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Lupus nephritis (LN) is a common and severe organ manifestation of systemic lupus

erythematosus (SLE) and is a major cause of SLE related deaths. Early diagnosis is

essential to improve the prognosis of patients with LN. To screen the potential biomarkers

associated with LN, we downloaded the gene expression profile of GSE99967 from

the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network

analysis (WGCNA) was utilized to construct a gene co-expression network and identify

gene modules associated with LN. Gene Ontology (GO) analysis was also applied

to explore the biological function of genes and identify the key module. Differentially

expressed genes (DEGs) were identified and Maximal Clique Centrality (MCC) values

were calculated to screen hub genes. Furthermore, we selected promising biomarkers

for real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) validation

in independent cohorts. Our results indicated that five hub genes, including IFI44, IFIT3,

HERC5, RSAD2, and DDX60 play vital roles in the pathogenesis of LN. Importantly, IFI44

may considered as a key biomarker in LN for its diagnostic capabilities, which is also a

promising therapeutic target in the future.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease involving an inappropriate immune
response to endogenous nuclear particles, which affects multiple organs and systems (1). Lupus
nephritis (LN) is an immune complex glomerulonephritis that develops as one of the most
common and severe target-organ manifestations of SLE (2). The treatment of LN is mainly
based on glucocorticoids and immunosuppressants, but the effect is not live up to expectations.
Approximately 10–30% of LN patients progress to end-stage renal disease (ESRD) within 15 years
after diagnosis, which is the major cause of mortality in SLE (3). Thus, it is imperative to further
study the pathogenesis of LN to contribute to the diagnosis and treatment of LN and improve the
prognosis of patients with LN.

The pathological mechanism of LN is complicated. Recent studies have shown that LN
susceptibility genes, which break immune tolerance are involved in the pathogenesis of LN
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(4, 5). These genes can enhance the innate immune signaling
pathways and promote lymphocytes activation, thus leading to
renal damage (4). In addition, autoreactive leukocytes, immune
complexes, and complement proteins also play essential roles in
LN pathogenesis through various inflammatory mediators (6).
However, despite the increased understanding of LN, the genetic
and pathogenetic basis of LN remain unclear.

With the rapid development of bioinformatics, microarray
data based on high-throughput sequencing has been used to
explore the mechanism of diseases at the gene level and identify
biomarkers to diagnose diseases or assess prognosis. Weighted
gene co-expression network analysis (WGCNA) is a systematics
biology method used for integrating gene expression and clinical
traits to identify candidate biomarkers and therapeutic targets
(7). WGCNA has been widely applied to study various diseases,
including cancer (8), autoimmune disease (9), and chronic
kidney disease (10). However, there are few studies of WGCNA
in LN.

In this study, WGCNA was utilized to construct a gene co-
expression network and identify gene modules associated with
LN. Gene Ontology (GO) analysis was also applied to explore
the potential biological function of genes and identify the key
module. Then, we screened five hub genes and verified them
by quantitative real-time PCR (qRT-PCR). Furthermore, two
promising biomarkers including IFI44 and IFIT3 were selected
for enzyme-linked immunosorbent assay (ELISA) validation in
an independent cohort. Our findings provide a key biomarker
associated with LN pathogenesis and progression, which is
helpful for the early diagnosis and treatment of patients with LN.

MATERIALS AND METHODS

Data Collection
Figure 1 shows the overall study design. We downloaded series
matrix files of GSE99967 from the Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo) database to identify
the hub genes related to LN. The platform of the GSE99967
dataset was GPL21970 (Affymetrix Human Gene 2.0 ST Array).
After obtaining the data, one sample GSM2666765 was removed
for its inconsistent expression data (Supplementary Figure 1).
The remaining whole peripheral blood samples from 29 LN
patients and 16 normal controls were kept for further analysis
(11). The expression data had been log2 transformed.

