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Abstract

In recent studies of humans estimating non-stationary probabilities, estimates appear to be
unbiased on average, across the full range of probability values to be estimated. This finding
is surprising given that experiments measuring probability estimation in other contexts have
often identified conservatism: individuals tend to overestimate low probability events and
underestimate high probability events. In other contexts, repulsive biases have also been
documented, with individuals producing judgments that tend toward extreme values instead.
Using extensive data from a probability estimation task that produces unbiased performance
on average, we find substantial biases at the individual level; we document the coexistence
of both conservative and repulsive biases in the same experimental context. Individual
biases persist despite extensive experience with the task, and are also correlated with other
behavioral differences, such as individual variation in response speed and adjustment rates.
We conclude that the rich computational demands of our task give rise to a variety of behav-
ioral patterns, and that the apparent unbiasedness of the pooled data is an artifact of the
aggregation of heterogeneous biases.

Author summary

Humans often misrepresent probabilities, frequencies, and proportions they encounter—
either overestimating or underestimating the true underlying values. Understanding the
cognitive and neural representation of such quantities is important, as probabilities are
present in all kinds of impactful decisions—e.g., as we assess the likelihood of a dangerous
event or the probable returns on a financial investment. Despite the ubiquitous observa-
tion that humans are biased in estimating probabilities, a new laboratory task reportedly
elicits unbiased performance. This task involves predicting the likelihood of a green ring
emerging from a box containing red and green rings; as subjects draw rings and report
their estimates, the ring composition of the box itself changes infrequently. Here we per-
form a novel and thorough analysis of individuals’ performance on one such experiment,
showing that people are indeed biased in idiosyncratic ways. These patterns are unexam-
ined by studies focusing on average performance: some people routinely report an
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exaggerated range of probabilities, some favor intermediate values, while others are
approximately unbiased. These biases persist across hours of experience and accompany
other tendencies such as quickness in response. We show that subjects’ idiosyncrasies can
be understood as arising from various cognitive mechanisms; nonetheless, subjects’
reports are best described as resembling a distorted version of the optimal statistical
estimate.

Introduction

Decision-makers often report distorted probabilities, despite the ubiquitous day-to-day experi-
ence with probability estimation. The type of distortion differs across tasks and contexts, but
two commonly identified patterns are conservatism, where individuals report probabilities that
are less extreme than the true values (tending toward 50%), and repulsive biases away from
50%, where extreme values are disproportionately reported. The tendencies of probability esti-
mates to be distorted either around the average value or towards the extremes result in variants
of S-shaped response functions.

These seemingly conflicting patterns of biased judgment reflect, at least in part, differences
in the tasks analyzed. For example, the conversion of experienced frequencies into reported
probabilities tends to be associated with conservatism [1], while the conversion of numerical
proportions into visual representations results in the opposite pattern from that of judgment
errors [2]. In general, studies involving the estimation of an observed frequency often find con-
servatism, such as in visual judgments of dots of different colors [3, 4], sequences of letters [5],
and ratios of auditory durations [6]. Reversals of this bias have also been documented, though
they are less common [2, 7, 8]. In the probability calibration literature, overconfidence has
been documented more frequently (for a review, see [9]). These experiments involve asking
subjects a question about a unique event (e.g., a general knowledge question). Subjects are also
asked to assign a probability that their answer is correct (e.g., [10]). Overconfidence is indi-
cated when confidence ratings (e.g., how likely the subject thought their answer was correct)
are greater than the frequency of correct answers. Also in this domain, the modal bias can
reverse, depending on the difficulty level of questions [11].

The inferred bias also depends on the statistical approach used: Both repulsive errors and
conservatism can be identified within the same data set, depending on the statistics used to
characterize bias [12]. In addition, judgments are subject to internal noise, which can interfere
with the identification of biases [12-14].

Further complicating matters, recent research on the estimation of non-stationary probabil-
ities has emphasized how nearly unbiased estimates are on average—while recognizing that
estimates on individual trials are noisy [15-17]. In these studies, aggregating probability esti-
mates across subjects yields a median forecast that seems to closely track the underlying true
probability, over the full range of possible probability values.

In this paper, we probe the surprising finding of unbiased forecasting of non-stationary
probabilities by studying the subject-level data from Khaw et al. [17], who present results from
an estimation task similar to that of Gallistel et al. [15]. The experimental design includes ele-
ments of probability estimation as well as sequential change detection [18]. Subjects observe
many realizations of a Bernoulli random variable, in the form of draws of red or green rings
from a virtual box. They are asked to indicate the probability of drawing a green ring on each
draw. The true probability itself changes from time to time in an unsignaled manner. Subjects
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achieve relatively unbiased average performance relative to both the true probabilities and the
Bayesian benchmarks [15-17]. This is surprising given the added computational complexity of
the task compared to those used in prior studies, discussed above.

The main questions studied in this paper are the following: Is probability estimation unbi-
ased when examined at the individual level? If this is not the case, what are the ways in which
individual estimates deviate from the unbiased forecast in this paradigm? The large number of
observations for each subject allows us to analyze these data at the subject level, testing for a
variety of individual biases. Additionally, we are able to test if differences are stable within
individuals, despite extensive experience with the task, and whether they are correlated with
other individual patterns of behavior. We also test whether observed biases might be
accounted for by alternative theories of probability estimation; we consider two major classes
of models, centered on either error-based updating or limited samples of prior observations.

We characterize the data using a family of computational models of subjective probability
estimation, based on the probabilistic log odds model [12, 19]. The models accommodate ran-
dom noise in subjective estimates, as proposed by a number of existing models in the literature
[12, 13, 20, 21]. Importantly, we allow for a general form of conservatism or repulsion, a flexi-
ble cross-over point between over-weighing and under-weighting (or “indifference point”, as
defined by Attneave [1]), and for a wide range of heterogeneity across subjects. This flexibility
allows us to identify the most important dimensions along which subjects’ estimation perfor-
mance deviates from unbiased estimates. Our approach is based on work that has proposed
non-linear probability weighting functions to account for biases in the treatment of probabil-
ity. These models specify subjective decision weights as implied by choice behavior [22-24], or
describe how probability is estimated from perceived frequencies.

