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Abstract

The emergence of pandemic situations originated from severe acute respiratory syn-

drome (SARS)-CoV-2 and its new variants created worldwide medical emergencies.

Due to the non-availability of efficient drugs and vaccines at these emergency hours,

repurposing existing drugs can effectively treat patients critically infected by SARS-

CoV-2. Finding a suitable repurposing drug with inhibitory efficacy to a host-protein

is challenging. A detailed mechanistic understanding of the kinetics, (dis)association

pathways, key protein residues facilitating the entry–exit of the drugs with targets

are fundamental in selecting these repurposed drugs. Keeping this target as the goal

of the paper, the potential repurposing drugs, Nafamostat, Camostat, Silmitasertib,

Valproic acid, and Zotatifin with host-proteins HDAC2, CSK22, eIF4E2 are studied to

elucidate energetics, kinetics, and dissociation pathways. From an ensemble of inde-

pendent simulations, we observed the presence of single or multiple dissociation

pathways with varying host-proteins-drug systems and quantitatively estimated the

probability of unbinding through these specific pathways. We also explored the cru-

cial gateway residues facilitating these dissociation mechanisms. Interestingly, the

residues we obtained for HDAC2 and CSK22 are also involved in the catalytic activ-

ity. Our results demonstrate how these potential drugs interact with the host

machinery and the specific target residues, showing involvement in the mechanism.

Most of these drugs are in the preclinical phase, and some are already being used to

treat severe COVID-19 patients. Hence, the mechanistic insight presented in this

study is envisaged to support further findings of clinical studies and eventually

develop efficient inhibitors to treat SARS-CoV-2.
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1 | INTRODUCTION

Over the past two decades, the virus that causes coronavirus disease

has turned out to be lethal across the world. Earlier it was considered

as a mild disease infecting immunocompetent people. Over the years,

the virus has evolved into being fatal, with a higher transmissibility

rate. Severe acute respiratory syndrome (SARS-CoV-2),1 the virus that

causes COVID-19, has become the worst and most uncontrollable

public health crisis in a century. After the first outbreak, the virus

mutated into more infectious variants, triggering multiple pandemic

waves. The second pandemic wave primarily targets the younger pop-

ulation aggressively. Unlike the first wave, 60%–70% of the infected

people in the second wave required critical care and hospitalization. A

statement released by the Centers for Disease Control and Prevention

(CDC) in July 2021 claimed that the Delta variant has the highest

spread cases and severe outcomes even among vaccinated people.
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The Delta variant has shown to be twice as powerful as previous vari-

ants, but further details are still not understood. Generally, on-set of

infection, a person can experience milder flu-like symptoms,2,3 further

developing into more acute severe respiratory failure4 and other

multi-organ complications. Many repurposing drugs have been applied

for COVID-19 treatment in this emergency, although the FDA does

not yet approve them.