Weighted Gene Co-expression Network
Analysis
The R package “WGCNA” (7) was utilized to construct the
co-expression network of all genes in the GSE99967 dataset.
Briefly, we calculated Pearson’s correlation to construct a
pairwise coefficient matrix and then transformed into a weighted
adjacency matrix with an appropriate soft-thresholding power.
Next, we converted the adjacency matrix into a topological
overlap matrix (TOM), and used hierarchical clustering and
dynamic tree cut algorithm to classify genes on TOM-
based dissimilarity. Then we calculated the correlations of
module eigengene (ME), which represents the first principal
component of a module, andmerged similar modules with highly

FIGURE 1 | Overall study design. WGCNA, weighted gene co-expression

network analysis; GO, gene ontology; MCC, maximal clique centrality; DEGs,

differentially expressed genes; GEO, gene expression omnibus; qRT-PCR,

quantitative real-time PCR; ELISA, enzyme-linked immunosorbent assay.

correlated eigengenes. In addition, a module-trait relationship
was calculated based on the correlation between the gene module
and clinical trait. Finally, gene significance (GS) which refers to
the correlation between gene expression and the clinical trait was
used to identify clinical-related modules.

Functional Enrichment Analysis
To investigate the potential biological function of genes in
clinical-related modules, we performed GO enrichment analysis
using Database for Annotation, Visualization and Integrated
Discovery DAVID (https://david.ncifcrf.gov/). GO terms with
p < 0.05 were considered statistically significant. The R package
“ggplot2” was utilized to show results in the bubble chart.

Differentially Expressed Gene Analysis
The GEO2R online tools (12) were used to identify differentially
expressed genes (DEGs) between LN patients and normal
controls. Genes with adjusted p < 0.05 and | log2 fold change
(FC)| ≥ 1 were considered as DEGs. The heatmap and volcano
plot of all DEGs were made by the R package “pheatmap” and
“ggplot2,” respectively.

Hub Genes Identification
We used CytoHubba (13), a Cytoscape software (14) plugin to
select the hub genes in the key module. The top ten genes with
higher maximal clique centrality (MCC) values were screened.
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Among these ten genes, five DEGs were identified as hub genes.
We investigated the GS and module membership (MM) of the
selected hub genes to verify their reasonability.

Validation of Hub Genes in Other Datasets
To validate five hub genes, we downloaded another two datasets
GSE72798 (15) and GSE32591 (16) from the GEO database. The
dataset GSE72798 consists of 10 LN patients and 10 normal
controls and the RNA was extracted from blood samples. In
the GSE32591 dataset, the total RNA was extracted from kidney
biopsy of 32 LN patients and 14 normal controls.

Patients and Samples Collection
To further verify selected genes, we recruited 78 LN patients, 67
healthy controls (HCs), and 25 patients with IgA nephropathy
from the First Affiliated Hospital, College of Medicine,
Zhejiang University. Patients or the public provided written
informed consent to participate in this study. All LN patients
were confirmed by kidney biopsy, and the Systemic Lupus
Erythematosus Disease Activity Index (SLEDAI) was calculated,
which contains 24 items reflecting disease activity. Active LN was
defined as biopsy-proven active nephritis or SLEDAI ≥10 and at
least two renal elements of the SLEDAI; inactive LN was defined
as biopsy-proven pure class V or VI nephritis or SLEDAI <10.

Serum was separated from blood samples and stored at
−80◦C. Peripheral blood mononuclear cells (PBMCs) were
isolated by human PBMCs separation medium (tbdscience,
Tianjin, China).