We find that unbiasedness is an artifact of aggregating the behavior of a balanced sample of
individually biased subjects. The estimates of individual subjects are often far from unbiased,
but the biases of different subjects are quite different, in a way that can allow the pooled data to
look nearly unbiased. We conclude with an analysis that further links the types of biases identi-
fied to other metrics of behavior in the task. Our results regarding the coexistence of a range of
biases across subjects completing the same task complement those of Zhang, Ren, and Malo-
ney [25], who find that the type of bias may change across tasks for the same participant. Vary-
ing levels of individual accuracy have been reported in the same kind of task by Forsgren,
Juslin, and Van Den Berg [26] but not analyzed in detail in this respect.

Methods
Data description

We analyze the individual-level data from Khaw et al. [17] made publicly available through the
associated Data In Brief supplement. The task is a modified version of Gallistel et al.’s [15]
experimental design. Subjects were instructed to estimate the probability of drawing a green
ring out of a box with green and red rings. The Bernoulli parameter governing this probability
changed occasionally, in an unsignaled manner, over the course of each session. After each
ring draw, there was a fixed probability of 0.05 that a new box would be created, with a new
proportion of green rings. This non-stationarity required subjects to consider what the evi-
dence presented implied for both their current forecast and for the possibility that they are
drawing from an entirely different box. The subjects were told about this rate of change, and
that each time there was a change, new values for the true probability would be drawn from
the uniform distribution on the unit interval.

Subjects’ estimates of these probabilities and their response times were recorded for each
ring draw, and subjects were given monetary rewards for the accuracy of their estimates.
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Notably, unlike other trial-by-trial experimental procedures, the task was self-paced: subjects
clicked a button (labeled ‘NEXT’) to request the next ring draw. The reported probabilities
were measured using each subject’s slider position at the time the ‘NEXT’ button was clicked;
response times denote the time elapsed between clicks requesting the next ring. We have
10,000 observations for each subject, which gives us enough data to conclude with some confi-
dence that any systematic patterns we identify are not the result of random noise. The data set
contains estimates reported by 11 subjects, each of whom completed 10 sessions of 1,000
draws each. Khaw, Stevens, and Woodford [27] report additional details about the experimen-
tal paradigm, including figures of the user interface.

Fig 1 shows the distributions of probability estimates for individual subjects. Individuals
show a wide range of estimates over the course of the task. Some subjects, such as subjects 5
and 9, tend to concentrate around 0.5, while others, such as subjects 4 or 10, avoid 0.5. In con-
trast to these subjective distributions, the true probabilities of drawing a green ring were
drawn uniformly from the unit interval.
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Fig 1. The subject-level distributions of reported probabilities and the ‘true’ underlying probabilities in the dataset of Khaw, Stevens, and Woodford
[27]. In contrast to the distributions of probabilities reported by individual subjects, the underlying probabilities were drawn uniformly from the unit
interval. Deviations from the uniform distribution in the underlying probabilities reflect finite sampling.

https://doi.org/10.1371/journal.pcbi.1008871.9001
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Fig 2. Pooled and individual-level probability estimates. (A) The median estimate across the pooled sample tracks the true probability in each bin. The error
bars denote interquartile ranges. (B) The median response of each participant, across trials and sessions, generates varying S-shaped response functions.
Participants are color-coded by their degree of conservatism, with darker colors indicating more conservatism (as defined in the Computational Models section).

https://doi.org/10.1371/journal.pchi.1008871.9002

To visualize the overall level of accuracy achieved on the task, Fig 2A plots the median
reported probability against the true underlying probability. The proximity to the 45 degree
line supports the observation of Gallistel et al. [15] that the mapping between true values and
perceived probability is approximately “the identity function over the full range of probabili-
ties.” However, plotting the median forecast at the participant level (aggregating across trials
and sessions) gives rise to a wide range of biases in the form of varying S-shaped distortions
around the 45 degree line (Fig 2B). It is important to emphasize that the individual mappings
are constructed based on 10,000 trials for each subject, and thus do not represent inherent
noise across trials, which would wash out over such a large sample. These differences fore-
shadow the more formal results of both conservatism and repulsive biases, discussed in the
next section.

The forecasts of a Bayesian observer

The participants cannot directly observe the true probability of drawing a green ring on each
trial. Instead, they are given information about the ring generating process and observe a
sequence of random ring draws. The ring draws are noisy signals that generate a degree of ran-
domness relative to the true probability even for an ideal observer. Moreover, the presence of
this randomness may itself induce participants to optimally distort their forecasts relative to
the true probability, just as a Bayesian statistician puts a lower weight on a noisier signal. We
are interested in how well participants perform given what they observe, how well they use the
information available to them. Hence, we focus our analysis not on how closely participants
forecast the true probability, but rather on how close their forecasts are to those of an ideal
observer, who computes probabilities optimally using all the available information.

We consider an ideal observer who is given exactly the same information as our partici-
pants, and who forms optimal Bayesian forecasts, based on (i) knowledge of the process that
generates the rings and (i) the history of ring realizations observed. Relevant to these forecasts
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are both the fact that the true probability is drawn uniformly from the unit interval, and the
fact after each draw there is a 0.5% probability that the true probability is replaced by an inde-
pendent draw, also from the unit interval. The Bayesian forecast starts at 0.5 and is updated
after each ring realization. The solution to the Bayesian benchmark is derived in Khaw et al.
[17] and reproduced in S1 Appendix.

The randomness introduced by the ring realizations generates a slight dampening in the
Bayesian forecasts, as shown in the top panels of Fig 3. However, the deviations of the Bayesian
forecast from the true probability are much smaller than those of our participants. As demon-
strated by the lower panels of Fig 3, most of the divergence between subjective forecasts and
the true probability reflects deviations of the subjective forecasts from the optimal forecast, not
deviations of the optimal forecast from the true probability.
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Fig 3. The Bayesian forecast and true probabilities. (A) The median Bayesian estimate closely tracks the true underlying probability in each bin. (B) The median
Bayesian responses corresponding to the sessions completed by each individual generate very small dispersion around the diagonal. (C) and (D) Much of the deviation
in the subjective probability forecasts from the true probabilities reflect deviations from the Bayesian forecast.

https://doi.org/10.1371/journal.pchi.1008871.9g003
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Computational models

In order to formally test for and characterize potential biases in these data, we turn to a model
comparison exercise. We consider a family of computational models that describe the subjec-
tive probability estimates reported by our subjects as a noisy function of the ideal Bayesian
observer’s estimate. Many authors have proposed that psychological probabilities can be prox-
ied by nonlinear transformations of the objective probability [22-24, 28]. We use the linear log
odds representation of probabilities, which is consistent with a wide range of data on subjective
probability estimates [12, 19, 25].

