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Abstract: Eight genotypes of the hepatitis E virus (Orthohepevirus A; HEV) designated HEV-1 to
HEV-8 have been reported from various mammalian hosts. Notably, domestic pigs and wild boars are
the natural reservoirs of HEV-3 and HEV-4 genotypes with zoonotic propensity. Since HEV infection
in domestic pigs is usually subclinical, it may remain undetected, facilitating zoonotic spillover of
HEV to the exposed human populations. A previous study from our group in 2021, using deep
sequencing of a pooled saliva sample, generated various swine enteric virus genomes, including a
near full-length swine HEV genome (7040 nt; 97.7% genome coverage) from five-month-old grower
pigs at a backyard pig farm in the uMgungundlovu District, KwaZulu-Natal, South Africa. In the
present study, we describe the further characterization, including genotyping and subtyping of the
swine HEV isolate using phylogenetics and ‘HEVnet Typing Tool’. Our analyses confirmed that the
South African swine HEV genome characterized in this study belonged to HEV genotype 3 subtype
3c (HEV-3c). While HEV-3c infections in domestic pigs have been previously reported from Brazil,
Germany, Italy, and the Netherlands, they only generated partial genome sequences of open reading
frame 1 (ORF1) and/or ORF2. To our knowledge, this is the first near full-length swine HEV-3c
genome generated from naturally infected domestic pigs (Sus scrofa domesticus) in South Africa.
However, due to the gap in the information on the HEV-3c genome sequences in various geographical
locations worldwide, including South Africa, the epidemiology of the South African swine HEV
genome characterized in this study remains inconclusive. Molecular and genomic surveillance of
HEV in domestic pig populations in South Africa would be useful to determine their prevalence,
circulating subtypes, and zoonosis risk.

Keywords: backyard pig farm; hepatitis E virus; HEV-3c; HEV zoonosis; Illumina sequencing;
phylogenetic analysis; Sus scrofa domesticus

1. Introduction

Swine or domestic pigs (Sus scrofa domesticus) are the reservoirs of several virus
pathogens [1–8]. Due to subclinical infection, the prevalence of some of these viruses in
domestic pigs, such as the hepatitis E virus (Orthohepevirus A; HEV), may remain undetected
and thus underestimated [9]. Eight genotypes of HEV designated HEV-1 to HEV-8 have
been reported in various mammalian hosts [10–15]. The first report of HEV causing natural
infections in domestic pigs appeared from a commercial pig farm in the Midwestern United
States in 1997 [16]. Subsequently, numerous reports of HEV infections in domestic pigs
have appeared worldwide, suggesting that domestic pigs are the natural reservoirs of HEV
genotype 3 (HEV-3) and HEV-4 [17].

Various experimental studies have demonstrated that pig-to-pig transmission of HEV
can occur through contact on pig farms [18–20]; however, pig-to-human HEV transmission
is suggested to have occurred due to the consumption of contaminated pork meat [21].
A systematic review and meta-analysis by Li et al. (2020) reported an overall 12.47%
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anti-HEV IgG and 1.47% anti-HEV IgM seroprevalence in the tested human populations
worldwide. In addition, they reported an overall 0.2% molecular prevalence (HEV RNA)
in tested human populations globally, confirming active HEV infections [22]. While HEV
infection is usually acute self-limiting or asymptomatic in immunocompetent individu-
als [23], the immunocompromised individuals or those with existing medical conditions,
such as transplant recipients [24], patients with existing liver disease [25], or cancer [26,27]
may develop chronic hepatitis due to HEV infection [8].