RNA Extraction and qRT-PCR
Total RNA was extracted from PBMCs samples using TRIzol R©
(Invitrogen, CA, USA) and then reversely transcribed into cDNA
by the PrimeScriptTM II Reverse Transcriptase (Takara, Shiga,
Japan). According to the manufacturer’s instructions, reverse
transcription was conducted at 37◦C for 15min and 85◦C for
5 s. qRT-PCR was performed by SYBR Green on CFX96TM Real-
Time PCR Detection Systems (Bio-rad, CA, USA). All primer
sequences used were shown in Supplementary Table 1. The
conditions of qRT-PCR were as follows: 95◦C for 30 s, followed
by 40 cycles of 95◦C for 5 s and 60◦C for 31 s, with dissociation
at 95◦C for 15 s, 60◦C for 1min and 95◦C for 15 s. The average
threshold cycle (Ct) was calculated for each transcript, which was
performed in triplicate. The relative expression of each mRNA
was normalized by GAPDH and analyzed using the 2−11CT

method [11CT = (CT of gene) – (CT of GAPDH) – (CT
of HC)].

ELISA
The serum levels of IFI44 and IFIT3 were assessed with ELISA
kits (G-Biosciences, CA, USA for IFI44, and MyBioSource, CA,
USA for IFIT3). Briefly, diluted serum samples were incubated in
the microplate. The membrane was then incubated with biotin-
labeled antibody after washing twice. Similarly, the membrane
was incubated with avidin-labeled horseradish peroxidase (HRP)
and then with substrated solution (TMB). Finally, the absorbance
values at 450 nm of samples were read, and the concentration of

IFI44 and IFIT3 were calculated using standard curves run on
each ELISA plate.

Statistical Analyses
Statistical analyses were performed using SPSS 20 (IBM) and
GraphPad Prism 8.0 (GraphPad Software, CA, USA). The
unpaired t-test was used to analyze differences between two
groups. Results were expressed as the mean± standard deviation
(SD). The receiver operator characteristic (ROC) curves were
drawn and area under curve (AUC) was calculated to assess the
diagnostic capability of biomarkers. Logistic regression analysis
was performed to create a combined score. P < 0.05 was
considered statistically significant.

RESULTS

Construction of Weighted Gene
Co-expression Network
Samples in the GSE99967 dataset were divided into two groups
(29 LN samples and 16 normal controls). Expression data
of all genes from GSE99967 were used to conduct WGCNA
(Figure 2). Based on scale-free topology model fit index and
mean connectivity, the soft-threshold power was set as four
(Figure 2A). Then, we merged similar modules to acquire 12
co-expression modules by setting the cut height of module
eigengenes as 0.5 (Figures 2B,C). Figure 2D showed the cluster
dendrogram and adjacency heatmap of eigengenes, which means
that 12 modules were primarily separated into two clusters.

Key Module Identification
From the heatmap of module-trait relationships, we found that
multiple modules were associated with LN (Figure 3A). Then, we
calculated the gene significance of all genes in 12 co-expression
modules (Figure 3B). The results showed that the darkgreen
module was most significantly related to LN, followed by the
purple module. The correlation between MM and GS in these
two modules are shown in Figure 3C, which mean that MM was
highly correlated with GS for LN in both darkgreen module and
purple module (cor = 0.77, p = 5.8e−76, and cor = 0.41, p =

5.2e−15, respectively).
To investigate the potential biological function of genes in

the above two modules, we performed GO enrichment analysis.
The top 20 significant GO biological process terms of each
module were shown in Figures 3D,E. We found that genes in
the purple module were mainly enriched in defense response
to virus, type I interferon signaling pathway, immune response,
and inflammatory response, which are highly associated with
LN. However, genes in the darkgreen module were mostly
distributed in terms like cell diversion and proliferation, mitotic
nuclear division, and DNA replication, which mainly play roles
in metabolism. Thus, we defined the purple module as the key
module related to LN and performed further analysis.

