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Abstract
Dietary macronutrients and micronutrients play important roles in human health. 
On the other hand, the excessive energy derived from food is stored in the form of 
triacylglycerol. A variety of dietary and hormonal factors affect this process 
through the regulation of the activities and expression levels of those key player 
enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase, fatty 
acid synthase, fatty acid elongases, and desaturases. As a micronutrient, vitamin 
A is essential for the health of humans. Recently, vitamin A has been shown to 
play a role in the regulation of glucose and lipid metabolism. This review 
summarizes recent research progresses about the roles of vitamin A in fatty acid 
synthesis. It focuses on the effects of vitamin A on the activities and expression 
levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and 
in vivo. It appears that vitamin A status and its signaling pathway regulate the 
expression levels of enzymes involved in fatty acid synthesis. Future research 
directions are also discussed.
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Core Tip: Recent studies have shown that vitamin A plays a role in the regulation of 
glucose and fatty acid metabolism. Vitamin A status, its supplementation, and the 
treatment with its metabolite, retinoic acid, have been shown to regulate the activities, 
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and the expression levels of protein and mRNA of acetyl-CoA carboxylase, fatty acid 
synthase, fatty acid elongases, and fatty acid desaturases in the animal tissues and cells. 
Systematic evaluations of the roles of vitamin A in the fatty acid metabolism are 
needed for the treatment and prevention of metabolic diseases such as obesity and type 
2 diabetes.
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INTRODUCTION
Excessive accumulation of fat leads to obesity. Currently, human obesity has become a 
global concern of public health[1]. It is one of the main risk factors affecting human 
health and causes many chronic diseases such as diabetes and cardiovascular diseases
[2]. Both dietary and de novo synthesized fatty acids (either saturated or unsaturated) 
are esterified to a glycerol to make a triacylglycerol (TAG)[3], which is stored in 
adipocytes that increase in sizes and number with the obesity development. In 
addition to a place for TAG deposition, the adipose tissue also acts as an endocrine 
organ and secretes adipokines with a variety of physiological functions[4]. Alterations 
of adipose tissue functions occur with the development of obesity and other chronic 
metabolic diseases[5].

Fatty acids are also components of other molecules such as phospholipids, 
sphingolipids, and esters. Furthermore, they also participate in mediating signal 
transduction in cells[6]. Dietary linoleic acid and alpha-linolenic acid are the two 
essential fatty acids for human health. Intracellular fatty acids synthesized can be 
further elongated and desaturated through multiple enzymes responsible for 
desaturation and elongation reactions[7,8].

Vitamin A (retinol), a micronutrient, regulates a variety of physiological functions
[9]. Retinol molecule contains a β-ionone ring with a polyunsaturated chain and an 
alcohol group[10]. Its derivatives function in the vision cycle, and regulate cell growth 
and differentiation, etc. Dietary molecules with vitamin A activities are preformed 
vitamin A retinyl esters and provitamin A carotenoids, which are from animal and 
plant sources, respectively. Provitamin A molecules can be converted into vitamin A
[9].

Recently, it has become clear that vitamin A plays a role in the regulation of glucose 
and fatty acid metabolism[11,12]. This is achieved through the regulation of gene 
expression by retinoic acid (RA), a product of retinol metabolism[13-15]. How RA 
regulates the expression of genes involved in lipid metabolism and their signaling 
pathways is something worth being investigated. Here, we try to summarize the 
effects of vitamin A status and its metabolites on the regulation of genes involved in 
fatty acid synthesis, desaturation, and elongation pathways. In July 2020, key words 
such as vitamin A, retinol, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 
fatty acid elongases, and desaturases were used to search PubMed and retrieve the 
relevant articles for further reading.

OVERVIEW OF FATTY ACID SYNTHESIS IN MAMMALIAN CELLS
Understanding the regulation of the hepatic fatty acid metabolism pathways has both 
theoretical and clinical significance for health. The liver plays a major role in the de 
novo lipogenesis[16,17]. After the formation of TAG, hepatocytes secrete very low-
density lipoprotein containing the newly synthesized TAG to be stored or used in 
other tissues[18-20]. The synthesis of fatty acids occurs in the cytosol and uses acetyl-
CoA as the building block. Acetyl-CoA comes from three sources, product of pyruvate 
dehydrogenase, β-oxidation of fatty acids, and catabolism of amino acids. It is mainly 
produced in the mitochondrion, and is first converted into citrate, which enters into 
cytosol using the citric acid transport system. After that, ATP citrate lyase in the 
cytosol hydrolyzes citrate into oxaloacetate and acetyl-CoA which is used in 
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lipogenesis[16].
The steps of mammalian fatty acid synthesis are shown in Figure 1. Acetyl-CoA is 