Letting a subject’s reported probability be denoted by R, we estimate the model

log<%> =o+f x log(%) +¢, (1)

where B is the Bayesian estimate, and the random noise in subjects’ estimates is assumed to be
normally distributed with zero mean and variance ¢” across trials, £ ~ N(0, 6?).

We allow for two types of systematic distortions. First, the parameter « allows for uniform
over- or underestimation: non-zero values of o predict that a subject’s estimates will systemati-
cally be either higher or lower than the Bayesian response (Fig 4A). Second, the parameter 8
governs the extent to which estimates favor the center of the scale, characteristic of conserva-
tism (B < 1), or extreme values, which would indicate a repulsive bias (8 > 1; Fig 4B). This
specification is similar to that used by Offerman and Sonnemans [20], who analyze subjects’
estimates following observations of coin flip outcome sequences.

Individual subjects adjust their forecast infrequently, as documented by Khaw, Stevens, and
Woodford [17]. The unconditional frequency of adjustment is 8.8 percent, despite the steady
stream of new ring realizations and the fact that the Bayesian forecasts adjust, however mod-
estly, in response to each new ring draw. Infrequent adjustment often arises in experiments
that feature long series of repeated trials [16, 26]. While not the focus of our study, it needs to
be taken into account, to avoid mischaracterizing subjective biases. We estimate Eq (1) both
unconditionally, on the full series, and conditional on adjustment. The conditional estimation
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Fig 4. The two types of estimation biases accommodated by the free parameters of the tested models. (A) The additive bias implied by
non-zero values of a. (B) The non-linear distortion toward or away from 0.5, implied by f different from 1.

https://doi.org/10.1371/journal.pcbi.1008871.g004
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uses the subjective and Bayesian forecasts recorded at the time of the subjective adjustment,
and discards forecasts between adjustments.

We consider variants of Eq (1) that accommodate different combinations of biases as well
as different degrees of heterogeneity across the key parameters e, 3, and o.

Homogeneous models. We first estimate a set of models that impose common parameter
values across the entire participant sample. We begin with the unbiased specification, in which
we estimate 0 # 0 but impose o = 0 and 3 = 1. Next, we allow one or both bias parameters to
deviate from their null values, and we estimate the values that best fit the pooled data.

Heterogeneous models. The next set of specifications allow parameters to differ across
subjects. We first allow the level of noise o to vary across subjects, while imposing homogeneity
in o and B. Next, we re-estimate the models allowing for bias heterogeneity across different
parameter sets. Finally, we estimate individual values {a;, 5, 0}, for each subject i. Our goal in
this analysis is to determine which dimension of heterogeneity matters most in characterizing
individual adjustment patterns.

In addition, results are compared to the Random benchmark, showing the likelihood of the
observed responses, if responses were drawn randomly (thus imposing & = 0 and = 0). The
estimated parameters maximize the log likelihood of observing the data given the functional
specification of each model. The models are ranked using the Bayes Information Criterion
(BIC), to penalize model complexity. Since we use a log odds transformation, we code all
reports of certainty to be either 0.99 or 0.01.

Results
Model estimation results

The models’ free and fixed parameters, along with the log-likelihoods and BIC values are
reported in Table 1. For the heterogeneous parameters models, the table reports the average
value across subjects. The top panels of the table report unconditional results, while the bottom
panels report estimation results conditional on subjects adjusting their forecasts. Subjective
forecasts exhibit considerable stochasticity: responses to identical realizations of the Bernoulli
variable differ, even for the same subject. Because of this randomness in forecasting, we omit
reporting results for models that impose o = 0. We highlight five key findings.

First, the representation of subjective estimates as noisy and biased functions of the opti-
mal Bayesian forecast represents the data well in our sample. The subjective forecasts track
the Bayesian optimal estimate (albeit noisily), substantially outperforming the random fore-
cast benchmark. Moreover, the models that allow for both additive and nonlinear biases
yield a better fit, even with a model-complexity penalty, compared with the model that
imposes no systematic biases and only allows for random noise around the Bayesian
forecast.

Second, we estimate substantial positive additive bias and repulsion, once we take into
account the infrequent adjustment of subjective estimates. The homogeneous model estimates
are o = 0.098 and 3 = 1.155 when estimated conditioning on adjustment, compared with o =
0.031 and 8 = 0.985 for the unconditional sample. These differences reflect the infrequent
adjustment in these subjects’ forecasting decisions, which dampens the estimated sensitivity of
the subjective forecast to the objective probability. We focus our estimation on the sample of
subjective probabilities conditional on adjustment, so as not to confound infrequent adjust-
ment with conservative adjustment.

Third, bias heterogeneity is a significant feature of these data. Models that allow for individ-
ual-specific parameters outperform those that impose common values across subjects. In fact,
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Table 1. Model estimates.

Model a B o k -LL BIC

Unconditional Estimates

Homogeneous Models
Random benchmark 0 0 1.896 1 226024 452060
Estimated o 0 1 0.947 1 149812 299635
Estimated o, o 0.028 1 0.947 2 149762 299548
Estimated 3, o 0 0.987 0.947 2 149782 299588
Estimated o, B, 0 0.031 0.985 0.946 3 149723 299481

Heterogeneous Models
Estimated {a;}, 5, 0 0.031 0.984 0.942 13 149192 298536
Estimated o, {8}, 0 0.040 0.997 0.831 13 135496 271144
Estimated a, 3, {0} 0.053 0.949 0.897 13 137560 275271
Estimated {a}, 8, {0} 0.038 0.947 0.893 23 137174 274616
Estimated a, {8}, {oi} 0.055 0.996 0.798 23 126438 253143
Estimated {a}, {8, {03} 0.039 0.999 0.796 33 126192 252767

Conditional Estimates

Homogeneous Models
Random benchmark 0 0 1.597 1 18253 36515
Estimated o 0 1 1.039 1 14091 28191
Estimated o, o 0.092 1 1.035 2 14053 28125
Estimated 3, o 0 1.152 1.026 2 13973 27964
Estimated a, 8, 0 0.098 1.155 1.021 3 13929 27885