Numerous studies have suggested foodborne transmission of HEV to humans and
have reported the prevalence of HEV RNA in porcine liver and pork products from dif-
ferent countries. For example, Fu et al. (2010) generated partial HEV genomes from a
domestic pig and a human originating from the same district in China, which had 100%
identical nucleotide sequences and therefore suggested the possibility of foodborne HEV
transmission to the human population [28]. Salines et al. (2017) reported the prevalence of
HEV RNA in pig liver samples (0.8 to 20.8%; n = 10 studies) and in retail pork products (0 to
58.0%; n = 9 studies) in different countries [29]. In addition, Silva et al. (2018) reported a
high HEV seroprevalence (77.6% in 2012 and 65.5% in 2014) and a 0.8% prevalence of HEV
RNA in tested Brazilian backyard pigs. They reported that the partial swine HEV genomes
generated were similar to human HEV strains reported in Brazil [30]. Another study from
Southern Brazil reported a 20% prevalence of HEV RNA in pig fecal samples collected
from a small-scale farm in 2014. The partial swine HEV genomes generated were closely
related to the HEV genomes reported earlier from the human populations in Brazil [31].
Recently, Li et al. (2022) reported an overall 60% HEV seroprevalence in tested domes-
tic pigs worldwide; however, the prevalence of HEV RNA in tested domestic pigs and
pork products was 13% and 10%, respectively [32]. The available data suggested that the
prevalence of HEV RNA in the porcine liver [33–39] and pork meat samples [40–43] pose a
potential risk of foodborne transmission to humans [21,44], through the consumption of
raw or undercooked pork meat [35,45].

While currently, there is no evidence of direct pig-to-human HEV transmission through
contact, various studies have suggested the occupation-related exposure of HEV to humans.
For example, Hoan et al. (2019) reported HEV-3 RNA in 12.4% of domestic pig liver
tissue samples tested in Hanoi, Viet Nam. They reported a significantly higher HEV
seroprevalence in slaughterhouse workers, pig farmers, and pork meat vendors than
the unexposed individuals [46]. Similarly, while HEV-4 RNA was detected in young
domestic pigs in Beijing, China, a significantly higher HEV seroprevalence was detected in
farm workers and slaughterhouse workers than in the general public [47]. Several other
studies have also reported a high HEV seroprevalence in occupationally exposed human
populations, such as pig farm workers in Moldova [48], Israel [49], India [50], and pig farm
workers and veterinarians in France [51].

In the African continent, a recent study by Bagulo et al. (2022) reported HEV sero-
prevalence in domestic pigs in Ghana [52]. Previously, Modiyinji et al. (2020) reported
HEV seroprevalence and HEV-3 RNA in the feces of domestic pigs in Cameroon [53].
Owolodun et al. (2014) reported a high overall prevalence of HEV-3 RNA (76.7%) and
HEV seroprevalence (55.6%) in tested Nigerian domestic pigs [54]. In South Africa, Ade-
labu et al. (2017) reported a 4.4% prevalence of HEV RNA in pig feces in commercial and
communal pig farms in the Eastern Cape province [55]. They generated seven partial
HEV-3 capsid protein sequences ranging from 388 to 427 nucleotides (GenBank accessions:
KX896664–KX896670) [55]. Of note, there was no report of HEV in South African backyard
pig populations. In a previous study in 2021, using metagenomics, we, for the first time,
obtained numerous swine enteric RNA virus genomes from the saliva of the backyard pigs
in the uMgungundlovu District of the KwaZulu-Natal province, South Africa [56]. We
obtained a near full-length swine HEV genome, which remained uncharacterized. In the
present study, we characterized the near full-length swine HEV genome generated from
South African backyard pigs.
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2. Materials and Methods
2.1. Ethics Approval

Full approval of the research protocol was obtained from the Animal Research Ethics
Committee of the University of KwaZulu-Natal; Reference# AREC/041/019D. We obtained
the Section 20 permit from the Department of Agriculture, Land Reform and Rural Devel-
opment (DALRRD), South Africa, in terms of the Animal Diseases Act, 1984 (Act No. 35 of
1984); Reference# 12/11/1/5/4 (1425 AC) (1).

2.2. Study Design

A previous study performed passive surveillance for detecting influenza A virus (IAV)
RNA in backyard pig oral secretion (saliva) samples (n = 102) collected in March 2021 from
three backyard pig farms in the uMgungundlovu District of the KwaZulu-Natal province,
South Africa. Using a TaqMan probe-based one-step real-time RT-PCR assay that detects
IAV matrix gene, we did not detect IAV RNA [57]. Intriguingly, some of the pigs sampled
exhibited clinical signs of disease, such as red patches on the skin. This prompted us
to investigate the oral RNA virome of one of the pooled saliva samples obtained from
five-month-old grower pigs exhibiting clinical signs of disease. We used deep sequencing
to determine the diversity of oral RNA virome of the selected saliva sample. While we
generated the genomes of multiple swine enteric viruses [56], a near full-length genome
of swine HEV was also generated, which remained uncharacterized and therefore was
analyzed in the present study.

