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Computer-assisted analysis of electroencephalogram (EEG) has a tremendous potential to assist clinicians during the diagnosis of
epilepsy. These systems are trained to classify the EEG based on the ground truth provided by the neurologists. So, there should
be a mechanism in these systems, using which a system’s incorrect markings can be mentioned and the system should improve its
classification by learning from them. We have developed a simple mechanism for neurologists to improve classification rate while
encountering any false classification.This system is based on taking discrete wavelet transform (DWT) of the signals epochs which
are then reduced using principal component analysis, and then they are fed into a classifier. After discussing our approach, we have
shown the classification performance of three types of classifiers: support vector machine (SVM), quadratic discriminant analysis,
and artificial neural network. We found SVM to be the best working classifier. Our work exhibits the importance and viability of
a self-improving and user adapting computer-assisted EEG analysis system for diagnosing epilepsy which processes each channel
exclusive to each other, along with the performance comparison of different machine learning techniques in the suggested system.

1. Introduction

Epilepsy is a chronic neurological disease. The hallmark
of this disease is recurring seizures. It has been cited that
one out of hundred people suffers from this disorder [1].
Electroencephalography is the most widely used technique
for diagnosis of epilepsy. EEG signal is the representation
of voltage fluctuations which are caused by the flow of
neurons ionic current. Billions of neurons maintain brains
electric charge. Membrane transport proteins pump ions
across their membranes. Neurons are electrically charged by
these membranes. Due to volume conduction, wave of ions
reaches the electrodes on the scalp that pushes and pulls the
electron on the electrode metal. The voltage difference due to

pull and push of the electrons ismeasured by voltmeterwhose
readings are displayed as the EEGpotential.Neuron generates
too small of a charge to be measured by an EEG, and it is the
summation of synchronous activity of thousands of neurons
that have similar spatial orientation which is measured by an
EEG. Unique patterns are generated in the EEG during an
epileptic seizure. These unique patterns help the clinicians
during diagnosis and treatment of this neurological disorder.
That is why EEG is widely used to detect and locate the
epileptic seizure and zone. Localization of the abnormal
epileptic brain activity is very significant for diagnosis of
epileptic disorder.

Usually the duration of a typical EEG varies from few
minutes to few hours but in case of prolonged EEG it can even
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last as long as 72 hours. This generates an immense amount
of data to be inspected by the clinician which could prove to
be a daunting task.

Advancement in signal processing and machine learning
techniques ismaking it possible to automatically analyse EEG
data to detect epochs with epileptic patterns. A system based
on these techniques can aid a neurologist by highlighting the
epileptic patterns in the EEG up to a significant level. Of
course, the task of diagnosis should be left to the neurologist.
However, the task of the neurologist becomes efficient as it
reduces the data to be analysed and lessens up the fatigue.
Along with classification these analysis software programs
can also provide simultaneous visualization ofmultiple chan-
nels which helps the clinician in differentiating between
generalized epilepsy and focal epilepsy.

It is well known that an epileptic seizure brings changes
in certain frequency bands. That is why usually the spectral
content of the EEG is used for diagnosis [2]. These are
identified as 𝛿 (0.4–4Hz), 𝜃 (4–8Hz), 𝛼 (8–12Hz), and 𝛽
(12–30Hz). Noachtar and Rémi mention almost ten types of
epileptic patterns. However, most of the existing work only
focuses on one of the epileptic patterns, that is, 3Hz spike and
wave which is a trademark for absence seizure. Other types of
the patterns are rarely addressed [3].

Computer-assisted EEG classification involves several
stages including feature extraction, feature reduction, and
feature classification.Wavelet transformhas become themost
popular feature extraction technique for EEG analysis due
to its capability to capture transient features, as well as
information about time-frequency dynamics of the signal
[4]. Other previously used feature extraction approaches for
epilepsy diagnosis include empirical mode decomposition
(EMD), multilevel Fourier transform (FT), and orthogonal
matching pursuit [5–9]. Feature extraction is followed by
feature reduction to reduce computational complexity and
avoid curse of dimensionality. Most commonly, the reduced
feature vector consists of statistical summary measures (such
asmean, energy, standard deviation, kurtosis, and entropy) of
different sets of original (unreduced) features, although other
methods such as principal component analysis, discriminant
analysis, and independent component analysis have also been
used for feature reduction [4, 7, 10, 11]. Feature extrac-
tion/reduction is followed by classification using a machine
learning algorithm, such as artificial neural networks (ANN),
support vectormachines (SVM), hiddenMarkovmodels, and
quadratic discriminant analysis [8, 11–14].