Identification of Hub Genes
Hub genes should be DEGs between LN patients and
normal controls. In dataset GSE99967, a total of 137
DEGs were identified, including 84 up-regulated genes
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FIGURE 2 | Construction of weighted gene co-expression network. (A) Analysis of the scale-free topology model fit index for soft threshold powers (Left) and analysis

of the mean connectivity for soft threshold powers (Right). The soft-thresholding power was set as four. (B) Clustering of module eigengenes. The red line represents

cut height (0.5). (C) The cluster dendrogram of genes. (D) The cluster dendrogram and adjacency heatmap of eigengenes.
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FIGURE 3 | Key module identification. (A) Heatmap of module-trait relationships. The correlation coefficients and p-value are shown in each cell. Red presents a

positive correlation and blue presents a negative correlation. (B) Gene significance of all genes in 12 modules related to LN. Different colors of columns present

different modules. (C) Scatter plot for correlation between module membership and gene significance in darkgreen module (Left) and purple module (Right). The top

20 significant GO terms (biological process) of the purple module (D) and darkgreen module (E). The color and size of each point indicate the p-value and the number

of genes in the corresponding term, respectively. LN, lupus nephritis; GO, gene ontology.
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and 53 down-regulated genes (Supplementary Table 2).
The heatmap and volcano plot of all DEGs are shown in
Supplementary Figures 2, 3.

To identify hub genes in the key module, we calculated MCC
values of genes in the purple module and extracted the top
10 genes with higher scores (Supplementary Figure 4). Among
these ten genes, 5 DEGs were identified as hub genes, including
interferon induced protein 44 (IFI44), interferon induced protein
with tetratricopeptide repeats three (IFIT3), HECT and RLD
domain containing E3 ubiquitin protein ligase 5 (HERC5),
radical S-adenosyl methionine domain containing two (RSAD2),
and DExD/H-box helicase 60 (DDX60). The GS and MM value
of these genes were all > 0.4 and 0.9, respectively, indicating that
hub genes were significantly associated with the key module and
LN trait.

Validation of Hub Genes by Other Datasets
and qRT-PCR
As expected, the expression levels of hub genes including
IFI44, IFIT3, HERC5, RSAD2, and DDX60 were significantly
upregulated in LN samples from the GSE99967 dataset
(Figure 4A). For verifying hub genes, we obtained another two
datasets GSE72798 and GSE32591, and analyzed the expression
levels of the above five genes between LN patients and normal
controls (Figures 4B,C). Except for DDX60 in GSE72798, the
other four hub genes were markedly increased in LN samples.

In addition, to further validate these four hub genes,
we collected nine blood samples from four healthy controls
and five LN patients (patient characteristics are shown in
Supplementary Table 3) to perform qRT-PCR. The results
showed that compared with HCs, the mRNA levels of IFI44,
IFIT3, HERC5, and RSAD2 were all significantly elevated in
LN patients (Supplementary Figure 5), meaning that they are
expected to be potential biomarkers in identifying LN.

ELISA Validation
Among five hub genes, we selected type I interferon-response
genes IFI44 and IFIT3 for further analysis. To detect the
serum levels of IFI44 and IFIT3, 124 subjects, including 51
healthy controls and 73 LN patients (patient characteristics are
shown in Supplementary Table 4) were used to perform ELISA
assays (Figure 5). As expected, IFI44 and IFIT3 were markedly
upregulated in LN patients compared with the healthy controls
(Figure 5A). Furthermore, ROC curves were used to calculate the
sensitivity and specificity of these two biomarkers for identifying
LN patients. The AUC values of IFI44 and IFIT3 were 0.811 and
0.758, respectively (Figure 5B, Supplementary Table 5). Then,
we combined these two biomarkers using logistic regression
analysis (Supplementary Figure 6A, Supplementary Table 6).
However, the AUC value of combined score (AUC = 0.811)
was the same as IFI44 (Supplementary Figure 6B), indicating
that IFI44 had the highest power to distinguish between the
two groups. Additionally, we found that IFI44 was significantly
elevated in active LN compared with inactive LN patients,
while IFIT3 failed to discriminate active LN from inactive
ones (Figure 5C). And the AUC of IFI44 in differentiating
active LN from inactive LN patients was 0.697, which was

similar to clinical indicators such as anti-dsDNA (AUC =

0.600), C3 (AUC = 0.665), and C4 (AUC = 0.673) (Figure 5D;
Supplementary Table 7).