2.3. Sample Collection and Processing

After obtaining written informed consent confirming the voluntary participation of
the backyard pig farmers, the backyard pigs were visually screened for clinical signs of
illness with the assistance of an Animal Health Technician (AHT) from the State Veterinary
Department. For the present study, we chose a pooled saliva sample taken from five-month-
old growers with red patches on the skin to determine their oral RNA virome. The pig
saliva was collected using a standard non-invasive hanging rope method [58,59]. Briefly,
about 80 cm long three-strand twisted 100% cotton rope was suspended in the air inside
the pen; the confined pigs were allowed to chew the rope for about 15 min. While seven
growers simultaneously chewed the rope, most of them had red patches on their skin.
The rope was squeezed in a plastic Ziploc bag, and the saliva was aseptically collected
into a 15 mL Falcon tube and transported to a biosafety level-2 (BSL-2) laboratory at the
University of KwaZulu-Natal on dry ice. The saliva was centrifuged at 1500× g for 10 min
at 4 ◦C to eliminate the feed contaminants, aliquoted into 2 mL sterile cryovials, and stored
at−80 ◦C for downstream processing. One aliquot containing 500 µL of saliva was shipped
on dry ice to the Biotechnology Platform Laboratory of the Agricultural Research Council,
Onderstepoort, Pretoria, for deep sequencing.

2.4. Metagenomic Sequencing

The viral RNA was extracted using the NucleoMag Pathogen kit (Macherey-Nagel,
Dueren, Germany). The ribosomal RNA was depleted, and the library preparation was
performed using the Illumina Stranded Total RNA Prep (Catalogue# 20040529) according to
the manufacturer’s specifications. Deep sequencing was performed on an Illumina HiSeq
X instrument (San Diego, CA, USA).

2.5. Genome Assembly and Annotation

The FASTQ files containing 125 bp paired-end reads were analyzed using Genome
Detective v 1.135 (www.genomedetective.com; accessed on 7 September 2021) [60], an
integrated platform to perform quality control. Briefly, the backyard pig saliva sample
generated 7,953,568 raw reads. The Genome Detective performed quality control and
trimmed the raw reads, filtered out low-quality reads and adapters (1,565,304; 19.7%), and
non-viral reads (6,212,686; 78.1%). The remaining reads (175,578; 2.2%) were processed

www.genomedetective.com
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for virus contig de novo assembly. The Genome Detective verified the resulting contigs
using reference genomes available in the NCBI database to determine percent genome
coverage and percent nucleotide and amino acid identities of the assembled genomes. The
HEV genome generated resulted in 97.7% genome coverage. We then manually performed
nucleotide BLAST analysis to verify the percent nucleotide identity of the South African
swine HEV genome with other HEV genomes available in NCBI-GenBank. In addition, we
analyzed the swine HEV genome characterized in the present study with HEV reference
genomes to determine insertions and deletions using ‘Geneious Prime 2021.2.2’ (Biomatters,
Auckland, New Zealand). Later, we performed the multiple sequence alignment of the
South African swine HEV genome with various full-length HEV-1 to HEV-8 genotypes to
determine the stop codons in the South African swine HEV genome in ‘Geneious Prime
2022.0.1’ (Biomatters, Auckland, New Zealand).

2.6. Phylogenetic Analysis and ‘HEVnet Typing Tool’ Analysis

We performed a detailed phylogenetic analysis to characterize the generated swine
HEV genome. Briefly, to determine the swine HEV genotype, we downloaded full-length
HEV-1 to HEV-8 genome sequences from the NCBI-GenBank database, reported from
various hosts. We identified the best substitution model for the phylogenetic analysis using
‘MEGA-X’ [61]. A phylogenetic tree was drawn using PhyML [62] with the GTR+G+I
model of substitution and 1000 bootstrap replications in ‘Geneious Prime 2022.0.1′. We then
used the ‘HEVnet Typing Tool’ (https://www.rivm.nl/mpf/typingtool/hev/, accessed on
11 January 2022) [63] to identify the subtype of the South African swine HEV genome. For
the confirmation of the HEV subtype, a PhyML phylogenetic tree of full-length genome
sequences of various HEV-3 subtypes was constructed using the GTR+G+I model of
substitution with 1000 bootstrap replications. To determine the epidemiology of the South
African swine HEV-3c genome, we constructed a PhyML tree of full-length HEV-3c genomes
reported from various hosts worldwide using the GTR+G+I model of substitution with
1000 bootstrap replications.