Heterogeneous Models
Estimated {a;}, B, 0 0.078 1.162 1.018 13 13893 27906
Estimated a, {8}, 0 0.128 1.019 0.912 13 12836 25792
Estimated &, B, {0} 0.066 0.950 0.926 13 12797 25714
Estimated {a}, B, {oi} 0.078 0.952 0.920 23 12772 25755
Estimated o, {8}, {03} 0.083 1.018 0.839 23 11773 23758
Estimated {a;}, {8}, {0} 0.090 1.026 0.832 33 11707 23718

Note: The parameter values fixed to null values are shown in gray. For estimations that allow parameters to differ across subjects, the table reports the averages across
subjects, in bold. LL is the log-likelihood, k is the number of free parameters, and BIC = =2LL + kln(N). The number of observations is N = 109, 780 for the

unconditional estimates and N = 9, 673 for estimates conditional on adjustment.

https://doi.org/10.1371/journal.pcbi.1008871.t001

the model that allows for individual-specific values for all three parameters explains the data

best among those tested here, once again, even after penalizing for model complexity. Cross-
sectional variations in the non-linear bias parameter § and in the standard deviation of noise ¢

generate the biggest improvements in model fit.

Fourth, there is an interaction between the parameters: imposing homogeneity in the bias
parameters results in higher estimates of the level of noise. Gallistel et al. [15] also implicitly
point out the connection between non-linear bias and noise. As they note, the more sensitive

subjective estimates are to the data (which, in our framework, translates into a higher value for
B), the noisier will be the individual forecasts, especially in this binary outcome setting.
Fifth, accounting for heterogeneity recovers the relatively unbiased average performance in

this sample: in the model with heterogeneity in all three model parameters, we estimate only
modest degrees of positive bias o = 0.09 and repulsion 3 = 1.026, on average. In the later sec-
tion on individual-level biases, we document the degree of variability around these average

values.
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Comparison to second-best specifications

We can furthermore consider the merit of full heterogeneity (across all three bias parameters)
with a four-fold cross-validation exercise. The key comparison here involves the full model and
the second-best model—a variant that assumes homogeneity in the additive bias parameter a.
We consider the in-sample fit of these models by selecting a subset comprising three fourths
of randomly chosen observations (the “calibration” dataset), and then finding the parameter
estimates that maximize the likelihood of these observations. We evaluate the out-of-sample fit
of these models by computing the likelihood of observing the data in the remaining one
fourths of each dataset (the “validation” dataset), using the fitted calibration parameters. In
Table 2, the columns titled BIC®*""°" and BIC %" respectively report the average BIC val-
ues obtained from the calibration datasets and the remaining validation partitions. We follow
Khaw, Li, and Woodford [29] in reporting a composite Bayes factor K = K; - K,, taking into
account observations of both calibration and validation datasets. For any two models, M, and

M,
log Kl — LLmlibmrion (MZ) _ LLmlibmrion (Ml) _ (kl _ kz) In (Ncalibmtion) (2)

10gK2 — LLValidatian(M]) _ LLValidation(Mz) (3)

In this formulation, M, is the model allowing for full heterogeneity, while M, is the alter-
native model considered on each line of Table 2; values K > 1 indicate the degree to which the
data provide more support for the fully heterogeneous model than for the alternative. In (2), k;
and k;, are the numbers of free parameters in the respective models and
ber of observations in each calibration dataset (in effect, penalizing for a greater number of
free parameters following the BIC formula). The logarithm of the composite Bayes factor K is
reported in the final column of Table 2, as an overall summary of the degree to which the data
provide support for each model.

libration :
INEARPTanon is the num-

We find that for both in and out-of-sample fits, the fully heterogeneous model outperforms
competitive variants that do not allow for heterogeneity in the additive bias parameter. The
Bayes factor K thus also offers a relative likelihood that summarily supports the full model.

Individual biases in probability judgments

We now turn to individual biases, focusing on results estimated conditional on adjustment.
Fig 5A plots the distribution of parameter values for the best-fitting model. Consistent with a
large body of work that has documented dispersion and stochasticity in decision-making, we
find considerable noise in subjects’” individual estimates relative to the Bayesian model. The
standard deviation of errors ranges between 0.44 and 1.21. More importantly, we identify sys-
tematic biases that do not seem to reflect random noise in the execution of the experimental
task. We estimate nonzero values for the intercept bias a ranging from 0.02 to 0.27 in absolute

Table 2. In-sample and out-of-sample measures of goodness-of-fit compared for the fully heterogeneous model
and close alternatives.

Model BICeelibration BIC*lidation Log K
Estimated {o;}, {8}, {0} 17749 6063 0
Estimated a, {8}, {03} 17857 6101 67
Estimated {83}, {0} 17877 6065 93
Estimated {a;}, 8, {03} 19358 6593 1064

https://doi.org/10.1371/journal.pcbi.1008871.1002
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https://doi.org/10.1371/journal.pcbi.1008871.9005

value. For all but two participants, @ = 0 lies outside the 95% confidence interval. One partici-
pant has a statistically significant negative additive bias, while the remainder tend to report
forecasts that are systematically higher than the Bayesian forecast.

The non-linear distortion parameter f ranges from 0.41 to 1.82 across participants, despite
extensive experience with the task, over the course of 10,000 trials. For one participant, the no-
bias value (8 = 1) lies inside the 95% confidence interval, while the remaining participants are
evenly split between statistically significant conservatism and repulsion. Fig 5B plots the distri-
bution of individual responses against the Bayesian estimates, for each tercile of the distribu-
tion of S values. The conservative values in our sample are comparable to the values of 0.56,
0.61 and 0.71 reported by Gonzalez and Wu [23] in prior experiments, while the repulsive val-
ues suggest an excessive sensitivity to ring realizations over the course of the trials.

The strong biases at the individual level end up canceling out in the group average. How-
ever, this group average is based on a relatively small number of participants. While we have
strong statistical evidence in support of biases at the individual level, given the large number of
trials per subject, we cannot say with any certainty that the canceling out of biases across par-
ticipants would survive in another sample of participants. The fact that biases are so correlated
across trials for each participant substantially reduces the number of independent observations
that can be claimed when making statements about the group averages.
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Table 3. Individual parameter estimates.