Researchers are scrambling to unravel how the virus hijacks the

host and eventually affects the host regulatory mechanism. The viral

genome is complex and encodes structural and non-structural pro-

teins.5,6 The viral proteins utilize the host proteins from their entry to

transmission within host cells for their life cycle.7,8 Identifying virus-

host protein interactors in the complex pool of sequential pathways is

vital to study the viral pathogenesis and host tolerant environment for

viruses. In particular, the Delta variant with multiple mutations in the

spike protein binds to the host angiotensin-converting enzyme

2 (ACE2)9 receptor, which is present outside the human throat and

lung cells, 2–4 times stronger. Recent proteomics approaches have

revealed that viral proteins can enhance or lower the activity of hun-

dreds of human kinases involved in cellular activities and immune

response.10 So, the possibility of targeting pro-viral cellular signaling

could make the host immune system resistant to viral replication. It is

crucial when the host has antibodies developed for SARS-CoV-2 by

vaccination or recovery from COVID-19 infection and is still suscepti-

ble to new variants.11

The Caesin Kinase 2 (CK2),12,13 Histone deactylease

(HDAC2),14,15 and eIF4E2 host proteins are essential for the normal

functioning of cells, involved in cell cycle checkpoints, metabolic path-

ways, epigenetic regulators, mRNA translation pathways. These pro-

teins get perturbed in the cancerous cells. Previous experimental

studies have highlighted that cancer cells and viral pathogens follow

similar molecular mechanisms for apoptosis and evade host immune

response. Coronaviruses take over these machinery pathways. For

example, viral protein Nsp1 recruits the host proteins and reduces the

overall host protein translation in the cell by 70%.16

Recent mass-spectrometric experiments reported that an entry of

a virus to the host target induces a significant change in protein phos-

phorylation and disrupts the host cytoskeletal organization.17 Addi-

tionally, pharmacological studies in human cell lines have indicated

the drug Silmitasertib (currently in phase 2 trials) to have high inhibi-

tory activity of CK2 kinases, suggesting the role of these kinases in

the SARS-CoV-2 life cycle.17 Previous studies18–20 on SARS-CoV have

shown that drugs Nafamostat18,19 and Camostat21 are potential

candidates to stop viral entry by binding to transmembrane protease

serine 2 (TMPRSS2) proteases.22–24 However, even at higher concen-

trations, Camostat showed 65% inhibition of protease binding, and

35% virus entry takes place via the endosomal cathepsin pathway.25

Although, the role of these drugs on intracellular proteins that help

regulate viral protein processing is still not clear. Similarly, the

Zotatifin drug has shown to be effective in the translation machinery

of the host, where viruses rely on host-dependent mRNA translation.

Repurposing of these drugs can be an effective way in terms of cost

and time for treating COVID-19.

Our recent study26 followed an exhaustive screening of FDA-

approved drugs against multiple host targets by using high throughput

computational screening27 utilizing molecular docking, all-atom molec-

ular dynamics simulations including solvent and state-of-the-art free

energy calculations. The multi-target multi-ligand enhanced sampling

approach provides highly selective off-target drug combinations with

stable affinities. Interestingly, we found that drugs with high binding

free energies were already in the clinical trial phase for COVID-19.

Especially the drug Silmitasertib targeting CK2, which showed good

binding free energies in our previous work,26 is already in phase II clin-

ical trials. Similarly, the drug Zotatifin targeting the eIF4E elongation

factor is in clinical trial phase I. We found that some off-targets

showed good binding free energies but have not been previously

explored experimentally.28 However, thermodynamics and kinetics

are essential in the early stages of rational drug design, but molecular

determinants could describe the modulation of binding and unbinding

kinetics and disclosing their pathways.29 In Figure 1, we have sche-

matically presented the background of this study and outlined the key

goals of this work. In this paper, we have considered the targets and

off-targets combinations30 having good binding free energies and sub-

jected to performing a combined all-atom molecular dynamics and

enhanced sampling simulations. We explore the dissociation pathways

of the drugs from the host proteins by considering the essential inter-

acting residues involved in (un)binding processes and quantitatively

estimated the probabilities of dissociation through different pathways,

and showed dominant unbinding pathways. The information obtained

from this study will further help in enhancing our knowledge on drug

target mechanisms and designing better therapeutics.

1.1 | Computational methodologies

We applied a rigid docking protocol to generate the docked complex

using the Autodock suite (Autodock 4.2.6).31 We performed docking

on the crystal structures of the proteins (Table 1), and missing loops, if

present, have been modeled using Modeller (9.24).32 We first

obtained minimum energy structures for proteins and ligands

(Figure 2) separately and then performed docking to get the docked

complex. The docking sites have been selected by either using the

inhibitor-bound position in the crystal structure or finding the binding

sites using the Autoligand tool.33 We took the conformation

corresponding to the minimum docking score for all-atom molecular

dynamics (MD) using GROMACS-2018.34 Charmm27 force field

parameters with cmap corrections have been used to model bonded,

nonbonded interactions for proteins.35–37 To generate ligand interac-

tion parameters, we optimized the ligands' geometry employing

GAUSSIAN 0936 using a semi-empirical method at the PM6 level,

followed by density functional theory (DFT) optimization using M06

functionals and 6-311g (d,p) basis sets. To account bulk solvent effect,

we employed the PCM method. The partial charges have been calcu-

lated using the CHELPG method38 on this DFT-optimized structure.