To examine whether serum IFI44 and IFIT3 can reflect the
pathological class of kidney biopsy, we classified 73 LN patients
into five groups according to LN class. The results showed that
they were both elevated in class III(±V), class IV(±V), and class
V compared with HCs (Supplementary Figure 7), meaning that
both IFI44 and IFIT3 can indicate the prognosis of LN.

Moreover, we identified the specificity of IFI44 for LN. An
independent cohort of 37 subjects, including 12 healthy controls
and 25 patients with IgA nephropathy (patient characteristics are
shown in Supplementary Table 8), were used for investigation.
Interestingly, there was no statistical difference between HCs and
patients with IgA nephropathy (Figure 5E), indicating that IFI44
is specific for LN.

DISCUSSION

Lupus nephritis is a major cause of morbidity and mortality in
SLE, and many patients end in chronic kidney disease (CKD)
or ESRD due to limited drug treatment (17, 18). Therefore,
it is imperative to develop candidate biomarkers and potential
therapeutic targets to improve the prognosis of patients with
LN. In this study, we used the GSE99967 dataset to screen the
hub genes associated with the pathogenesis of LN. WGCNA
was utilized to construct co-expression modules associated with
LN, and GO enrichment analysis was applied to explore the
biological function of genes in the key module. Five hub
genes were obtained using the MCC algorithm, including IFI44,
IFIT3, HERC5, RSAD2, and DDX60. qRT-PCR and ELISA
assays were performed to validate potential biomarkers in
independent cohorts. We found that both IFI44 and IFIT3
have diagnostic accuracy in identifying LN, especially IFI44,
which is specific for LN. Our findings may shed light on the
pathogenetic basis of LN and provide candidate biomarkers for
its treatment.

We found that genes in the key module were mainly
enriched in defense response to virus and type I interferon
signaling pathway, which are consistent with previous studies
(19, 20). Anders HJ et al. indicated that endogenous RNA-related
autoantigens can be recognized by Toll-like receptor-7 (TLR7),
a viral nucleic acid recognition receptor that triggers antiviral
immunity, thus aggravating lupus nephritis (21). In contrast,
blockade of TLR7, TLR9, or both attenuates lupus nephritis
(22). Additionally, antiviral genes such as ISG15, MX1, and the
OAS gene family are involved in the pathogenesis of LN (23).
Likewise, type I interferon signaling pathway-related genes, such
as IRF5 and STAT4, are associated with the risk of LN (24).
Triantafyllopoulou A et al. revealed the role of intrarenal type I
IFNs in kidney damage of LN (25). Furthermore, monitoring the
peripheral blood type I interferon signature can track the kidney
disease activity in patients with SLE (26). Therefore, hub genes
we obtained from the key module were confirmed to be highly
relevant to LN.
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FIGURE 4 | Validation of five hub genes in datasets. (A–C) The blue box refers to the normal group and the orange one refers to the LN group. Box represents mean

± SD by an unpaired t-test. *P < 0.05, **P < 0.01, ***P < 0.0001, ns, no significance; LN, lupus nephritis.

Both IFI44 and IFIT3 are type I IFN signature genes, which
may contribute to the pathogenesis of autoimmune diseases
(27, 28). In independent cohorts, we found that serum IFI44 and
IFIT3 can discriminate LN patients from healthy controls, which
may act as candidate biomarkers in identifying LN. Similar to
our findings, increased gene expression of IFI44 and IFIT3 was
observed in SLE patients compared to HCs (29). What’s more,
IFI44, as an LN-specific biomarker, can distinguish between
active LN patients and inactive ones. Previous studies have shown
that patients with class III, IV, or V LN, but not class I or II
LN, are at direct risk of CKD progression. What’s worse, both
class III and class IV LN involve irreversible nephron loss, which
shortens kidney lifespan (30). Interestingly, our results revealed
that IFI44 and IFIT3 were both elevated in class III(±V), class
IV(±V), and class V LN, suggesting that these two biomarkers
can indicate the prognosis of LN. Also, IFIT3 may proposed as a
novel therapeutic target for blocking the production of type I IFN
in patients with SLE (31). In terms of epigenetics, IFI44 and IFIT3
were hypomethylated in comparisons between lupus patients and
non-lupus subjects (32, 33). Moreover, both IFI44 and IFIT3
have antiviral activity, meaning that they may be involved in the
anti-endogenous nucleic acid response of LN patients (34, 35).