A very important and novel phase of our system is user
adaptation mechanism or retraining mechanism. There are
multiple reasons according to which introduction of this
phase has lots of advantages. During this phase, system will
try to adapt its classification as per users desire. It has been
cited that sometimes even the expert neurologists have some
disagreement over a certain observation of an EEG data.
There is also a threat of overfitting by the classifier. In order
to keep the classifier improving its performance with the
encounter of more and more examples, we have introduced
this user adaptive mechanism in our system.We consider the
existing systems as dead because they cannot improve their
classification rate after initial training. They do not have any

mechanism of learning or improvement from neurologists
corrective marking [15–17]. The agreement between different
EEG readers is low to moderate; our adaption mechanism
helps the user in catering this issue as our system tries to
adapt the detection according to the users correctivemarking.
The new corrective markings generate new examples with
improved labels. Hence, it populates the training examples
with newly labelled ones. So after retrainingmachine learning
algorithms in the system, users adapt to set of choices.

In the next section we will explain our proposed method
whichwill be followed by the results. In the results section, we
will explain how SVM performs better than QDA and ANN
in our proposed method. We will also show that exclusive
processing of each channel results in a significant improve-
ment in the classification rate. Here “epileptic pattern” and
“epileptic spikes” will be used as an alternative to each other.

2. Proposed Method

Computer-aided EEG analysis systems use the neurologists
marking and labelling of the EEG data as a benchmark to
train themselves during initial training phase. But after initial
training phase, these systems have no simple mechanism
for these neurologists to improve systems classification after
encountering any false classification. So we have proposed a
method by which systems classification can be improved by
the user in a relatively simpler way. This analysis system only
tries to detect the epileptic spikes as mentioned by Noachtar
and Rémi. Later it adapts its detection of epileptic spikes
exclusively for every user (Figure 4).

In this proposed system, we are processing each channel
for each epileptic pattern exclusive to each other. This
exclusive processing of each channel not only helps the user in
diagnosing localized epilepsy but also eases up the classifiers
job. We have considered that different epileptic patterns are
independent to each other and their separate handling will
help us in avoiding error propagation from one epileptic
pattern type detection to the other. Our systems working
has two major phases (A) initial training phase and (B)
adaptation phase. These two major phases have further three
parts which are (1) feature extraction, (2) feature reduction,
and (3) classification. Next we will briefly explain all of these
steps.

2.1. Initial Training

2.1.1. Feature Extraction. To decide which parts of the signal
are epileptic and which are not we first divided whole of the
signal in small chunks known as epochs. Then DWT was
applied on those epochs so that visibility of epileptic activity
can be enhanced which is distinguished by some spectral
characteristics. These features are then processed to make
them more suitable for the classification technique.

(a) Epoch Size. The first important part of the feature
extraction is epoch selection. Epoch is a small chunk of the
signal which is processed at a time. The size of the epoch
is very important. The larger it is the less accurate it will
be. The smaller it is the higher the processing time will be.
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Figure 1: Epoch size is 1 sec.

After testing different epoch sizes, we found epoch size of
nonoverlapping 1 sec window to be best yielding in terms of
accuracy. It also reestablished the work of Seng et al. [18]
(Figure 1).

(b) DWT. As discussed in Introduction, spectral analysis
is very informative while examining the epilepsy suspected
patients EEG. There are profound advantages of wavelet
decomposition which is a multiresolution analysis technique.
A multiresolution analysis technique allows us to analyse
a signal for multiple frequency resolutions while maintain-
ing time resolution unlike a normal frequency transform.
Wavelet decomposition allows us to increase frequency res-
olution in the spectral band of our interest while maintaining
the time resolution; in short we can decimate these values
simultaneously in time and frequency domain.

During wavelet transform, the original epoch is split
into different subbands: the lower frequency information
is called approximate coefficients and the higher frequency
information is called detailed coefficients. The frequency
subdivision in these subbands helps us in analysing different
frequency ranges of an EEG epoch while maintaining its time
resolution [4, 8, 13]. The choice of coefficients level is very
important as the epileptic activity only resides in the range
of 0–30Hz. Coefficients levels of the DWT are determined
with respect to sampling frequency. So, the detailed levels of
interest are adjusted on the run according to the sampling
frequency such that we may get at least one exact value of
the closest separate 𝛿 (0.4–4Hz), 𝜃 (4–8Hz), 𝛼 (8–12Hz),
and 𝛽 (12–30Hz) components of the signal. We discarded all
the detailed coefficient levels which were beyond the 0–30Hz
range.

ThenDWTwas applied on each epochwithDaubechies-4
(db4) as mother wavelet. The detailed coefficient levels of the
DWT were determined with respect to sampling frequency.

(c) Statistical Features. After the selection of detailed coef-
ficients which represent the frequency band of our interest,

we calculated the statistical features by calculating the mean,
standard deviation, and power of these selected wavelet
coefficients.These statistical features are inspired from Subasi
and Gursoy work [13].