3. Results

The Genome Detective determined 74.3% nucleotide and 84.8% amino acid identity
of the generated near full-length South African swine HEV genome (7040 nt; GenBank
accession: OM104034) with the NCBI-designated HEV reference genome representing
the complete HEV genome (GenBank accession: NC_001434). In addition, the South
African swine HEV genome generated shared 89.2% nucleotide and 96.7% amino acid
identity with the HEV-3c reference genome designated by Smith et al. (2020) (GenBank
accession: FJ705359) [64]. The near full-length HEV genome (7040 nt; 97.7% genome
coverage) generated from the South African backyard pig saliva had three stop codons,
TGA, TGA, and TAA, at nucleotide positions 5085, 5453, and 7105, respectively, resulting
in three open reading frames (ORFs): ORF1, ORF3, and ORF2, respectively. While only
a partial coding sequence was generated for ORF1, the complete coding sequences were
generated for ORF2 and ORF3 (Figure 1).

Using multiple sequence alignment of several HEV genotypes reported from various
hosts in different geographical locations, we determined that the stop codon for ORF1
(TGA) was conserved in all HEV genotypes. The stop codon for ORF2 in all HEV-4 genomes
was TGA, while HEV-1 and HEV-2 had TAG, and all other HEV genotypes, i.e., HEV-3 and
HEV-5 to HEV-8 had TAA. However, the stop codon for ORF3 was less conserved among
the genotypes, varying between TGA and TAA. This variation in the stop codons in HEV
genomes may be due to natural selection during the long-term co-evolution of HEV in their
respective hosts [65,66].

The PhyML tree (Figure 2) of the full-length HEV-1 to HEV-8 genomes reported from
various hosts worldwide showed that the swine HEV genome analyzed in this study
was more closely related to the HEV genotype 3 (HEV-3) genome reported from a wild
boar in Germany (GenBank accession: FJ705359). The nucleotide BLAST analysis and

https://www.rivm.nl/mpf/typingtool/hev/
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pairwise sequence alignment showed that the generated South African swine HEV genome
shared 89.2% pairwise nucleotide identity with the HEV-3 genome reported from the wild
boar in Germany (GenBank accession: FJ705359). This observation confirmed that the
swine HEV genome generated from the South African backyard pig saliva belonged to the
HEV-3 genotype.
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Figure 1. Schematic representation of the swine HEV genome characterized in this study. (A) The
HEV reference genome (GenBank accession: NC_001434) comprises a 5′ 7-methylguanosine cap
followed by a short untranslated region (UTR). It has a 3′ UTR and a polyadenylated tail. (B) The
South African swine HEV genome characterized in the present study (7040 nt; GenBank accession:
OM104034) extends from the nucleotide position 146 at the 5′ end to 7156 at the 3′ end compared to
the reference genome. The South African swine HEV genome comprises 97.7% genome coverage
(represented in green color) having complete coding sequences for the ORF2 and ORF3 and a partial
coding sequence for the ORF1.

Pathogens 2022, 11, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. Molecular characterization of the swine hepatitis E virus (HEV) genome generated from 
the backyard pig saliva in South Africa. The PhyML tree of the full-length HEV-1 to HEV-8 genomes 
reported from various hosts worldwide determined that the South African swine HEV genome be-
longed to HEV genotype 3 (HEV-3). 

The subtype analysis using ‘HEVnet Typing Tool’ [63], an integrated HEV genotyp-
ing and subtyping tool, showed that the South African swine HEV genome belonged to 
the HEV-3c subtype. To confirm this, we conducted phylogenetic analysis using the full-
length genomes of various HEV-3 subtypes available in the NCBI-GenBank reported glob-
ally. As shown in the PhyML tree (Figure 3), the South African swine HEV genome clus-
tered with the HEV-3c genomes reported from humans and wild boars in different coun-
tries, confirming that the swine HEV genome generated in the present study belonged to 
the HEV-3c subtype. 
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belonged to HEV genotype 3 (HEV-3).
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The subtype analysis using ‘HEVnet Typing Tool’ [63], an integrated HEV genotyping
and subtyping tool, showed that the South African swine HEV genome belonged to the
HEV-3c subtype. To confirm this, we conducted phylogenetic analysis using the full-length
genomes of various HEV-3 subtypes available in the NCBI-GenBank reported globally.
As shown in the PhyML tree (Figure 3), the South African swine HEV genome clustered
with the HEV-3c genomes reported from humans and wild boars in different countries,
confirming that the swine HEV genome generated in the present study belonged to the
HEV-3c subtype.