Subject Parameter M.L. Estimate 95% C.I. Mean Estimate S.E.
1 a 0.091 [0.031, 0.152] 0.193 0.087
B 1.059 [0.994,1.131] 1.154 0.120

4 0.790 [0.707, 0.876] 0.691 0.062

2 a -0.130 [-0.286, -0.011] 0.057 0.166
B 0.407 [0.275, 0.542] 0.758 0.314

4 1.208 [1.131,1.276] 1.037 0.128

3 a 0.044 [0.011, 0.074] 0.053 0.029
B 0.905 [0.875, 0.933] 0.904 0.029

o 0.443 [0.414, 0.471] 0.398 0.022

4 a 0.198 [0.135, 0.267] 0.065 0.118
B 1.124 [1.032,1.221] 1.389 0.156

o 1.088 [1.006, 1.163] 1.014 0.047

5 a 0.159 [0.090, 0.218] 0.107 0.074
B 0.814 [0.724, 0.907] 0.897 0.067

4 0.548 [0.469, 0.632] 0.454 0.055

6 a 0.196 [0.069, 0.325] 0.223 0.084
B 1.203 [1.099, 1.307] 1.288 0.137

o 1.161 [1.042, 1.280] 1.081 0.098

7 a 0.050 [0.025, 0.075] 0.158 0.060
B 0.810 [0.775, 0.842] 0.776 0.086

o 0.576 [0.549, 0.601] 0.477 0.029

8 a 0.267 [0.221, 0.314] 0.342 0.158
B 1.823 [1.771, 1.880] 2.026 0.199

o 1.167 [1.131, 1.200] 0.966 0.076

9 a 0.018 [-0.023, 0.060] -0.047 0.150
B 0.498 [0.445, 0.550] 0.366 0.068

o 0.517 [0.459, 0.566] 0.363 0.055

10 a -0.059 [-0.130, 0.017] 0.135 0.191
B 1.460 [1.392,1.520] 1.456 0.154

o 0.930 [0.869, 0.989] 0.854 0.041

11 a 0.161 [0.092, 0.227] 0.189 0.070
B 1.186 [1.132,1.245] 1.193 0.146

o 0.727 [0.643, 0.806] 0.602 0.058

Note: Individual estimates and bootstrapped 95 percent confidence intervals. Means and standard errors are computed from session-wide maximum likelihood

estimates.

https:/doi.org/10.1371/journal.pchi.1008871.t003

We report subject-level parameter estimates in Table 3. The table also reports bootstrapped
confidence intervals around each subject’s bias parameters. The parameters were re-estimated
for 1, 000 iterations, using data that were sampled with replacement from each subject’s origi-
nal data set. The relevance of individual biases does not diminish by either (i) estimating confi-
dence intervals by averaging over session-wise data (reported in the last columns of the table)
or (ii) computing credible regions that are within 2 log likelihood points from the best-fitting
set of parameters. In terms of individual model fits, all subjects are best fit by the model that
allows for full heterogeneity—S1 Table contains model fit statistics and second-best models at

the subject level.
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In light of the large biases estimated at the individual level, it is all the more surprising that
the average sample behavior is unbiased. Our results are consistent with the theory of rational
expectations proposed by Muth [30], according to which aggregated estimates are close to the
normative Bayesian benchmark, with individual biases being distributed in a way that “washes
out” in the pooled analyses. We confirm this using the Wilcoxon Signed Rank Test, a non-
parametric difference test between fitted parameter values against their null benchmark values.
Inspecting the distributions of individual-specific parameters implied by responses uncondi-
tional on adjustment (as seen in Gallistel et al.’s [15] aggregation and our replication in Fig
2A), the average value of o does not differ significantly from zero (Z = 53, p = 0.083), and like-
wise, the average value of §§ does not differ significantly from the benchmark value of =1
(Z=34,p=097).

Bias stability across sessions

We next address the issue of how stable biases are across sessions completed by the same indi-
vidual. We begin by testing if the session-level best-fitting parameters are as variable within
subjects as they are across subjects. If that were the case, then the heterogeneity captured at the
subject-level would reflect random variation at the session level rather than systematic patterns
of (subject level) behavior. To investigate this, we exploit the large quantity of data available at
the subject level. Each subject performed 10 sessions of the task and submitted 1,000 forecasts
for each session. We fit the full model to each individual session of data to yield 110 parameter
triplets.

Testing whether average levels of within-subject variability were greater than between-sub-
ject variability, we find no significant difference for values associated with the additive bias
parameter (£(19) = 0.17, p = 0.57). We find partial support for within-subject variability being
smaller for the § parameter (#(19) = -1.53, p = 0.07), noting the non-statistically significant p-
value. This difference is significant for the variance associated with the noise parameter o
(#((19) = -3.55, p < 0.01). The average between-subject variance for these two parameters were
approximately twice as large as the within-subject variance (Fig 6A). Bootstrap tests—sampling
parameters with replacement from both within and between-subject partitions of each distri-
bution of parameters—corroborate the observed differences in variability (Fig 6B shows distri-
butions of variance ratios from 10, 000 bootstrap iterations). Mirroring the previous results of
observed differences, bootstrapped ratios of within to between-subject variability were not sig-
nificantly different for the a parameter (Fy,,;: = 1.05, 95%CI = [0.55, 1.98]); we find a difference
that was close to significance for 8 (Fpp0: = 0.59, 95%CI = [0.31, 1.05]) and a significant differ-
ence for 0 (Fjp0r = 0.38, 95%CI = [0.22, 0.64]). Taken together, we find evidence for a smaller
degree of within-subject variability for the noise parameter, with a similar difference close to
statistical significance for the parameter £.

Second, we look deeper for type stability at the subject-level across sessions. To do so, we
divide the subjects into groups above and below the median for each of the model parameters,
based on the subject-level parameter estimates reported in Table 3. We first confirm that the
distributions of parameter estimates are not significantly different across sessions within each
group. A series of one-way ANOV As performed across the grouped parameters formally test
for differences. We do not find significant differences within each half’s distribution of ses-
sion-wise parameter estimates across sessions (Table 4). Moreover, the difference between
sub-populations appears to be stable across sessions, as shown in Fig 7, which plots the param-
eter values over time for each half of the identified median split.