Following this, we used the swissparam web service37 to obtain

charmm compatible parameters. We first solvated the docked
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complex in TIP3P water and then added Na+ and Cl� ions to neutral-

ize the system. Periodic boundary conditions were applied in all direc-

tions to mimic the bulk property. After setting up the initial system,

we performed energy minimization using the steepest descent

method to remove the overlap of the solute with the water molecules.

It was followed by NVT equilibration for duration of 500 ps at 300 K

using a modified Berendsen thermostat.39 Later, a 1 ns NPT

equilibration simulation was followed after NVT simulation at 1 atm

using Parrinello-Rahman40 barostat. The Particle-Mesh Ewald (PME)41

method was employed to calculate the long-range electrostatic inter-

action and a cut-off value of 1 nm for the short-range interaction. We

used the LINCS algorithm42 and a 2 fs step to integrate the equation

of motion. The production run was executed in the NPT ensemble for

100 ns. We analyzed these trajectories and calculated the bound state

properties of the protein-ligand systems. We calculated the contact

frequency between the protein and ligand to extract the crucial resi-

dues involved in the interaction at the bound state, considering the

minimum distance criterion choosing a cut-off of 0.4 nm. Further, we

pulled out the interaction fingerprint for the selective protein residues

(i.e., that remain in contact for more than 75% of simulation time)

obtained from the contact frequency.43

To explore the ligand dissociation29,44–47 from the protein binding

pocket, we employed metadynamics (metaD)48 and its variant

well-tempered metadynamics (wt-metaD)49 using PLUMED 2.5.450

and GROMACS 2018.34 In a metaD simulation, a history-dependent

F IGURE 1 The background and the goal of the work.

TABLE 1 The host target protein and drug combinations studied
in this paper, and their role of specific pathways involved in host cells.

Target Pathway Structure (PDB ID) Drug

eIF4E2 Translation 2JGB Nafamostat

eIF4E2 Translation 2JGB Camostat

eIF4E2 Translation 2JGB Zotatifin

HDAC2 Epigenetic factor 4LY1 Nafamostat

HDAC2 Epigenetic factor 4LY1 Valproic acid

CSK22 Transcription 6HMB Silmitasertib
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bias is deposited sequentially, prohibiting the system from revisiting

already visited portions in the phase space. Thus, the system eventu-

ally escapes from the energy landscape's minimum to the aqueous

medium. In wt-metaD, the height of the deposited bias is gradually

decreased to have better and quicker convergences of the system.

The final equilibrium coordinates from the MD simulation were taken

as the initial structures in wt-metaD simulations. In a metaD or wt-

metaD simulation, the bias is added to the system along a reaction

coordinate. A good reaction coordinate will have the following two

criteria: (i) it should show a timescale separation between the slowest

motion in the system with that of the fastest motion, and (ii) it should

be able to demarcate all the relevant metastable states. Here we take

distance (distance between the center of masses of the ligand heavy

atoms and the center of masses of the protein-binding pocket) as the

F IGURE 2 (A) Instantaneous snapshots of the secondary structures of HDAC2, eIF4E2 and CSK22 protein targets. (B) 2D chemical structures
of Nafamostat, Valproic acid, Zotatifin, Silmitasertib, and Camostat

TABLE 2 Average free energy barriers, residence times and dissociation rates are shown for six target–drug combinations.