Pathogens 2022, 11, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 3. The PhyML tree of full-length genomes of various HEV-3 subtypes available at NCBI-
GenBank and the South African swine HEV genome (highlighted in red). The South African isolate 
clustered with the HEV-3c genomes reported from humans and wild boars in different countries, 
thus confirming that the South African isolate belonged to the HEV-3c subtype. 

To determine the epidemiology of the South African swine HEV-3c genome, we used 
the available full-length HEV-3c genomes reported from different hosts worldwide. The 
PhyML tree (Figure 4) depicts the relatedness of the South African swine HEV-3c genome 
with other reported HEV-3c genomes. Due to the existing gap in the availability of the 
HEV-3c genome sequences from various geographical locations, including South Africa, 
the epidemiology of the South African swine HEV-3c genome characterized in this study 
remains inconclusive. While HEV-3c has been detected in domestic pig herds, porcine 
liver samples, and other pork products in various countries, including Brazil, Germany, 
Italy, and the Netherlands, they generated only partial sequences of ORF1 and/or ORF2, 
upto 476 nt; therefore, the current full-length HEV-3c genomes available in the NCBI-Gen-
Bank are only from humans and wild boars. 

Figure 3. The PhyML tree of full-length genomes of various HEV-3 subtypes available at NCBI-
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thus confirming that the South African isolate belonged to the HEV-3c subtype.

To determine the epidemiology of the South African swine HEV-3c genome, we used
the available full-length HEV-3c genomes reported from different hosts worldwide. The
PhyML tree (Figure 4) depicts the relatedness of the South African swine HEV-3c genome
with other reported HEV-3c genomes. Due to the existing gap in the availability of the
HEV-3c genome sequences from various geographical locations, including South Africa,
the epidemiology of the South African swine HEV-3c genome characterized in this study
remains inconclusive. While HEV-3c has been detected in domestic pig herds, porcine liver
samples, and other pork products in various countries, including Brazil, Germany, Italy,
and the Netherlands, they generated only partial sequences of ORF1 and/or ORF2, upto
476 nt; therefore, the current full-length HEV-3c genomes available in the NCBI-GenBank
are only from humans and wild boars.
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ological determination of the South African swine HEV-3c genome characterized in this study.

In summary, the present study using phylogenetics and ‘HEVnet Typing Tool’ char-
acterized and reported a near full-length HEV-3c genome generated from the domestic
pigs raised at a backyard farm in the uMgungundlovu District of the Kwa-Zulu-Natal
province, South Africa. To our knowledge, this is the first near full-length HEV-3c genome
generated from the naturally infected domestic pigs in South Africa. More full-length
HEV-3c genomes originating from various hosts and geographical locations, including
South Africa, would be required for a conclusive determination of the epidemiology of the
swine HEV-3c genome characterized in this study.

4. Discussion

The HEV-3 genotype currently has 14 defined subtypes: 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h,
3i, 3j, 3k, 3l, 3m, and 3ra [64]. Pierini et al. (2021) generated four novel full-length HEV
genomes from the liver samples collected from hunted wild boars in Central Italy during
2016–2020. Notably, these HEV strains were divergent from the reported and classified
HEV-3 strains in any subtype defined thus far, and therefore, were tentatively named
HEV-3n subtype [67]. This indicates that increased HEV surveillance in Suidae might
further expand the diversity of HEV-3 subtypes.