first converted to malonyl-CoA by ACC. Both acetyl-CoA and malonyl-CoA are 
loaded onto acyl carrier protein (ACP) domains of FAS to form acetyl-ACP and 
malonyl-ACP, respectively[21,22]. Mammalian FAS is a polypeptide containing multi-
functional subdomains with seven enzymatic activities, which are acetyl-CoA-ACP 
transacylase, malonyl-CoA-ACP transacylase, β-ketoacyl-ACP condensase, β-ketoacyl-
ACP reductase, β-hydroxyacyl-ACP dehydratase, enoyl-ACP reductase, and 
palmitoyl-ACP thioesterase. FAS repetitively catalyzes condensation, reduction, 
dehydration, and reduction reactions to add two carbons each time until a 16-carbon 
acyl chain is formed. The final product of FAS is palmitic acid, a saturated fatty acid.

Fatty acids with longer chain length and double bonds can be produced from 
palmitic acid via other enzymes[23,24]. Elongases (ELOVLs) add two carbons each 
time to create a longer chain fatty acid. Desaturases introduce double bonds to the 
saturated and unsaturated fatty acids, which results in the production of monounsat-
urated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs), respectively. 
Desaturases are specific for double bond formation in specific positions on a fatty acid 
molecule. The formation of each double bond requires an oxygen molecule and two 
electrons to participate. The first desaturation reaction is catalyzed by stearoyl-CoA 
desaturase 1 (SCD1), which introduces the first double bond in palmitic acid and 
stearic acid[25,26]. Saturated fatty acids and unsaturated fatty acids can be used to 
form TAG, phospholipids, and other lipids. The impacts of nutritional factors on the 
expression and activities of these lipogenic enzymes have been the interests of 
nutritional sciences.

OVERVIEW OF VITAMIN A METABOLISM
Humans and other mammals are unable to synthesize vitamin A in the body. Dietary 
preformed vitamin A and provitamin A are from animal and plant foods, respectively. 
Vitamin A is mainly stored as retinyl esters such as retinyl palmitate in the liver[27-
30]. Figure 2 shows the digestion, absorption, transport, and storage of vitamin A in 
the body. Dietary retinyl esters and carotenoids form micelles with other lipids in the 
digestion and absorption processes[10,27]. The released retinol and carotenoids are 
absorbed into the enterocytes after crossing the unstirred water layer. Within the 
enterocytes, β-carotene is hydrolyzed to retinal by 15,15´-dioxygenase, and retinal is 
reduced to retinol by retinal reductase[28]. Retinol is re-esterified to form retinyl eaters 
again by lecithin retinol acyltransferase or acyl-CoA retinol acyltransferase and then 
incorporated into chylomicrons, the lipoprotein for the transport of dietary lipids, 
which enter the lymph circulation and then the blood circulation[29].

The retinol released from retinyl esters in chylomicron remnants is catabolized into 
retinal and then RA (all trans RA unless defined otherwise) in the liver. The excessive 
retinol is re-esterified into retinyl esters, which are stored in the hepatic stellate cells
[29]. A cellular retinol-binding protein binds to free retinol in the cells and is 
responsible to modulate the intracellular free retinol concentration. Retinol is secreted 
back from the liver in a complex containing retinol-binding protein 4, transthyretin, 
and thyroxine in the blood. Peripheral cells uptake retinol, and convert it into retinal 
and then RA to exert physiological responses. Other metabolites derived from retinol 
and RA can be excreted in the urine and the bile. Extrahepatic tissues, retina, adipose 
tissues, skeletal muscle, bone marrow, blood cells, spleen, heart, lungs, and kidneys 
can also uptake retinyl esters and metabolize retinol as the liver.