(d) Standardization. These statistical features were then stan-
dardized. During training stage 𝑧-score standardization was
applied on these features [19]. This standardization is just
like usual 𝑧-score normalization, but as we do not know
the exact mean and standard deviation of the data (to be
classified) during classification/test stage, we used the mean
and standard deviation of the training examples during
training stage for standardizing (normalizing) the features
during classification stage. We normalized the features by
subtracting and dividing them by training examples mean
and standard deviation, respectively.

2.2. Feature Reduction. In order to avoid overinterpretation
by redundant data and misinterpretation by noisy data we
applied feature reduction method. Inclusion of this part
increases the processing time, thus exacerbating the latency.

Dimensionality reduction using principal component
analysis (PCA) is based on a very important trait that is
variance of the data. PCA develops the nonlinear mapping in
such a way that it maximizes the variance of the data, which
helps us in discarding that part of the data which is marked
by lesser variances. This reshaping and omission not only
removes the redundant data but also lessens up the noise.

During training stage PCA was applied on these features
in order to reduce the redundant and/or noisy data. We kept
the components which projected the approximate 95% of the
total variance. We were able to reduce the 21 features into 9.
Then we fed these reduced features to classifiers trainer. Here
as per our observation we again assumed that the EEG data
is stationary for a small length. So, during the testing stage,
we took the PCA coefficients matrix from training stage and
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multiplied it with the standardized statistical features of the
blind test data and then fed the top 9 features to classifier.

2.3. Classification. Classification is a machine learning tech-
nique in which new observations belonging to a category
are identified. This identification is based on the training set
which contains the observationswith known labelling of their
category. These observations are also termed as features. We
tried three types of classificationmethods: (1) SVM, (2) QDA,
and (3) ANN (Figure 3).

The reduced features were fed to these classifiers. Here
the reduced features mean that those statistical features of
the selected wavelet coefficients are reduced using PCA as
described in previous section. All of the three processing
parts were exclusive for each channel and each epileptic
pattern. So like previous parts the classifiers were also trained
and tested exclusively for each channel.

Our system requires individual labelling of channels.
There is a separate classifier for each channel and for each
epileptic pattern type. So, the total number of classifiers is
equal to the product of total number of channels by ten where
ten represents the number of epileptic pattern described by
Noachtar and Rémi [3].

(e) Support Vector Machine. Support vector machine (SVM)
is a supervised learning models machine learning technique.
SVM tries to represent the examples as points in space which
are mapped in a way that points of different categories can be
divided by a clear gap that is as wide as possible. Afterwards,
that division is used to categorise the new test examples based
on which side they fall on.

(f) Quadratic Discriminant Analysis. Quadratic discriminant
analysis (QDA) is a widely used machine learning method
among statistics, pattern recognition, and signal process-
ing to find a quadratic combination of features which are
responsible for characterizing an example into two or more
categories. QDAs combination of discriminating quadratic
multiplication factors is used for both classification and
dimensionality reduction.

(g) Artificial Neural Network. Artificial neural network
(ANN) is a computational model which is inspired from ani-
mals central nervous system.That is why ANN is represented
by a system of interconnected neurons which are capable of
computing values as per their inputs. In ANN training, the
weights associated with the neurons are iteratively adjusted
according to the inputs and the difference between the
outputs with expected outputs. The iteration gets stopped
when either the combination of neurons starts generating the
expected results within an error of a tolerable error range or
the iteration limit finishes up.

2.4. Adaption Phase (Retraining/User Adaptation Mecha-
nism). In order to keep the classifier improving its perfor-
mance with the encounter of more and more examples, we
have introduced a user adaptive mechanism in our system.
Our system allows the user to interactively select epochs
of his choice by simply clicking on the correction button.

While using our system, when a user thinks that a certain
epoch is falsely labelled/categorised, our system allows him to
interactively mark mark that label as a mistake. These details
will be saved in a log in the background and they will be used
to retrain the classifier to improve its classification rate and
adapt itself according to the user with the passage of time.
When the user is going to select the retraining option in our
system, then classifierswill retrain themselves on the previous
and the newly logged training examples. As every user has to
log in with his personal ID, every corrective marking detail
will only be saved in that user’s folder and only classifier will
update itself for that user. Hence, the systems classifier tries to
adapt itself according to that user without damaging anyone
else classification.

The concept behind the inclusion of the retraining is that
if there is more than one example with same attributes but
different labels, the classifier is going to get trained to the
one with most population. The user’s corrective marking will
increase the examples of his choice, thusmaking that classifier
adapt itself to the user’s choice in a trivial way. Every user
will have exclusive classifiers trained for him and his marking
will not affect other users’ classifier. As we know, the users
sometimes do not agree on the choice of the epileptic pattern
or its type.The exclusive processing for each user will help the
same software keep the system trained for every user and it
will also let different users compare their markings with each
other.

We do not have any standard right now tomeasure which
neurologist is the most righteous among a disagreeing group
of neurologist users. So we kept the corrective markings of
each user to his account so that it may not interfere with
the one who may not agree on his choice. So, the developed
system is used to facilitate the neurologist’s selection to the
user according to his own choice and after initial training on
every retraining it tries to adopt more users.This system does
not want to dictate to the neurologist but rather learn from
him to adapt him to save his time.