Finally, we ask whether mean parameter values estimated during the first half of sessions
are predictive of those on the second half. The presence of positive correlations between early
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and late parameters (of each subject) would further support the hypothesis that bias levels
remain relatively constant throughout the task. We find that this is indeed the case again for
parameters 3 (r(8) = 0.59, p < 0.05) and o (+(8) = 0.86, p < 0.01), the two sets of parameters
that maintained the earlier differences across time from their median splits. We find no signifi-
cant association between early and late parameter estimates of ¢ (r(8) = -0.29, p = 0.81).

On the specific characterization of the within-subject parameter variability, S2 Appendix
(Further remarks on individual distributions of bias parameters) describes several post-hoc
tests on the shape of each subject’s parameter distributions. The results (Table A in
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Table 4. ANOVA results on median split parameter estimates across sessions.

Median Split Type DF F-stat p-value
Low a F(9,50) 0.831 0.591
High F(9,40) 1.146 0.355
Low F(9,50) 1.234 0.296
High g F(9,40) 0.900 0.534
Low o F(9,50) 1.464 0.187
High o F(9,40) 0.534 0.841

https://doi.org/10.1371/journal.pcbi.1008871.t004

S2 Appendix) suggest that bias parameters f estimated for each subject can be described as
normally distributed with a subject-specific mean and variance. Parameter distributions and
accompanying (theoretical) normal distributions are plotted for visual comparison (Fig A in
S2 Appendix). Despite the inherent variability of recovered parameters from individual ses-
sions, bias magnitudes nonetheless contain a central tendency unique to each subject.

These findings confirm a key result regarding the consistency of these biases across time.
The most significant dimension of probability distortion —and also of heterogeneity across
individuals—is that of repulsion versus conservatism. Individuals who are relatively high and
low within these ranges maintain this relative difference throughout the course of the 10-ses-
sion study. The correlation between early and late bias parameters furthermore discredits the
hypothesis that there is a learning effect that diminishes these distortions across time. A set of
control analyses (53 Appendix) rule out attributes of the sampled set of true probabilities (e.g.,
number of switches in the underlying probabilities), as well as early experiences with the task,
as determinants of these subject-specific biases. The results of these linear regression analyses
are presented at the level of individual sessions and subjects within Table A in S3 Appendix.

Response times and adjustment frequencies

To further support the claim of systematic behavioral biases, we document how the group
biases correlate with other individual-specific behavioral measures within this task. Given the
extensive variation on the conservatism-repulsion dimension, we test the following three post-
hoc predictions: (i) Does variation in the distortion parameter predict the level of noise inher-
ent in subjects’ estimates? [31] (ii) Are extreme responses—as in the case of repulsive biases—
associated with lower response times? (iif) Similarly, are these extreme estimators adjusting
their response sliders more frequently?

We begin with the examination of associations between bias magnitudes exhibited by each
subject. We test for correlations between each subjects’ nonlinear bias parameter  and their
respective overestimation (@) and randomness (0) parameters. We find a significant correla-
tion between S and a (r(9) = 0.60, p < .05); however, average 8 values do not correlate with the
subjects’ associated values of ¢ (1(9) = 0.40, p = 0.11).

We next confirm that individual degrees of the conservative-repulsion bias (using the M.L.
estimates of § reported in Table 1) to be negatively and significantly correlated with average
response times (r(9) = —0.64, p < .05). Similarly, the repulsion parameter values are negatively
associated (at a statistically non-significant level) with the wait time between adjustments
(r(9) = -0.43, p = 0.09), where the wait time is the average number of rings drawn between the
subject’s revisions of estimates (Fig 8). Hence, subjects who make more conservative predic-
tions also deliberate longer between ring draws. These subjects might also adjust their reports
less frequently, waiting for more ring draws to be realized before adjusting their estimates. As
an internal replication of both findings, we test for correlations between the same variables at
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the session level, using f.sion Values introduced earlier and the response times and adjustment
latencies, now averaged within sessions. We find the same negative associations (Fig 8B) for
response times (7(108) = —0.54, p < 0.001) as well as adjustment latencies (r(108) = —0.21,
p=0.01).

Alternative forecasting models

In this section, we compare the performance of the benchmark distorted Bayesian forecast to
that of three different types of forecasting models that feature prominently in the literature on
probability estimation and reporting: a quasi-Bayesian model (QB), a delta rule model, and a
probability theory plus noise (PTN) model. While the QB model can be seen as providing a
source for how biases might arise in the benchmark model, the latter two models capture fore-
casting algorithms that are entirely different from the Bayesian probability theory framework.
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The goal of this section is to determine if any of these models provide either insight into the
sources of bias estimated in the benchmark model, or a better characterization of the subjective
forecasts in our data, relative to the benchmark model.

Incorrect weighting of information as a source of bias

The distorted Bayesian forecast can be given a deeper foundation, as approximating boundedly
rational probability estimation. To show this connection, we consider a quasi-Bayesian fore-
casting rule that has been argued to capture behavioral limitations in probability forecasting
[32-34]: an incorrect weight on the likelihood ratio in the application of Bayes rule. This speci-
fication represents a specific mechanism through which subjective forecasts deviate from the
Bayesian optimum, in terms of how probabilities are updated internally. This incorrect
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weighting of the likelihood governs how close the Quasi-Bayesian posterior remains to the
prior, versus responding to new information.

To implement this model, we modify the construction of the Bayesian forecast by introduc-
ing a parameter g that governs the weight put on the likelihood in the updating of the posterior
distribution. The Bayesian forecast features q = 1; a posterior distribution that is overly sensi-
tive to new data features g > 1, while one that puts too much weight on the prior relative to the
likelihood features g € (0, 1). The specification also allows for incorrect use of data: estimating
q < 0 implies that the posterior moves in the opposite direction compared with the optimal
revision, given the data received.

For each participant, we estimate q jointly with the forecasting noise in the linear log-odds

R
log<1 —1R> = log<1 ?[Q> + €qr (4)

where Q, is the quasi-Bayesian forecast and the noise is independently and identically distrib-

specification,

uted across each subject’s trials, £,, ~ N (0, 67,).