Structure (PDB ID) Ligand Free energy (kcal/mol) Residence time (min) koff (1/min) log(koff)

HDAC2 (4LY1) Nafamostat �12.3 (0.44) 1.4E+08 7.1E�09 �8.15

HDAC2 (4LY1) Valproic acid �12.6 (0.33) 1.5E+11 6.7E�12 �11.17

eIF4E2 (2JGB) Nafamostat �4.1 (0.36) 8.3E+06 1.2E�07 �6.92

eIF4E2 (2JGB) Camostat �3.2 (0.29) 6.3E+06 1.6E�07 �6.8

eIF4E2 (2JGB) Zotatifin �2.9 (0.26) 3.7E+06 2.7E�07 �6.57

CSK22 (6HMB) Silmitasertib �11.5 (0.33) 4.3E+12 2.3E�13 �12.64

1240 PRAMANIK ET AL.



reaction coordinate (RC) (see Figure S1). Once the simulation con-

verges, the unbiased Boltzmann distribution of the RC is extracted by

adding the deposited hills. The following biasing parameters were

used in wt-metaD simulations: bias deposition frequency of 500 steps

(1 ps), Gaussian hill height 1.5–2.0 kJ/mol, hill width 0.02–0.1 nm, bias

factor 10–15, and temperature 300 K. For each system we performed

several sets of independent wt-metaD simulations (20 simulations

each for systems having single dissociation pathways, and 35 simula-

tions each for those having multiple dissociation pathways) starting

from a new initial configuration. Once the simulation converges, we

extract the independent free energy adding up the deposited hills

using the sum_hills plugin available in PLUMED. Once we have the

free energy, we convert it to probability. Then we average over proba-

bilities and later re-calculate the averaged free energy from averaged

probability (F = �kT lnP) (F—free energy, k—Boltzmann constant, T—

temperature, P—probability).26,51

To estimate the dissociation rate, we first calculate the residence

time over independent trajectories for a system. To calculate the unbi-

ased acceleration time (tacc) from a biased simulation, we use the fol-

lowing relation: tacc ¼
Ð t
0e

βV tð Þ δtð Þ. Here, β¼ 1
kT, and k is Boltzmann

constant, T is temperature. V(t) is the deposited bias as a function of

time. δt is the unbiased integration time step or a multiple of δt.

Further to explore the crucial protein residues while dissociating

the ligand from the binding pocket, we calculated the minimum dis-

tance between the heavy atoms of the ligand and protein residues

and repeated this exercise for all the independent runs, as shown in

Figure S3. Following this, we extracted only those specific residues of

the protein for which, at least for a run, it has a minimum ligand and

protein residue distance <0.2 nm (shown in Figure S4). Then we calcu-

lated the normalized probabilities for these specific residues for

the distance between the residues and the ligand heavy atoms

and repeated this exercise for all six systems as shown in

Figures S5–S10.

2 | RESULTS AND DISCUSSION

Silmitasertib, Zotatifin showed high binding free energies with CK2

and eIF4E proteins in clinical trials for COVID-19 (NCT04668209,

NCT04632381). In addition, we identified drugs that potentially inter-

act with one or more off-targets with higher affinities. On-set of

infection, the proteins associated with transcription, translation mech-

anisms are expressed. So, it is advantageous to use drugs that can tar-

get multiple host proteins at different stages of the mechanism. Such

off-target combinations, eIF4E2 with Nafamostat, Camostat, and

HDAC2 with Valproic acid, Nafamostat having good binding affinities,

are listed in Table 2.

F IGURE 3 Root mean square deviation of target eIF4E2
complexed to different drugs Nafamostat (black), Camostat (red),
Zotatifin (green), target HDAC2 complexed to Nafamostat (blue),
Valproic acid (yellow), and target CSK22 Silmitasertib (brown).