RA enters the nucleus, and binds to RA receptors (RARs) and retinoid X receptors 
(RXRs) interacting with the RA response elements (RAREs) in the promoter of the 
targeted genes[30-32]. Retinoids regulate gene expression through the RAREs in the 
promoters of their targeted genes. Some of those genes are involved in the regulation 
of glucose and fatty acid metabolism as reviewed[11,12]. Our lab has shown that the 
vitamin A metabolism participates in the regulation of hepatic lipogenic gene 
expressions during the cycle of fasting and refeeding in rats[33]. Therefore, 
understanding the role of vitamin A in fatty acid synthesis helps to clarify the 
regulation of lipogenesis for the prevention and treatment of chronic metabolic 
diseases such as obesity.
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Figure 1 Fatty acid synthesis process in a mammalian cell. Dietary nutrients are metabolized into acetyl-CoA, which is converted into malonyl-CoA by 
acetyl-CoA carboxylase. Malonyl-CoA and acetyl-CoA are used by fatty acid synthase to generate palmitic acid, which can be either elongated into stearic acids by 
elongases (ELOVLs) or desaturated into palmitoleic acid, a monounsaturated fatty acid (MUFA), by stearoyl-CoA desaturase 1 (SCD1). Oleic acid (an MUFA) can be 
created either via elongation of palmitoleic acid by ELOVLs or desaturation of stearic acid by SCD1. Additional fatty acid with longer chain length or more double 
bonds can be generated from oleic acid through the activities of ELVOLs and fatty acid desaturases. ACC: Acetyl-CoA carboxylase; FAS: Fatty acid synthase; SCD1: 
Stearoyl-CoA desaturase 1; FADS: Fatty acid desaturases.

Figure 2 Overview of vitamin A metabolism in the body. Vitamin A (retinol) is in the forms of preformed vitamin A, retinyl esters, and provitamin A, 
carotenoids, in our diets. After digestion and absorption, resynthesized retinyl esters are packed as chylomicrons and released into the lymph circulation and then 
blood circulation to be delivered to the peripheral tissues first. The chylomicron remnants are taken up by the hepatocytes, which will hydrolyze retinyl esters to 
retinol, which is used for the productions of retinoic acid, stored again in the form of retinyl ester in stellate cells, or a complex containing retinol, retinol binding 
protein, and transthyretin, which is released into the blood circulation again. Retinol in the circulation is taken up by cells and oxidized into retinal, and then retinoic 
acid, which participates into the regulation of gene expression, and in turn cellular responses.

EFFECTS OF VITAMIN A STATUS AND RA TREATMENT ON ACC
ACC catalyzes the conversion of acetyl-CoA to malonyl-CoA, and plays an important 
role in the control of fatty acid metabolism[34,35]. Two isoforms of ACC have been 
identified, ACCα and ACCβ. The malonyl-CoA produced by ACC is located in the 
cytoplasm and can be used for fatty acid synthesis, and suppression of fatty acid 
oxidation through the inhibition of carnitine palmitoyl transferase I (CPT1) activity
[36]. Vitamin A can regulate ACC activity and gene expression levels, thereby affecting 
fatty acid synthesis.

Reports have shown that vitamin A signaling system regulates the activity and 
expression of ACC. The effect of vitamin A deficiency (VAD) on myocardial lipid 
metabolism has been studied in rats. VAD causes changes of lipid synthesis and 
composition, and reduces the ACC activity significantly[37]. In the heart, the VAD rats 
have reductions of ACC activity (but not Accb mRNA), mRNA levels of Rxrs, and 
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cardiolipin content, and increases in CPT1 activity and its mRNA level, and 
phosphatidic acid levels compared with those fed the same diet supplemented with 8 
mg of retinyl palmitate/kg diet. The incorporations of [1-14C]-acetate into cholesterol 
and [methyl-14C]-choline into phosphatidylcholine are increased in the VAD animals. 
All these changes returned to their original levels after the VAD rats were fed a 
vitamin A sufficient (VAS) diet for 15 d, demonstrating the significant alterations of 
lipid metabolism in the heart of VAD rats[37].

Changes of the hepatic ACC activity and its mRNA expression levels in VAD status 
are observed. Male Wistar rats at weaning (3 wk of age) fed a VAD diet for 3 mo have 
lower body weight gain, liver and plasma retinol levels, and plasma TAG and 
cholesterol levels than those fed a VAS diet or those refed the control diet for 15 d[38]. 
The incorporations of [1-14C]-acetate into cholesterol and [methyl-14C]-choline into 
phosphatidylcholine are lowered due to the VAD status. The activity of hepatic ACC 
in the VAD male Wistar rat is significantly lower than that in the control group[38]. 
Similarly, the hepatic expression of Acc mRNA in the VAD group is significantly lower 
than that in the control group and the refed group. When the VAD animals were refed 
a VAS diet, the expression of Acc mRNA returned to that of the control value[38].

NMRI male mice at 12-wk-old age have been treated with RA at 10, 50, or 100 
mg/kg body weight/d for 4 d. Levels of Pparδ, Accb, Rxrα, and Cpt1 mRNA in the 
skeletal muscle tissue are induced by the RA treatment. The proteins levels of PPARδ 
and RXRα are elevated in the group of mice treated with the 50 mg/kg body weight/d 
RA[39].

