 0.7 17 7.80001 7.85001 3.35247 5.2867 3002.5678
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ABSA, DE, and ImBSA for the radar polyphase code
design problem is presented in Table 21. Table 21 shows
that ImBSA obtains the best solution, while ASOS BF2
gets the worst outcome. So, by observing Table 21, it
can be said that the InBSA works better than any other
approach. This suggests InBSA’s overall superiority to
solve this problem. The explanation above indicates that
the performance of the ImnBSA is acceptable to solve this
problem.

The proposed ImBSA has been employed to solve the
cantilever beam design with the same configuration as
the reference [46]. The optimal output attained is shown
in Table 22, and results other than ImBSA are derived
from [46]. In comparison with m-SCA, SCA, CS, GCA(D),
GCA(I), MMA, CONLIN, and e-SOSBS, the optimal per-
formance of the suggested ImnBSA is better. Compared to
the other optimizer offered in this study, the comparative
research shown in Table 22 shows ImBSA’s efficient per-
formance capability.

Cauchy-GWO, ARSM, improved ARSM, CS, GWO, and
e-SOSBSA were solved I-beam design engineering optimi-
zation problems previously. The suggested InBSA research
is also employed to solve this significant optimization issue
with the same parameter configuration used in reference
[46]. The best outcome achieved by ImBSA is presented
in Table 23, and the results other than ImBSA are taken
from [46]. The optimized values of the four design variables
are 80, 50, 1.7646138, and 5.0000000, and an ideal I-beam
vertical deflection is 0.0071004879203201. Table 23 dem-
onstrates that InBSA handles the problem with improved
performance in the design of beams compared to other algo-
rithms given in this table.

The speed reducer design problem has previously been
optimized with a different algorithm which can be seen in
[46]. Table 24 provides a summary of the best solution for
the recorded methods. The results were achieved with the
same parameter setting as in reference [46] to compare the
performance of InBSA. The optimum output is compared
with e-SOSBSA, SC-GWO, CS, SCA, PSO, wPSO, GWO,
Ray and Saini, mGWO, wGWO, m-SCA, OBSCA, SSA,
MFO, WOA, ISCA, Chaotic SSA, Akhtar et al., Ku et al.,
Montes, and Coello. The results of these methods are taken
from [46]. The optimum values of all decision variables are
3.5008989, 0.7000000, 17.0000000, 7.3007000, 7.7159679,
3.3538547, and 5.2846039, and the optimum weight of the
speed reducer is 2994.4710501. The results’ comparison
with other algorithms is also shown in the same table, dem-
onstrating the proposed ImBSA over different algorithms.

It is evident from the preceding discussion, findings, and
reviews that the quality, efficiency, and resilience of InBSA
have improved to address real-life challenges. In addition,
ImBSA may also be used for practical applications as an
alternative optimizer.

Conclusion

In this study, a new mutation strategy of the BSA has been
proposed, which exploits the searchability of the algorithm
in a better way. A new modified parameter scheme has
been considered in ImBSA. An ensemble of mutation
strategies with a multi-population concept has also been
incorporated into this study. Incorporating the concepts
above, a novel BSA variant, called multi-population-based
self-adaptive BSA (ImBSA, in short), has been proposed
in this study. The extensive performance of ImnBSA on
CEC 2014 and CEC 2017 test functions has been tested by
comparing with several algorithms found in the literature.
The comparison results show that InBSA outperforms
some other efficient algorithms. For statistical analysis, a
nonparametric Friedman test in which a pairwise post hoc
Bonferroni-Dunn test with a 95% confidence level is uti-
lized to highlight the significant difference of performance
of InBSA among other compared algorithms. The statisti-
cal analysis also confirms that ImBSA is statistically more
effective than the compared algorithms.

The study addresses the efficiency of the proposed algo-
rithm employing six problems of engineering design opti-
mization. Results on technical challenges also approve that
ImBSA has been improved significantly compared to differ-
ent optimizers in the literature.

Based on the findings of experimental results, statisti-
cal testing, and real-world applications, some concluding
remarks are given below:

e Compared with conventional BSA, the improved stability
of BSA’s exploitation and exploration has been estab-
lished and improved. With auto-adaptive mutation rate
and mixrate parameters, in the suggested ImBSA, the
stability and convergence speed have been improved.

e The numerical findings of the CEC 2014 and CEC 2017
benchmark suites demonstrate that the proposed ImBSA
has increased search capacity compared to some of the
competitors.

e The convergence curve drawn between the fitness values
at each generation determines the stability within the
suggested methodology for exploitation and identifies
the optimal value throughout the process of searching.

e A convergence and statistical validation study of the data
confirms the improved performance by ImBSA when
addressing issues with optimization compared to tradi-
tional BSA and other comparative optimization methods.

e To determine the numerical findings, the challenge of
technical test problems, including diverse levels of com-
plexity and space of research, also promotes the effi-
ciency of the suggested InBSA.
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Limitation and Future Direction

There is hardly any study without limitations. Although we
have tried to enhance the efficiency of the BSA, this study
has several limitations. Some of these limitations and future
directions are given below:

e The adaptive parameter setting based control parameters
value has only been suggested here. But this can be done in
many other ways such as the fuzzy adaptive, neighborhood-
based, concept of the topology of the population, and fitness
distance-based. These are some future directions of the cur-
rent work.

e The algorithm’s stochastic analysis, such as convergence
analysis and stability analysis, may also be analyzed so
that the proposed algorithm may have a strong math-
ematical base.

e The best-guided search-direction matrix is used in the
proposed method, but this can be further improved in
different ways.

e This method is applied only on single-objective con-
strained and unconstrained optimization problems which
may be extended to the multi-objective scenario.

e This approach may be used to determine numerous opti-
mization problems from academia and industry.
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