We want the classifier to think like the user and supple-
ment him by highlighting the epochs of his choice, so the gold
standard after few retraining mechanisms will be the user
himself. Already tested examples with new labels inclusion in
the training examples for the retrainingwill bias the classifiers
choice in favour of user.

3. Experimentation

In this section, we will discuss the results in detail. At first,
we will describe the datasets which we used to train, test, and
validate our method. Then we will discuss their versatility
(Figure 7).

3.1. Dataset. Two labelled datasets of epilepsy suspected
surface EEG data were available to us. Both of these datasets
have lots of versatility in between them in terms of ethnicity,
age, gender, and equipment.The datasets available to us were
about generalised absence seizure which is characterized by
the 3Hz spike and wave epileptic pattern in almost each
channel. That is why we have classification results available
only for one type of epilepsy which is absence seizure.



BioMed Research International 5

Table 1: This table describes the affiliation of detailed coefficients
with epileptic frequency band of interest for 256Hz sampled CHB-
MIT dataset.

Epileptic frequency range Detailed coefficients’ level
Beta (𝛽) CD3 (32Hz to 16Hz)
Alpha (𝛼) CD4 (16Hz to 8Hz)
Theta (𝜃) CD5 (8Hz to 4Hz)
Delta (𝛿) CD6 (4Hz to 2Hz)
Delta (𝛿) CD7 (2Hz to 1Hz)

Table 2: This table describes the affiliation of detailed coefficients
with epileptic frequency band of interest for 512Hz sampled PIMH
dataset.

Epileptic frequency range Detailed coefficients’ level
Beta (𝛽) CD4 (31.2Hz to 15.6Hz)
Alpha (𝛼) CD5 (15.6Hz to 7.8Hz)
Theta (𝜃) CD6 (7.8Hz to 3.9Hz)
Delta (𝛿) CD7 (3.9Hz to 2Hz)
Delta (𝛿) CD8 (2Hz to 1Hz)

3.1.1. CHBMIT. This database is the online available surface
EEG dataset [20] which is provided by Children Hospital
Boston and Massachusetts Institute of Technology and it is
available at physioNet website [10]. It contains 916 hours of
23 channels scalp EEG recording from 24 epilepsy suspected
patients.This ECG recording is sampled at 256Hz with 16-bit
resolution.The 23rd channel is same as 15th channel (Table 1).

3.1.2. PIMH. The second database of EEG datasets is pro-
vided by our collaborator at Punjab Institute ofMentalHealth
(PIMH), Lahore. Its sampling frequency is 500Hz and it was
recorded on 43 channels (among which 33 channels are for
EEG). This dataset consists of 21 patients EEG recording.

3.2. Features

3.2.1. Feature Extraction. Data which interests us lies in
between the frequency range of 0.3Hz to 30Hz. So after
applying DWT with db4 mother wavelet, we have to select
detailed coefficients with this frequency range. So in case of
256Hz sampled CHBMIT dataset, we have to go to at least
3 levels of decomposition and discard the earlier two as it is
demonstrated in Figure 2. In order to get the discriminating
information between different types of epileptic patterns and
identifying them correctly without mistaking themwith each
other, decomposition of this detailed coefficient further in
Beta, Alpha,Theta, and Delta is hugely helpful. So we further
decomposed them until the 7th level. Hence, we used the
DWTs detailed coefficients of levels 3, 4, 5, 6, and 7 for 256Hz
sampled CHB-MIT dataset (Table 2).

After the selection of the wavelet coefficients, we calcu-
lated the statistical feature out of them.The statistical features
were the mean, power, and standard deviation of all of the
selected coefficients.

In case of 512Hz sampled PIMH dataset, we used the
DWTs detailed coefficients of levels 4, 5, 6, 7, and 8.

After the selection of detailed coefficients, we calculated
the statistical feature out of them. The statistical features
were the mean, power, and standard deviation of all of the
shortlisted detailed coefficients.

3.2.2. Standardization. During training stage, we first used
simple 𝑧-score normalization to standardize the features [19]
before applying feature reduction. But the real issue arose
when we tried to normalize them during testing stage. One
way of doing this is that we keep all of the examples and
apply 𝑧-score on them along with the new test data. Instead
of this time taking process, we made an assumption on
our observation that mean and standard deviation does not
deviate a lot. It is analysed in this study that the EEG time
series are assumed to be stationary over a small length of the
segments. So we used the mean and standard deviation of the
training examples from the training stage to normalize the
test examples. Figures 5 and 6 illustrate our observation, in
which you can see that there is not much deviation in train
and train + test examples mean and standard deviation.