The effect of RA on fatty acid synthesis in bovine mammary alveolar cells (MAC-T) 
have been studied[40]. MAC-T cells after being differentiated for 4 d have been treated 
with 0, 1.0, 1.5, and 2.0 μmol/L RA for additional 3 d. RA treatment increases the 
amounts of short-chain and medium-chain, saturated and monosaturated fatty acids, 
and reduces the amounts of long-chain and PUFAs in the cells. Interestingly, the 
mRNA level of Acca is reduced by 1 μmol/L RA, but induced by 2 μmol/L RA[40].

In H9C2 myotube, a rat heart muscle cell line, RA treatment significantly induces 
the expression of Accb gene expression through the RXRα-mediated activation of 
muscle regulatory factor 4, which interacts with the Accb gene promoter[41]. In HL-60 
promyelocytic leukemia cells treated with RA for 24 h and 7 d, the activity of ACC 
decreased by 44.9% and 99.7%, respectively[42].

Table 1 summarizes the effects of vitamin A status and RA treatment on the ACC 
activity and its mRNA and protein expression levels in animals and cells. It seems that 
the enzymatic activity and mRNA expression levels of ACC have been studied to 
certain extent. However, more protein data appear to be needed.

EFFECTS OF VITAMIN A STATUS AND RA TREATMENT ON FAS
As one of the key enzymes of de novo lipogenesis, FAS in the cytosol uses acetyl-CoA 
and malonyl-CoA to produce the 16-carbon palmitic acid[22]. The expression level of 
Fas mRNA changes in response to nutritional states[43].

In the male lambs, supplementation of VA at 500000 IU/animal twice per week 
from birth to 100 d of age does not affect body weight and lipid content during 
growth. However, this treatment increases the number of adipocytes in the perirenal 
depot, but reduces the sizes of adipocytes in the omental and perirenal deports, which 
is associated with the reduction of FAS activity in the perirenal fat depot[44]. On the 
other hand, a vitamin A supplementation study did not show any change of the 
marbling scores and lipogenic enzyme activities including the FAS activity in the 
adipose tissues of yearling beef steer[45]. Glucocorticoids can stimulate fatty acid 
biosynthesis and increase the activity of FAS protein and Fas mRNA levels. However, 
studies of the Fas gene in the lungs of rat fetuses in late pregnancy indicate that 
glucocorticoid-stimulated Fas gene expression is antagonized by the RA treatment[46].

Doses of RA at 10 or 100 mg/kg body weight have been injected daily subcu-
taneously for 4 d to 13-wk-old NMRI male mice[47]. The 100 mg/kg body weight, but 
not 10 mg/kg body weight, dose reduces the epididymal white adipose tissue weight. 
However, both doses of RA reduce hepatic Srebp-1c and Fas mRNA levels[47]. Our lab 
has shown that the VAD status leads to the reduction of hepatic expression levels of 
FAS protein in the refeeding of a VAS diet in the VAD rat liver[33]. In addition, 
vitamin A status regulates the Fas mRNA levels in both Zucker lean (ZL) and Zucker 
fat (ZF) rats. The VAD ZL and ZF rats have lower hepatic Fas mRNA levels than their 
respective VAS controls[48].
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Table 1 Effects of vitamin A status and retinoic acid treatment on acetyl-CoA carboxylase enzymatic activity and its mRNA and protein 
expression levels in cells and tissues

Treatment Tissue/cells ACC activity mRNA levels Protein levels Ref.

Rat heart Reduced No change of Accb ND Vega et al[37]

Rat liver Reduced Reduced Acc ND Oliveros et al[38]

Vitamin A deficiency 

Rat liver ND ND Reduced in ad 
libitum

Li et al[33]

NMRI mouse muscle ND Increased Accb ND Amengual et al[39]

MAC-T cells Acca reduced by 1 μmol/L and induced 
by 2 μmol/L

Liao et al[40]

H9C2 myotube Increased Accb Kim et al[41]

RA treatment

HL-60 PL cells Reduced ND ND Fischkoff et al[42]

ACC: Acetyl-CoA carboxylase; HL-60 PL: HL-60 promyelocytic leukemia cells; MAC-T: Bovine mammary alveolar cells; ND: Not determined; RA: Retinoic 
acid; VAD: Vitamin A deficiency.