We, for the first time, generated and characterized a near full-length genome of HEV-3c
from a pooled saliva sample collected from domestic pigs at a backyard farm in the uMgun-
gundlovu District of the KwaZulu-Natal province, South Africa. Previously, HEV-3c has
been detected in humans [68–70], wild boars [67,71–73], and domestic pigs [39,71,72,74,75]
or porcine livers and pork products [33,68,75,76] in various countries. Rutjes et al. (2009)
detected HEV-3c RNA in the farmed domestic pigs and one porcine liver sample purchased
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from the butcher shop in the Netherlands. In addition, they also detected HEV-3e RNA in
the porcine liver sample and suggested the possibility of foodborne HEV transmission to
the human populations in the Netherlands [72]. Wenzel et al. (2011) detected HEV-3a and
HEV-3c RNA in porcine liver samples purchased from butcher shops and grocery stores in
Regensburg, Germany. They reported that the swine HEV-3a and HEV-3c sequences had
high sequence homology to the HEV isolates previously reported from the patients with
acute HEV infections in the same geographic region and suggested that consuming under-
cooked pork meat may be the most probable cause of HEV zoonotic transmission in the
study area [33]. In another study, de Souza et al. (2012) detected HEV-3c RNA in pig liver
samples collected from slaughtered pigs in Brazil [75]. More recently, Chelli et al. (2021)
detected HEV-3c RNA in three liver samples collected from October 2017 to July 2019
from slaughtered pigs in Italy. These three pig liver samples originated from the pigs that
were imported from other European Union countries to Italy for slaughtering. Notably,
the three partial HEV-3c genomes generated were closely related to the HEV genome
sequences reported from the human populations in previous years in the United Kingdom
and France [39]. Sabato et al. (2020) studied the datasets of all HEV-3 genomes generated
from humans, wild boars, and domestic pigs in Italy until June 2019 and suggested that
HEV-3f was the most frequently reported subtype from humans and pigs in Italy, followed
by the HEV-3e and HEV-3c [77]. These data suggest that domestic pigs can serve as a host
(and reservoir) for HEV-3c viral infections.

In South Africa, several studies have reported HEV seroprevalence in human popula-
tions. For example, Madden et al. (2016) conducted a sero-surveillance in patients visiting
a hospital in the Western Cape, South Africa, and determined a high HEV seroprevalence
(anti-HEV IgG; 27.9%) in patients ≥ 30 years of age with no liver disease. Since the patients
investigated were not exposed to pigs, foodborne transmission due to the consumption
of pork meat was suspected [78]. They also reported a clinical case of HEV-3e infection in
a 54-year-old male who was admitted to the hospital due to acute liver failure and later
died on day 3 of admission in the hospital. The IgM test performed on day 3 (the day
he demised) returned positive, and the subsequent PCR test detected HEV-3e RNA [78].
Korsman et al. (2019) detected a comparable anti-HEV IgG seroprevalence (29.5%); how-
ever, the anti-HEV IgM seroprevalence was 1.6% in the sera samples of the hospitalized
patients with acute hepatitis in Cape Town. The anti-HEV IgM positive sera samples were
PCR negative for the HEV RNA [79] and therefore did not report on the HEV subtypes.
In another study, Korsman et al. (2019) detected HEV RNA in 2 of the 144 porcine liver
spread samples purchased from butcheries and supermarkets in Cape Town. One partial
HEV capsid protein sequence comprising 304 nucleotides (GenBank accession: MF503296),
generated from one of these pork livers, belonged to HEV-3e and was closely related to the
other HEV genomes reported from the humans in Cape Town [76].

While there is an existing gap in the information on circulating HEV subtypes in
South African human and domestic pig populations, the available limited data suggest
that HEV-3e has been sporadically detected previously in the porcine liver spread samples
and in one clinical case as stated above. Our study, for the first time, reported a near
full-length genome of HEV-3c from naturally infected domestic pigs raised on a South
African backyard farm. Large-scale molecular and genomic surveillance in South African
domestic pig populations would be useful to detect the prevalence of HEV RNA and
identify the circulating HEV subtypes to explore which HEV subtypes might be entering
the South African food chain via pork meat consumption. As numerous studies from
Europe have suggested the foodborne transmission of HEV-3c to humans, we recommend
that pork consumers should properly cook pork meat to avoid the possibility of zoonotic
transmission of HEV.

5. Conclusions

To our knowledge, this is the first study to characterize and report the near full-length
genome of HEV subtype 3c from naturally infected backyard pigs in South Africa. We
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recommend conducting nationwide molecular and genomic surveillance to realize HEV
prevalence in backyard pigs and to identify circulating HEV subtypes to evaluate the
zoonosis risk in South Africa.
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