3.3. Classifier. Classification is used in machine learning
to refer to the problem of identifying a discrete category
to which a new observation belongs. Observations with
known labels are used to train a classification algorithm or
classifier using features associated with the observation. For
CHBMIT database, we had to train 220 classifiers in initial
training stage. The calculation behind 220 is the 22 channels
multiplied by 10 types of epileptic pattern. The 23rd channel
was same as 15th channel. For PIMH dataset 330 classifiers
were trained where 33 channels of EEG were utilized. We
tried three different classifiers and found SVM to be the most
accurate.

We have used blind validation mechanism for the ten
different feature data distributions to estimate the classifi-
cation performance. These 10 different and separate blind
data distributions were taken from a huge set of EEG
dataset. These 10 data distributions we randomly divided
into two groups. We trained our classifier on one half of the
distribution and tested it on the other half. We repeated that
on all ten distributions.Then we calculated the average of the
classification rate for the all ten distributions.

3229 out of 3297600 epochs were randomly taken for ten
times from CHBMIT dataset. Each time half of them were
used to train and half of them were used to test the initial
classification. The average of the sensitivity, specificity, and
accuracy for these ten distributions is considered as the initial
training phase performance.

Same approachwas applied onPIMHdatasets where 3229
out of 24097 epochswere randomly taken fromPIMHdataset
for the six times instead of ten times.

Due to unavailability of the non-3Hz spike and wave
epileptic EEG data, currently we have only classification rates
for generalized absence seizure.

3.3.1. Exclusive Processing. In this study, we have analysed
that even in the case of absence seizure epileptic patterns do
not appear in the exact same way in each channel. Handling
of each channel exclusive to each other was also another very
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Figure 2: Selection of DWT detailed coefficients for a 256Hz sampled 1 sec wide epochs EEG signal.

important decision. We tested the classification in both ways,
that is, one classifier for all of the channels at once versus one
separate classifier for each channel (Figure 8).

This processing of each channel exclusive to each other
improved over average accuracy from approximately 91% to
approximately 95% in case of SVM. So for SVM, there is

a significant improvement of 4% by this change. In case of
QDA accuracy rose from 91% to 94% with an improvement
of 3% and in case of ANN it rose from 91.8% to 92.9% with
an improvement of 1.1%.

Results show that SVMsuites ourmethod in themost effi-
cient way. ANN has a lesser classification time and LDA has
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a lesser training time as compared to SVM, but considering
the sensitivity and classification improvement through cor-
rective marking, we think that SVM is the better choice than
LDA and ANN. In upcoming sections, we have shown the
results for all three types of classifier.
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Figure 5: Relationship between channel’s number and mean value
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(a) AdaptationMechanism. To test the adaptationmechanism
807 corrective epochsweremarked by the user for aCHBMIT
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dataset file, and he marked the same amount of epochs for
each channel. These corrective markings were saved in his
log as training examples. These corrective markings as the
new examples along with the 32290 epochs of initial training
stagewere used to retrain the classifier.Thenumber 32290 has
come from the 3229 randomly selected epochs from whole of
the CHBMIT dataset for the ten separate times during initial

training phase. Then later the performance of the classifier
after retraining was judged again on another random 3000
epochs (Figure 14).

In case of PIMH dataset 57 corrective epochs were
selected for PIMH dataset. This time 19374 epochs of the
PIMH dataset were used along with the 57 corrective mark-
ings, as for the PIMHwe randomly selected the 3229 numbers



BioMed Research International 9

89

90

91

92

93

94

95

96

SVM QDA ANN

Processing all channels simultaneously with single classifier
Processing all channels separately with separate classifier for 
each channel

Figure 8: Accuracy relationship of different classifiers and their
classification rate.

84

86

88

90

92

94

96

98

100

Accuracy after initial training (%)
Accuracy after retraining (%)

“F
P1

F7
”

“F
7

T7
”

“T
7

P7
”

“P
7

O
1

”
“F

P1
F3

”
“F
3

C3
”

“C
3

P3
”

“P
3

O
1

”
“F

P2
F4

”
“F
4

C4
”

“C
4

P4
”

“P
4

O
2

”
“F

P2
F8

”
“F
8

T8
”

“T
8

P8
”

“P
8

O
2

”
“F

ZC
Z”

“C
ZP

Z”
“P
7

T7
”

“T
7

FT
9

”
“F

T9
FT

1
0

”
“F

T1
0

T8
”

Figure 9: Relation between average classification rate and accuracy
of the channel after initial training and retaining.

of epochs for the six times. The retrained classifier was tested
on the 2361 remaining epochs.

(b) Support Vector Machine. We used the support vector
machine classifier package available in MATLAB Bioinfor-
matics Toolbox. We found linear kernel to be the most
accurate SVM kernel with 50 as the box constraint.