The effect of glucose on the RA-induced lipogenesis has been investigated in 3T3L1 
adipocytes cells. RA has been shown to induce or suppress lipid accumulation when 
medium glucose concentrations are 25 and 5.5 mmol/L, respectively. These RA effects 
are associated with inductions and reductions of Ap2 and Fas mRNA expression at 25 
mmol/L and 5.5 mmol/L medium glucose concentrations, respectively[49]. On the 
other hand, 0.5, 5, or 50 μmol/L RA treatment increases the expression levels of ob 
mRNA[49]. Other studies from the same group show that RA at 1 μmol/L inhibits the 
mRNA levels of Srebp-1a and Fas, which is associated with the reduction of lipid 
accumulation in 3T3-L1 cells[50]. Interestingly, RA at 1 μmol/L is able to inhibit the 
differentiation of 3T3-L1 cells and suppress the FAS activity[51]. In human AML-I 
preadipocytes, the treatment with 50 μmol/L RA or 9-cis RA induces the cell growth 
arrest and cell death[52]. The 50 μmol/L RA treatment for 4 to 5 d results in the 
elevation of Fas mRNA[52].

In primary rat hepatocytes, RA synergizes with insulin to induce the Srebp-1c and 
Fas expression, which is mediated by the two liver X responsive elements in the Srebp-
1c promoter[14]. In HepG2 cells, RA treatment induces the activation of FAS promoter 
in a transient reporter gene assay[53]. The responsive element is attributed to an E-box 
region that is considered a place for multiple hormonal effects[54]. The mechanism of 
the RA-induced expression of FAS mRNA and protein is thought to be mediated by 
SREBP-1c[55]. RXR, but not RAR, is thought to be responsible for this phenomenon
[55]. Interestingly, in HepG2 cells, 1 μmol/L RA treatment for 24 h induces the mRNA 
levels of CPT1, SREBP-1c, and FAS, which is associated with the elevation of the fatty 
acid oxidation based on the authors’ conclusions[56]. Farnesol treatment significantly 
down-regulates the mRNA level of FAS in the clone-9 cultured rat hepatocytes, which 
involves a 9-cis RA mediated mechanism[57]. Stimulatory proteins 1 and 3, nuclear 
factor Y, upstream stimulatory factor, and SREBP-1 have cognate binding sites in the 
FAS promoter, which may contribute to the RA-regulated FAS expression in HepG2 
cells[58]. The region of the rat Fas promoter contains specific cis-elements responsible 
for the RA responses, which might not be RAREs. It is possible that RA induces 
SREBP-1c expression in hepatocytes, and in turn, SREBP-1c mediates the RA signal to 
activate the FAS promoter[59].

In LNCaP prostate cells, 1 μmol/L RA treatment for 24 or 72 h is sufficient to induce 
FAS mRNA expression, which is accompanied by the incorporation of [2-14C] acetate 
into lipids, especially TAG, indicating the elevation of lipid synthesis and accumu-
lation[60]. Retinol in human glioblastoma cells affects fatty acid biosynthetic 
pathways. FAS protein expression is down-regulated after the treatment with retinol
[61].

Table 2 summarizes the effects of vitamin A status and RA treatment on the FAS 
protein and mRNA expression levels in different cells and organs. It appears that 
vitamin A status affects the Fas mRNA levels in rat hepatocytes. In addition, RA 
treatments also regulate FAS protein and mRNA expression levels. The outcomes 
depend on the cell types and glucose content in the culture media.



Yang FC et al. Vitamin A and lipogenesis

WJCC https://www.wjgnet.com 4512 June 26, 2021 Volume 9 Issue 18

Table 2 Effects of vitamin A supplementation, vitamin A status, and retinoic acid treatment on the Fas mRNA and fatty acid synthase 
protein levels in cells and tissues

Treatment Tissue/cells FAS activity Fas mRNA Protein levels Ref.

Perirenal fat depot of 
lamb

Reduced ND ND Arana et al[44]Vitamin A 
supplementation

Adipose tissue of 
yearling beef steers

No change ND ND Bryant et al[45]

ZL rat liver ND Not changed in ad libitum Reduced in the 
refeeding of a VAS 
diet

Li et al[33]Vitamin A deficiency

ZL and ZF rat liver ND Reduced in 6 h-fasting ND Zhang et al[48]

Rat fetus lung Reduce GC-
induced activity

Reduced GC-induced Fas ND Xu et al[46]

Mouse EWAT ND Reduces Fas ND Amengual et al[47]

3T3-L1 cells ND Induced at 25 mmol/L glucose, 
and reduced at 5.5 mmol/L glucose

ND Abd Eldaim et al[49]

3T3-L1 cells ND Reduced Abd Eldaim et al[50] 
and Murray et al[51]

Human AML-I 
preadipocytes

ND Induced ND Morikawa et al[52]

Primary rat hepatocytes ND Synergized with insulin to induce 
Fas

ND Li et al[14]

HepG2 cells ND Induced FAS Induced FAS Roder et al[55] and 
Amengual et al[56]

RA treatments

LNCaP prostate cells ND Induced FAS ND Duncan and Archer[60]

GC: Glucocorticoid; EWAT: Epididymal white adipose tissue; FAS: Fatty acid synthase; ND: Not determined; RA: Retinoic acid; VAD: Vitamin A 
deficiency; ZL: Zucker lean; ZF: Zucker fatty; VAS: Vitamin A sufficient.