In addition, HERC5, RSAD2, and DDX60 are all interferon
induced-genes, which play important roles in antiviral response
(36–39). Consistent with our findings, recent studies revealed
that the expression level of RSAD2 was markedly increased in
the SLE samples compared with controls, which may act as a

potential biomarker gene and therapeutic target for the treatment
of SLE (40, 41). Similarly, upregulated gene expression of DDX60
was observed in the IFN-I-positive childhood-onset SLE patients
(42). Due to the epigenetic susceptibility of lupus, Coit P et al.
found that HERC5 is hypomethylated in lupus patients with renal
involvement (43). Thus, it is important to clarify the relationship
between these five hub genes and the pathogenesis of LN.

Our findings provide new insights into the occurrence,
progression of LN patients. Sun G et al. explored the
genes genetically associated with LN through bioinformatics
analysis (44). They found that LN-related genes were mainly
involved in immune and inflammatory responses, which are
in agreement with what we found. Likewise, the GSE104948
dataset was analyzed by WGCNA, and CD36 was ultimately
screened out as a hub gene of the pathogenesis of LN (45).
However, neither of their findings have been validated in
LN patients. Moreover, Yao M et al. used dataset GSE32591
to explore the pathophysiological changes in glomeruli and
tubulointerstitia of LN patients (46). Consistent with our
findings, they found that type I interferon response was highly
active in LN and the crosstalk genes, such as IRF7, HLA-
DRA, ISG15, PSMB8, and IFITM3 were validated in six
samples. However, in our study, after identifying the hub genes,
we verified the mRNA expression and serum concentration
of them with large sample size, and they are expected to
be candidate biomarkers and potential therapeutic targets
of LN.
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FIGURE 5 | ELISA validation and ROC analysis. (A) Serum IFI44 (Left) and IFIT3 (Right) were measured in 51 healthy controls and 73 LN patients by ELISA. (B)

Receiver operator characteristic (ROC) curves show the diagnostic performance of serum IFI44 (blue) and IFIT3 (green) in identifying LN patients. (C) 73 LN patients

were divided into two groups (Inactive LN=22, Active LN=51) according to renal biopsy and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). (D)

ROC curves of IFI44, anti-dsDNA, C3, and C4 in differentiating active LN from inactive LN patients. (E) Serum IFI44 was tested in 12 healthy controls and 25 patients

with IgA nephropathy. Data shown are mean ± SD by an unpaired t-test. *P < 0.05, **P < 0.01, ****P < 0.0001, ns, no significance; HC, healthy control; LN, lupus

nephritis; IgAN, immunoglobulin A nephropathy.

However, our study contains some limitations. First, patients
in validation cohorts are composed of Chinese. Hence, our
findings may not generalize LN patients from different races and
ethnicities. Second, samples for qRT-PCR validation are limited.
Thus, more samples are needed to verify the mRNA expression
of these hub genes. Third, the exact mechanisms of the identified

hub genes in the occurrence and progression of LN need to be
further investigated.

In conclusion, based on WGCNA, we identified five hub
genes, including IFI44, IFIT3, HERC5, RSAD2, and DDX60,
which are highly correlated with LN. GO enrichment analysis
revealed that these genes are mainly enriched in defense response
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to virus, type I interferon signaling pathway and immune
response. In validation cohorts, IFI44 was found to be a candidate
biomarker to diagnose diseases or assess prognosis. Our findings
provide potential therapeutic targets and shed light on the
pathogenetic basis of LN.
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