Experience-based forecasting alternatives

A challenge of the Bayesian and quasi-Bayesian models of probability estimation is their signif-
icant computational complexity and relatedly, their biological intractability. One possibility is
that probability-encoding neurons act as if they were part of a system that produced distorted
or quasi-Bayesian forecasts, so that even though these models may not be appropriate for
describing circuit- or systems-level computations, they can nevertheless be used to understand
and predict human forecasts reasonably well. Alternatively, the probability estimates we
observe might be generated by an entirely different class of learning algorithms and such mod-
els might offer alternative mechanisms behind the apparent biases that resemble distortions to
the Bayesian forecast.

To shed some light on how much support our data offers for each of these possibilities, we
compare the Bayesian and quasi-Bayesian models to two non-Bayesian models of probability
estimation: the delta rule and the probability theory plus noise (PTN) model [14]. A fundamen-
tal difference between these learning models and the models based on Bayesian probability
theory is that they produce a point estimate only, rather than a posterior distribution (whether
correctly calculated or distorted), and they do not use Bayes’ rule or any a priori knowledge of
the ring generating process, instead relying exclusively on the experienced ring draws to form
forecasts. An advantage of these models is their reduced computational burden, which makes
them potential candidates for describing how the brain actually updates probabilities over the
course of a task.

We first consider the basic formulation of a delta rule model, a model that is widely used in
the literature, including specifically in the literature on change-point estimation [26, 35].
Error-based updating also represents a computation characteristic of midbrain dopaminergic
circuits [36, 37]; incremental updating based on unexpected error signals are ubiquitous in
descriptions of action values learned through reinforcement [38]. According to this model,
forecasts are adjusted as a function of the discrepancy between the existing forecast and new
information. Formally,

Dt:Dt—1+5(5t_Dt—1)7 (5)

where D, is the forecast of the delta rule after seeing the ring realization of trial £, s, is equal to 1
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for a green ring and 0 otherwise, and 6 is the learning parameter that governs the rate at which
information decays (in this case, exponentially).

Alternatively, the PTN model employs a frequentist approach: it bases forecasts on a count
of the green rings observed in a sample of ring draws a given length. This account involves the
averaging of the recent past—the impact of individual past samples recently implicate episodic
memory systems in the construction of learned values [39, 40]. The forecasts produced by this
model also do not incorporate prior knowledge about the ring generating process. The count
is subject to some probability d of recording each ring realization incorrectly. Let n denote the
size of the sample of ring draws that the subject bases their forecast on, and let d denote the
probability that a ring realization will be flipped when computing the running fraction of
green rings. The expected forecast on each trial is

F, = (1-2d) x (k,/n)+d, (6)

where F, is the PTN forecast after seeing the ring realization of trial £, and k, is the number of
green rings the participant recorded in the n draws ending with the draw on trial ¢.

We construct both forecasts for each participant, and, as in the Bayesian specifications, we
allow for Gaussian noise in the log-odds of the forecast, to account for stochasticity at the trial
level. We estimate the best-fitting parameters (8, op) and (d, n, of), where the noise in each
case is normally distributed with mean zero and variance ¢ and g2, respectively.

Model comparisons

Table 5 reports the estimated parameter values at the participant level. Starting with the QB
models, as predicted by the theory, all the subjects estimated to have a repulsion bias (8 > 1)
also have an exponent on the likelihood function estimated above 1, and for all but one conser-
vative subject, we estimate g € (0, 1). Overall, the estimates of g are positively correlated with
the non-linear bias f in the baseline model, despite the small number of participants.

For the alternative models, we find relationships across the three types of parameters that
are consistent with their respective theories (subject to the limitations of a small number of
participants). As shown in Table 5, the learning rate of the delta rule is positively correlated

Table 5. Comparison of parameter values in alternative forecasting models.

Subject p q 0 n d

1 1.06 1.14 0.08 13 0.08

2 0.41 0.58 0.06 3 0.31

3 0.91 0.92 0.07 14 0.08

4 1.12 1.09 0.12 11 0.10

5 0.81 0.77 0.06 11 0.13

6 1.20 1.24 0.17 4 0.10

7 0.81 1.18 0.09 16 0.11

8 1.82 1.18 0.11 4 0.10

9 0.50 0.04 0.03 23 0.23

10 1.46 1.11 0.13 6 0.06

11 1.19 1.01 0.09 15 0.04
Corr(-, B) 1.0 0.7 0.7 -0.4 -0.7

Note: The parameters correspond to the distorted Bayes baseline model with full parameter heterogeneity (5), the
Quasi-Bayesian model (g), the delta rule (6), and the Costello and Watts (2018) PTN model (n and d).

https://doi.org/10.1371/journal.pchi.1008871.t005
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Fig 9. Comparisons between alternative models of probability encoding and reporting. (A) The difference in BIC values across the three different types of models,
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subjects depending on how frequently each subject adjusted their forecast. (B) The difference in the standard deviation of the noise associated with each model, relative
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with the non-linear bias in the benchmark model, while for the PTN model, the error rate and
the sample size over which to estimate the frequency of rings are positively associated with
more conservatism (namely, a smaller nonlinear bias).

Fig 9 compares the models in terms of BIC and magnitude of the noise associated with each
forecast. The BIC values of the QB model are larger than those of the distorted Bayesian model
for all participants, with the difference ranging from one point to over 1,000 points. The differ-
ences are modest for approximately half of the participant pool, suggesting that the QB specifi-
cation has roughly comparable explanatory power for this group of participants. Nevertheless,
the baseline distorted Bayesian model remains the best performing specification. Through its
flexible inclusion of nonlinear biases, it appears to capture biases in probability forecasting
beyond the incorrect weighting of information.