EFFECTS OF VITAMIN A STATUS AND RA ON ELOVLS
Currently, seven isoforms of ELOVLs, ELOVL1 to 7, have been identified in 
mammalian cells. They participate in the elongation reactions for the synthesis of very 
long chain fatty acids. Each ELOVL isozyme has its preferred acyl-CoA with particular 
carbon chain length and saturation[7,62]. Few reports have shown the relationship 
between vitamin A and ELOVLs.

Both male and female C57BL/6J mice at 35 d of age have been fed a stock diet with 
20% total energy from ground nut oil (10% w/w) or 54% total energy from beef tallow 
(high-fat diet, 33% w/w) for 26 wk[63]. The hepatic retinol content in mice fed the 
high-fat diet is much higher (more than 5-fold) than that of mice fed the stock diet. The 
hepatic content of docosahexaenoic acid (C22:6n-3) and expression levels of ELOVL2 
protein in male and female mice fed the high-fat diet are higher than those of mice fed 
the stock diet, but the mRNA was not determined[63]. VA supplementation increases 
the ELOVL4 in the retina of WNIN/Ob obese rats[64].

EFFECTS OF VITAMIN A STATUS AND RA ON DESATURASES
Fatty acid desaturases introduce double bonds onto saturated and unsaturated fatty 
acids. For example, SCD1 is responsible for the formation of the first double bond to 
produce MUFAs and regulation of lipogenesis[25,26].

Vitamin A restriction in beef cattle has been shown to improve the marbling scores 
in Japanese Black cattle[65]. Changes in the expression of genes for lipid synthesis are 
observed in the muscle tissues of the Japanese Black steers with the vitamin A 
restriction, and associated with the marbling phenotype[66]. However, semi-
quantitative polymerase chain reaction did not find any significant change of Scd 
mRNA in the vitamin A restriction group[66]. In Angus-based steers, vitamin A 
restriction does not affect the marbling scores, but induces MUFA amounts and 
desaturase index in adipose tissues[67]. However, the SCD activity was not measured 
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in the study[67].
Wistar rats fed a VAD diet for 16 wk have reduced plasma TAG and hepatic 

expression levels of Scd1 mRNA, but not SCD protein levels, both of which are 
induced by feeding of a high fructose diet[68]. The mRNA expression levels of Elovl6 
and Scd1 are reduced after female mice were fed a high-fat diet for 4 wk[69]. The 
vitamin A supplementation does not have any impact on the Elovl6 and Scd1 mRNA 
expression in this experimental setting[69]. In mice, feeding of a diet containing high 
retinyl palmitate (0.1% w/w) for 36 h induces the hepatic Scd1 mRNA expression[70]. 
However, the SCD1 protein and its mRNA levels in the kidney are not affected by the 
vitamin A status even though VAD leads to the elevation of oleic (C18:1) and total 
MUFA levels in the same tissue[71]. The feeding of a VAD diet reduces the retinol 
content, and increases the MUFAs in the kidney probably due to the regulation of 
SCD1 activity[71]. In the pancreas of rats fed a VAD diet for 16 wk, the oleic acid 
content is reduced, which is associated with the reduction of SCD1 protein level[72].

The restriction or deficiency of vitamin A in rats induces the hepatic mRNA levels of 
fatty acid delta-5 desaturase[73]. Interestingly, the liver of rats fed a VAD diet for 19 
wk have higher microsomal activity of SCD1, but not delta 6-desaturase, than those 
fed a VAS diet[74]. The replenishment of vitamin A in the VAD rats restored the SCD1 
activity to the level equal to that in the VAS rats[74]. In the skin of Scd1 knockout mice, 
the retinoid metabolism is disturbed with the elevations of retinol and RA contents, 
and the expression levels of RA-induced genes such as Rbp1, Crabp2, and Lcn2, which 
is also associated with the elevations of Il1b and Tnfa mRNA levels[75].