(c) CHBMIT. For CHBMIT dataset, initial training of the
classifier resulted in 96.3% average accuracy, 97.4% average
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Figure 10: Relation between average classification rate and accuracy
of the channel after initial training and retaining.
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Figure 11: Relation between average classification rate and accuracy
of the channel after initial training and retaining.

specificity, and 93.5% average sensitivity for 3Hz spike and
wave which is a characteristic of absence seizure. After
initial training our specificity is better than that of Shoeb
[10] and Nasehi and Pourghassem [21] who used the same
dataset to validate their technique with different features
and application technique. This shows that our technique
is providing better results even at the initial training phase
(Figure 11).

In Table 3 we have shown the average initial classification
and retrained classification results of our system for each
channel. In this system, we have shown that after correction
of few epochs there is a visible improvement in the systems
classification. The average accuracy of the system rose from
95.5% to 96.3%.

(d) PIMH. For PIMH dataset, initial training of the classifier
resulted in 90% average accuracy, 94% average specificity, and
80% average sensitivity for 3Hz spike and wave which is a
characteristic of absence seizure (Figure 12).
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Figure 12: Relation between average classification rate and accuracy
of the channel after initial training and retaining.
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Figure 13: Relation between average classification rate and accuracy
of the channel after initial training and retaining.

In Table 4, we have shown the average initial classification
and retrained classification results of our system for each
channel. Table 4 shows that our technique is robust and it
works also on a different dataset. The average accuracy of the
system rose from approximately 89% to 90%.

3.3.2. Discriminate Analysis. We used the discriminant anal-
ysis package available in MATLAB Statistics Toolbox. We
found pseudoquadratic to be the best performing discrimi-
nate type with uniform probability.

(a) CHBMIT. For CHBMIT dataset, initial training of the
classifier resulted in 94% average accuracy, 96% average
specificity, and 90% average sensitivity for 3Hz spike and
wave which is a characteristic of absence seizure. After initial
training our specificity is better than that of Shoeb [10] and
Nasehi and Pourghassem [21] (Figure 13).

In Table 5, we have shown the average initial classification
and retrained classification results of our system for each
channel. In this system, we have shown that after correction
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Figure 14: Relation between average classification rate and accuracy
of the channel after initial training and retaining.

Table 3: First column shows the channel label, the second column
shows the initial training accuracy, and third one shows the marked
correction by a neurologist and the last one shows the final accuracy.

Channel Accuracy after
initial training (%)

Number of epochs
marked by the user

Accuracy after
retraining (%)

FP1F7 96.3805 807 97.2696
F7T7 96.9302 807 97.2645
T7P7 96.4295 807 97.1892
P7O1 97.6660 807 97.9844
FP1F3 96.5932 807 97.1636
F3C3 95.2557 807 95.8268
C3P3 94.3129 807 95.4354
P3O1 96.1653 807 96.7156
FP2F4 96.5520 807 97.1408
F4C4 94.0773 807 95.1094
C4P4 97.2442 807 97.9201
P4O2 92.3547 807 93.8824
FP2F8 94.5957 807 95.1480
F8T8 96.2118 807 96.8850
T8P8 96.8148 807 97.3952
P8O2 95.1268 807 95.4580
FZCZ 89.5010 807 91.4936
CZPZ 93.1258 807 94.6167
P7T7 96.3280 807 97.0216
T7FT9 95.0556 807 96.1656
FT9FT10 97.4703 807 97.8714
FT10T8 97.7348 807 98.1905

of few epochs there is visible improvement in the systems
classification. The average accuracy of the system rose from
94% to 95%.

(b) PIMH. For PIMH dataset, initial training of the classifier
resulted in 90% average accuracy, 95% average specificity, and
73% average sensitivity for 3Hz spike and wave which is a
characteristic of absence seizure.

In Table 6, we have shown the average initial classification
and retrained classification results of our system for each
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Table 4: First column shows the channel label, the second column
shows the initial training accuracy, and third one shows the marked
correction by a neurologist and the last one shows the final accuracy.

Channel Accuracy after
initial training (%)

Number of epochs
marked by the user

Accuracy after
retraining (%)

Fp1 90.3692 57 90.9779
Fp2 90.7681 57 91.9478
F3 95.0380 57 95.6088
F4 91.3297 57 91.3627
C3 93.3561 57 93.3813
C4 93.6448 57 93.8244
P3 88.7797 57 89.0716
P4 90.1133 57 89.3159
O1 86.5848 57 87.8883
O2 90.8300 57 92.5787
F7 93.7438 57 94.3815
F8 94.4563 57 94.8470
T3 93.9221 57 94.3731
T4 93.8322 57 94.1035
T5 93.5670 57 93.1092
T6 94.1287 57 95.3485
FZ 88.9061 57 88.6571
CZ 88.6708 57 89.2548
PZ 91.2450 57 91.8549
E 91.8499 57 93.2420
PG1 82.7552 57 83.0715
PG2 86.7638 57 87.3141
A1 90.7149 57 91.0081
A2 87.3506 57 87.7646
T1 84.1250 57 85.0581
T2 89.7853 57 90.4835
X1 90.9339 57 94.5756
X2 92.9365 57 93.3816
X3 86.3529 57 85.7929
X4 86.2634 57 85.8934
X5 69.7540 57 71.9493
X6 81.2648 57 81.9323
X7 82.0801 57 81.3344

channel. Table 6 shows that our technique is robust and it
works also on a different dataset. The average accuracy of the
system rose from approximately 89% to 90%.