We also find no systematic evidence that either the delta rule or the PTN model outperform
the distorted Bayesian benchmark: BIC values are larger for all participants for the delta rule
and for all but two participants for the PTN model. The QB model is outperformed by the
delta rule for two participants, and by the PTN model for two other participants, although the
differences in the BIC value are quite modest. Moreover, the level of noise that each model
needs to incorporate to account for the randomness in the subjective forecasts is also larger
than the benchmark for all participants in the case of the delta rule and for all but three partici-
pants in the case of the PTN model. Our takeaway from this analysis is that despite their
computational advantage, the experience-based models do not appear to present a compelling
alternative to the distorted Bayesian benchmark model. The subjective forecasts, although
nonlinearly distorted, appear to track the Bayesian estimate better than models that directly
incorporate known and relevant cognitive mechanisms.
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Discussion

We find significant heterogeneity and persistent biases across subjects estimating non-station-
ary probabilities. Both conservative and repulsive biases are observed in different subjects,
while some subjects are also approximately Bayesian (with noise). In our experimental sample,
the conservative subjects roughly balance out the subjects with repulsive biases, so that median
performance resembles unbiasedness. Our analyses replicate the aggregate characterization
originally reported by Gallistel et al. [15], while also supporting the ubiquity of biased perfor-
mance found in other experiments of probability and proportion estimation. Our results call
for additional studies in order to confirm the prevalence of subject types seen here (e.g., with a
large sample study). In addition, our study offers an additional instance of individual-level
phenomena being occluded by analyses of pooled data [41]. Furthermore, markers of each
‘style’ of estimation appear to be stable even following extensive experience (10 sessions featur-
ing 1,000 trials per session). We document negative correlations between the primary distor-
tion parameter and two forms of timing behaviors: response times and delays between
adjustments. Finally, fitted parameter values of error and sampling-based computational mod-
els provide a potential explanation for the directionality of observed distortions (Table 5);
nonetheless, characterizations of estimates based on Bayesian forecasts offer the best explana-
tory power across all model types.

These individual differences may reflect variation in how much emphasis individuals place
on different aspects of the computational demands of this task. In the model of Costello and
Watts [14], unbiasedness occurs as a result of a balance between two different sources of bias,
associated with (i) probability estimation in a given state and (ii) inference about whether the
state has changed. In the case of many of our subjects, such unbiasedness is not observed at the
individual level; but we might nonetheless suppose that the two sources of bias are relevant for
each of our subjects, with the balance between the strength of the two biases different for dif-
ferent subjects. The “step-hold” pattern of slider adjustment in our experiment (as opposed to
adjustment following every ring observation) can then be interpreted as resulting from sub-
jects being engaged serially with these different cognitive tasks.

The links between individual subjects’ bias and secondary measures such as response time
also suggests that differing biases may reflect differing approaches to decision making. Repul-
sive biases in this task appear to be associated with an inaccurate, high-frequency adjustment
strategy (and vice versa with conservatism). In terms of general performance, both repulsive
and conservative subjects attain lower overall payoffs compared to their unbiased peers. None-
theless, adjustment and response speeds can be interpreted as reflecting subjects’ general
approach to the task. Rather than adjusting the slider position modestly with each new piece of
evidence, subjects report a new estimate only periodically. Infrequent adjustments in this para-
digm might then be interpreted as reflecting implicit integration of new observations, updating
internal estimates without overt adjustment [26]. In this view, subjects who produce repulsive
estimates appear to have lower thresholds for updating their declared estimates of the hidden
state (analogous to the definition of overconfidence by Moore and Healy [31]). The negative
association between response time and repulsion further indicates that these adjustment deci-
sions are made relatively quickly—potentially economizing on attention or cognitive
resources. Thus, these individuals are more inclined to revise their current slider setting
quickly and often. Interestingly, conservative subjects exhibit the longest response times, sug-
gesting that their errors do not stem from time pressure. Rather, they may reflect an aversion
to declaring extreme responses, even when responses are chosen quite deliberately. The persis-
tence of estimation styles across sessions is also a promising indicator that these reflect reliable
estimation techniques, as discussed in the context of other forms of probability estimation
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[42]. A growing body of experiments on economic decision-making has highlighted how indi-
vidual differences in process measures (such as gaze time and looking preferences) correspond
to apparent preferences over payoff outcomes [43-45]. In line with such findings, individual
differences in this task might correspond to variation across more general psychological con-
structs (e.g., patience), and could also be related to differences in apparent preferences (e.g.,
time and risk preferences).

At present, it is difficult to distinguish between the biases in our subjects’ behavior that result
from probability estimation as opposed to the detection of change points. Future experimental
designs should seek to isolate one factor from the other. Indeed, in a simpler task involving the
observation of short sequences of coin flips, Offerman and Sonnemans [20] find a more consis-
tent pattern of overreaction (that they interpret as evidence of the ‘hot-hand’ effect). Conserva-
tism is instead more consistently observed in other settings; for example, it has been associated
with the influence of moderate prior expectations [46]—similar to biases that arise when incom-
ing evidence is associated with high uncertainty [47] or low perceptual discriminability [48].
Similarly, overly extreme responses could stem from the over-weighing of recent observations
[49], not unlike other general sequence effects found in perceptual judgments [50].

Another direction for future work would explore the extent to which it is possible to modify
subjects’ estimation biases by changing the context in which they encounter a given decision
problem. For example, experimenters might implement different payoff structures or underly-
ing distributions of true background probabilities than those recently tested [15-17], in order
to incentivize different estimation strategies. As an example, repulsive-type subjects might
learn to produce conservative estimates if intermediate probabilities were indeed more likely
to occur within the study. Experimental variation in visual reference points (e.g., tick marks on
a response scale) has also been implicated in changing and reversing the modal bias seen in
proportion estimation [8]. While we do not observe improvements in performance over time
(Fig 7) within our particular environment, further experiments are necessary to deduce
whether individual differences persist in different settings. In particular, the misestimation of
frequencies might relate to performance in other learning paradigms. Individuals are adept at
learning the payoffs associated with multiple reward streams that vary over time (e.g., [51]),
and aligning rates of behavior to match associated rates of reinforcement (e.g., [52], [53]).
Opverall, future work should aim to causally identify the factors that promote subject-level het-
erogeneity in distorted estimates, e.g., by manipulating details of the experiment, or by investi-
gating further subject demographics. The origins of such biased treatment of probabilities
might then be related to other mental representations, such as those of learned reward fre-
quencies or perceived risk.

It is intriguing that participants’ estimates are on average unbiased, despite the degree of
differences in individual response patterns. In this respect, our results are in line with other
observations indicating “the wisdom of the crowd” (e.g., [54], [55], [56]). It is possible that
people have evolved to explore different forecasting strategies in a way that makes the group
collectively approximate optimal Bayesian inference, even though individuals deviate substan-
tially from it, as in the model of Wojtowicz [57]. Our sample is not large enough to allow us to
confirm or reject any hypothesis of this kind (about how ecological contexts shape individual
or population tendencies), but this would be a reasonable topic for further research.
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