In rat primary astrocytes pretreated with 10 μmol/L retinol for 24 h, treatment with 
50 μmol/L docosahexaenoic acid for 24 h induces the mRNA expression of Fads2 
(delta 6-desaturase gene)[76]. In the initiation phase of 3T3-L1 adipocyte differen-
tiation, the RA treatment prevents the lipid accumulation[77]. RA dose-dependently 
suppressed the Scd1 and Albp mRNA expression, which is induced during the differ-
entiation process[77]. In human retinal pigment epithelial cells, RA dose-dependently 
induces the SCD mRNA, which is mediated by the activation of both RAR and RXR
[78].

Table 3 summarizes the effects of vitamin A status and RA treatments on the SCD1 
activity, and the expression levels of its mRNA and protein in cells and tissues. In the 
liver, VAD reduces the SCD1 protein and mRNA expression levels. RA treatment 
affects the Scd1 mRNA expression levels depending on the cells tested.

VITAMIN A AND NON-ALCOHOLIC FATTY LIVER DISEASE
Non-alcoholic fatty liver disease (NAFLD) has become a disease that challenges the 
public health systems in many countries[79,80]. NAFLD can develop to nonalcoholic 
steatohepatitis (NASH), cirrhosis, and then hepatocellular carcinoma in certain percent 
of the patients[81]. Elevation of fatty acid synthesis from acetyl CoA has been 
indicated as the major contribution to the development of NAFLD in humans[81].

The VA intakes, blood levels of retinol and RA, and the hepatic retinoid contents 
have been investigated in human subjects with NAFLD. The VA intakes of subjects 
with NAFLD have been shown to be lower than the control ones[82,83], higher than 
the control ones[84] or not different from the control groups[85]. The blood retinol is 
inversely associated with liver damages in patients with NAFLD[83,86]. Patients with 
a genetic variant of patatin-like phospholipase domain-containing 3 (I148M) that 
reduces its activity and is linked to NAFLD have reduced blood retinol levels[87]. In 
one study, the blood RA levels in patients with NAFLD and NASH are lower than that 
in the age-matched control group[88]. The hepatic levels of retinyl palmitate, RA, 13-
cis-RA, and 4-oxo-atRA in NAFLD patients with simple steatosis and NASH are lower 
than that in the control subjects[89].

The hepatic genes involved in VA metabolism and signaling are also altered in the 
liver samples from patients with NAFLD. The expression level of RXRa mRNA in the 
liver biopsy samples of NAFLD patients is inversely correlated with hepatic steatosis
[88]. The expression levels of retinaldehyde dehydrogenase 1 family, member A2 
(ALDH1A2) and retinaldehyde dehydrogenase 1 family, member A3 (ALDH1A3), 
enzymes for RA synthesis, in NAFLD subjects are lower than those of the control 
subjects as well[85]. However, the mRNA levels of lecithin retinol acyltransferase (
LRAT), ALDH1A1, CYP26A1, RARa, and RARb are not different between the control 
and NAFLD groups[89].

Animal studies have been done to determine the impacts of NAFLD on VA 
metabolism and VA signaling on the NAFLD development. Feeding a methionine and 
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Table 3 The effects of vitamin A supplement, vitamin A status and retinoic acid treatment on the stearoyl-CoA desaturase 1 activity, 
mRNA and protein levels in cells and tissues

Treatments Tissue/cells Activity mRNA Protein levels Ref.

Mouse liver ND No change ND Weiss et al[69]Vitamin A supplement

Mouse liver ND Increased ND Miller et al[70]

Vitamin A restriction Muscle tissues of the Japanese Black 
steers

ND No change ND Hayashi et al[66]

Rat liver ND Reduced No change Raja Gopal Reddy et al[68]

Rat kidney ND No change No change Gopal Reddy et al[71]

Rat pancreas ND ND Reduced Raja Gopal Reddy et al[72]

Vitamin A deficiency

Rat liver microsomal Increased ND ND Alam et al[74]

3T3-L1 cells ND ND Reduced Stone and Bernlohr[77]RA treatments

Human retinal cells ND Induced ND Samuel et al[78]

ND: Not determined; RA: Retinoic acid.

choline deficient (MCD) diet, a diet that induces fatty liver in mice and rats, for 6 wk 
lowered plasma retinol level and increased hepatic retinol content in Wistar rats[90]. 
The expression levels of the hepatic Lrat, Aldh1a1, and Aldh1a2 are also elevated in 
the rats fed the MCD diet[90]. The increased expression level of Lrat was also observed 
in mice fed a high-fat/cholesterol diet for 12 or 20 wk or in ob/ob mice, which is 
attributed to the increase in the formation of retinyl esters in hepatocytes, not hepatic 
stellate cells[91]. This is associated with the decrease of liver retinol and increase in 
retinyl palmitate contents[91]. The MCD diet also induces the expression level of 
platelet-type 12S-lipoxygenase in the hepatic stellate cells of mice, cells for VA storage 
and the development of hepatic fibrosis[92].