3.3.3. Artificial Neural Network. We used feedforward back-
propagation package available in MATLAB Neural Network
Toolbox and found Levenberg-Marquardt to be the best
method, with 0.05 learning rate.

(a) CHBMIT. For CHBMIT dataset, initial training of the
classifier resulted in 92.88% average accuracy, 98.66% average
specificity, and 75.75% average sensitivity for 3Hz spike and
wave which is a characteristic of absence seizure (Figure 9).

Table 5: First column shows the channel label, the second column
shows the initial training accuracy, and third one shows the marked
correction by a neurologist and the last one shows the final accuracy.

Channel Accuracy after
initial training (%)

Number of epochs
marked by the user

Accuracy after
retraining (%)

FP1F7 96.1757 807 96.6399
F7T7 95.7686 807 96.1467
T7P7 94.5025 807 95.5098
P7O1 96.2598 807 96.9693
FP1F3 95.8724 807 96.1773
F3C3 93.9484 807 94.4194
C3P3 92.8110 807 93.9872
P3O1 94.1724 807 94.7690
FP2F4 95.3442 807 95.9999
F4C4 92.7255 807 93.8686
C4P4 96.2509 807 96.8740
P4O2 91.0961 807 92.1808
FP2F8 93.4976 807 93.9840
F8T8 94.8939 807 95.5075
T8P8 95.2540 807 96.2940
P8O2 93.4941 807 94.3612
FZCZ 87.1507 807 88.3645
CZPZ 91.4283 807 92.4912
P7T7 94.5118 807 95.3794
T7FT9 94.8031 807 95.5306
FT9FT10 96.8328 807 97.0555
FT10T8 96.4514 807 96.9534

In Table 7, we have shown the average initial classification
and retrained classification results of our system for each
channel. In this system, we have shown that after correction
of few epochs there is visible improvement in the systems
classification. The average accuracy of the system rose from
92.88% to 93.96%.

(b) PIMH. For PIMH dataset, initial training of the classifier
resulted in 84% average accuracy, 94.8% average specificity,
and 56.5% average sensitivity for 3Hz spike and wave which
is a characteristic of absence seizure (Figure 10).

In Table 8, we have shown the average initial classification
and retrained classification results of our system for each
channel. Table 8 shows that our technique is robust and it
works also on a different dataset. The average accuracy of the
system rose from approximately 84% to 85.43%.

4. Discussion and Future Work

Computer-assisted analysis of EEG has tremendous potential
for assisting the clinicians in diagnosis. A very important
and novel phase of our system is user adaptation mechanism
or retraining mechanism. Introduction of this phase has
importance in many aspects. In this phase, system tries to
adapt its classification according to users desire. Moreover,
this technique personalizes the classifiers classification. It has
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Table 6: First column shows the channel label, the second column
shows the initial training accuracy, and third one shows the marked
correction by a neurologist and the last one shows the final accuracy.

Channel Accuracy after
initial training (%)

Number of epochs
marked by the user

Accuracy after
retraining (%)

Fp1 89.0861 57 89.7390
Fp2 89.0432 57 90.0443
F3 92.5991 57 92.3307
F4 89.6807 57 90.1430
C3 91.9454 57 90.8942
C4 91.1039 57 90.9973
P3 89.3490 57 90.3629
P4 89.7354 57 89.7726
O1 89.1013 57 90.2593
O2 89.2719 57 91.0779
F7 91.9906 57 92.4641
F8 91.7540 57 91.6937
T3 93.4416 57 93.9856
T4 93.2478 57 92.9901
T5 91.3400 57 92.1312
T6 92.8583 57 92.6363
Fz 88.8938 57 89.7298
Cz 84.0064 57 85.7228
Pz 91.6708 57 92.0561
E 85.2267 57 85.5279
PG1 84.6921 57 85.2892
PG2 85.3189 57 85.3886
A1 91.6580 57 92.0482
A2 90.4476 57 90.6291
T1 84.2211 57 85.0355
T2 87.7382 57 87.7849
X1 94.3820 57 94.7490
X2 94.0092 57 94.1500
X3 86.2930 57 86.6199
X4 84.5908 57 85.6526
X5 77.4855 57 79.1122
X6 88.1346 57 89.2410
X7 80.6365 57 81.5108

been cited that sometimes even the expert neurologists have
somedisagreement over a certain observation of anEEGdata.
This systemwill be useful for disagreeing users and it will also
help them in comparing their results with each other.