VA deficiency prevents the high-fructose diet-induced TAG in the liver and plasma 
in Wistar rats[68], and HFD-induced steatosis in mice[93]. On the other hand, 
treatment with RA has been shown to reduce lipid accumulation and steatosis in 
NAFLD mice[90,94-96]. Interestingly, RA improved insulin sensitivity and reduced 
blood glucose and liver damage in wild type, but not ob/ob mice[95]. M80 (an RARα 
specific agonist) treatment reduces insulin and leptin resistance in KK-Ay mice and 
increases leptin receptor mRNA levels[95].

However, in another study, mice fed an HFD for 3 mo were treated with vehicle, 
and then treated with AM80 or AC261066 (an RARβ2 specific agonist) for another 
month[97]. Mice in the AM80 group have higher degree of steatosis, TAG levels, 
inflammation, and blood glucose levels than those in the control and AC261066 groups
[97]. The AC201066 group has higher hepatic TAG content than the control group as 
well[97].

Reduced RA production via heterozygous deletion of retinol dehydrogenase 10 (
Rdh10) gene has been attributed to the increased adiposity and insulin resistance in 
mice fed an HFD for 16 wk, which can be corrected to certain extent by RA treatment 
via capsules for 3 wk[94]. On the other hand, altered location of retinyl ester formation 
from the stellate cells to hepatocytes is also considered a reason for fatty liver 
development in mice fed an HFD or ob/ob mice[91]. Furthermore, the Sirtuin pathway 
seems to be required for HFD-induced hyperglycemia, insulin resistance, and steatosis 
in mice fed an HFD, which can be attenuated if the HFD is supplemented with RA
[96]. Additionally, the adenovirus-mediated overexpression of RXRα and RA 
treatment are shown to reduce the lipid accumulation in the liver and steatosis in mice
[90].

It appears that VA metabolism is altered with the development of NAFLD based on 
the data of human and animal studies summarized here. Whether these alterations are 
the causes or consequences of the NAFLD remains to be determined. Interventional 
studies in rodents seem to yield conflict results. The VA deficiency status appears to 
reduce fatty liver in rats[68], and HFD-induced steatosis in mice[93]. The reduced RA 
production led to insulin resistance, and RA supplementation rescued the phenotype 
in mice[94]. It is interesting that extremely low VA availability in the body and 
exogenously derived RA both can reduce fatty liver phenotypes in rodents. 
Apparently, the role of VA in the lipid metabolism is more complicated than whether 
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there is enough RA produced or not. The VA metabolism probably should be 
considered more dynamically in the context of spatial and temporal manners, such as 
the transition of the cycle of fasting and refeeding[33].

Due to the lack of clear etiology and effective biomarkers for diagnosis (liver biopsy 
is the gold standard), the treatment methods for NAFLD are limited[98]. Nevertheless, 
given the roles of VA in the regulation of glucose and lipid metabolism, cautions must 
be given when supplementations of micronutrients are recommended in a clinical 
setting for the intervention of NAFLD. Another area that deserves more attention is 
the changes of VA and other micronutrients metabolism and their roles in the drug-
induced hepatotoxicity that involves multiple mechanisms and pathways[99]. This is 
especially important as drugs are often used to treat comorbidities associated with 
NAFLD such as obesity and type 2 diabetes.

CONCLUSION
Fatty acid synthesis is closely related to the development of chronic metabolic diseases 
such as obesity, diabetes, and cardiovascular diseases. The key lipogenic enzymes and 
their genes seem to be regulated by the vitamin A statuses and its metabolite, RA. This 
has become more and more obvious with the accumulation of research data. As 
demonstrated in this review, this area is still in the preliminary stage, and more in-
depth and systematic research is anticipated. The following areas are especially 
important in the future: (1) Systematic studies of the effects of vitamin A on the 
activities of key lipogenic genes in various mammalian cells should be conducted to 
establish the link between these two; (2) In the meantime, their mRNA and protein 
levels are also worth to be determined to indicate the potential mechanisms; (3) The 
interactions of vitamin A with insulin and other regulatory factors of lipogenesis 
should receive more attention; and (4) In addition to metabolism, since RA treatments 
affect tumor growth and cell apoptosis, the role of RA-regulated fatty acid synthesis is 
also worth to be investigated. Nevertheless, understanding the role of vitamin A in the 
regulation of lipogenesis will benefit not only metabolic studies but also interventions 
of human metabolic diseases.
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