There is also a threat of overfitting by the classifier.
In order to keep the classifier improving its performance
with the encounter of more and more examples, we have
introduced this user adaptive mechanism in our system. We
consider the existing systems as dead because these cannot
improve their classification rate after initial training (during
software development). The self-improving mechanism after
deployment makes our tool alive. This system can be made
part of the whole epileptic diagnosis process. It will highlight

Table 7: First column shows the channel label, the second column
shows the initial training accuracy, and third one shows the marked
correction by a neurologist and the last one shows the final accuracy.

Channel Accuracy after
initial training (%)

Number of epochs
marked by the user

Accuracy after
retraining (%)

FP1F7 94.0520 807 94.7708
F7T7 94.7174 807 95.8794
T7P7 93.2686 807 94.7645
P7O1 95.6134 807 96.6610
FP1F3 93.6408 807 95.0283
F3C3 91.8523 807 93.3858
C3P3 91.9485 807 92.6572
P3O1 93.4837 807 94.4496
FP2F4 93.2756 807 94.1740
F4C4 91.0014 807 92.1137
C4P4 96.1309 807 96.4253
P4O2 88.8798 807 90.5184
FP2F8 91.0906 807 92.0630
F8T8 92.3974 807 93.8587
T8P8 94.3950 807 95.4360
P8O2 93.6889 807 93.7203
FZCZ 87.1507 807 87.6928
CZPZ 90.0607 807 91.9421
P7T7 93.7488 807 95.0216
T7FT9 93.1506 807 94.5268
FT9FT10 95.8059 807 96.3352
FT10T8 95.0270 807 95.8781

the epileptic spikes among the whole EEG, thus leading to
reduced fatigue and time consumption of a user.We obtained
high classification accuracy on datasets obtained from two
different sites, which indicates reproducibility of our results
and robustness of our approach.

In the future, we are planning to make this a web based
application; neurologists can log in and consult each other’s
reviews about a particular subject. This will make our system
experience a whole versatility of examples and learn from all
of them. Integration of the video and its automatic analysis
(video EEG) can help a neurologist in diagnosing epilepsy in
a better way, whereas this can also help him in distinguishing
between psychogenic and epileptic seizures.Wewould also be
investigating howmuch overfitting is an issue in the reported
performances which are now even touching 100% based on
some claims.There is a need for method/criteria which could
limit these algorithms improving their detection on a limited
number of available examples.

This system ismade keeping inmind that we have to facil-
itate the neurologist by supplementing him in the analysis of
the EEG. We do not want to enforce the classification of the
EEG data on a user.

In the future, we will also include a slider in the system
which will allow the user to adjust the sensitivity and speci-
ficity before retraining. This assisting system is more like a
detection tool which is continuously learning with encounter
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Table 8: Classification rate improvement caused by retraining. First
column shows the channel label, the second column shows the initial
training accuracy, and third one shows the marked correction by a
neurologist and the last one shows the final accuracy.

Channel Accuracy after
initial training (%)

Number of epochs
marked by the user

Accuracy after
retraining (%)

Fp1 84.1736 57 84.6666
Fp2 85.9321 57 86.2142
F3 89.3863 57 90.1669
F4 82.5886 57 84.0065
C3 84.6526 57 85.6825
C4 84.0094 57 87.0688
P3 82.8481 57 84.6240
P4 83.0264 57 85.0625
O1 84.6445 57 84.1711
O2 83.3906 57 84.7017
F7 85.0919 57 88.3044
F8 84.8240 57 86.7992
T3 87.8007 57 88.8983
T4 92.0082 57 92.0256
T5 83.5051 57 86.4678
T6 85.5538 57 87.3744
FZ 83.2279 57 83.9403
CZ 80.0350 57 82.1546
PZ 90.5629 57 91.4475
E 87.3452 57 86.5264
PG1 88.4426 57 88.3773
PG2 83.0150 57 83.3391
A1 84.1149 57 85.5487
A2 84.0726 57 85.0169
T1 81.1019 57 83.0590
T2 83.5085 57 86.0844
X1 85.4925 57 87.7204
X2 85.2431 57 86.6259
X3 78.6937 57 80.5123
X4 81.2826 57 81.3851
X5 73.0822 57 77.2667
X6 83.9101 57 84.7386
X7 76.2795 57 79.2632

of better examples. More and better examples will certainly
improve its performance. The agreement between different
neurologists over the EEG readings is low to moderate. If
we could find the agreement on at least few of the epileptic
patterns correspondence with epileptic disease then we can
take this tool further ahead and use it for diagnosis instead of
just assistance.

One of the biggest limitations to this study is the unavail-
ability of non-3Hz spike and wave data. Even though we have
included the data features of the entire epileptic frequency
ranges exclusive to each other, proof testing on the data will

certainly prove worthy for the progress of these assisting tools
toward a diagnostic tool.
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