F IGURE 4 Root mean square fluctuation of protein backbone (A) eIF4E complexed to drug Nafamostat (cyan), Camostat (red), Zotatifin
(orange). (B) HDAC2 complexed to Nafamostat (cyan), Valproic acid (red) (C) CSK22 complexed to Silmitasertib (cyan).
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2.1 | Conformational stability of the host target–
drug complexes

We performed atomistic molecular dynamics simulations on six drug-

protein combinations (Table 1). We calculated the backbone root

mean square deviation (RMSD) and root mean square fluctuation

(RMSF) to evaluate the conformational stability. Figures 3 and 4 show

the RMSD and RMSF of different targets bound to Nafamostat,

Camostat, Zotatifin, Silmitasertib, and Valproic acid. In all cases, the

RMSD was less than 0.45 nm suggesting the conformation over

100 ns has been less deviated and stable. The eIF4E2-Zotatifin and

CSK2-Silmatersitib complexes showed more stable conformations

ranging between 0.2–0.25 nm.

Additionally, the HDAC2 protein complex with Nafamostat and

Valproic acid displayed a stable conformation with a value less than

0.15 nm for the first 50 ns. The values deviated after 50 ns, but still,

conformations remained within the stable range of 0.2–0.25 nm. The

eIF4E2-Camostat complexes showed the highest deviations for the

rest of the complexes. It shows the highest variation at 50 and 75 ns.

To understand protein regions that contribute to the conformational

changes or stability, we calculated the RMSF at the residue level. The

mobility of residues was observed for all six drug-protein combina-

tions, as shown in Figure 4. The high fluctuations observed on the ter-

minal ends of proteins can be neglected due to their high mobility.

Overall, fewer residue-level fluctuations were observed for all six can-

didates, suggesting stable nature. Although high fluctuations were

observed in residue PHE210 in both Nafamostat and Valproic acid,

this particular residue was conserved in HDAC2 for both these drugs.

This conserved PHE210 was present at the gateway in the binding

pocket of HDAC2 and selectively interacted with ligands.

F IGURE 5 Contact frequency of the
drug bound to target protein was
calculated for (A) eIF4E–Nafamostat
(blue), Camostat (red) and Zotatifin
(orange). (B) HDAC2–Nafamostat (blue),
Valproic acid (red) (C) CSK22–
Silmitasertib (blue).

F IGURE 6 Interaction fingerprint for (A) eIF4E–Nafamostat. (B) eIF4E–Camostat, (C) eIF4E–Zotatifin
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2.2 | Preferential binding sites for drug–host target
proteins

To further understand the molecular details of the protein-drug

interactions in a bound state, we calculated the minimum distance

between them, as shown in Figure 5. It was interesting to see cru-

cial residues involved in the interactions that remain in contact for

more than 75% of the simulation time (shown in Table S1). In the

eIF4E translation factor, the residues THR29, SER30, SER31,

TRP80 interact with Nafamostat, Camostat, and Zotatifin. How-

ever, ILE177, MET179, and PRO180 are present in Camostat and

Zotatifin and not in Nafamostat. Similarly, for the HDAC2 epige-

netic factor, the residues that interact with Nafamostat and

Valproic acid were quite similar. The residues interacting are

TYR29, MET35, PRO37, ARG39, ILE40, PHE114, ALA141,

GLY142, LEU144, CYS156, GLY305. Interestingly, HIS183 was

shown to interact with Nafamostat and not Valproic acid. For

CK2-Silmatersitib, the residues LEU46, GLY47, ARG48, GLY49,

VAL54, VAL60, LYS69, ILE96, PHE114, ILE117, ASN119, MET164,

ILE175, ASP176 interact in the bound state.

We calculated interaction fingerprints in a binary vector to fur-

ther understand the nature of intermolecular interactions between

the target proteins and drugs that remain in contact for more than

75% of simulation time. To understand the interaction aspects, we

considered hydrogen-bonding, hydrophobic interactions, π�π

stacking (see Figure S2), and the structural conformations for the

protein-drug systems. Figure 6 shows the interaction fingerprints for

the eIF4E translational factor. THR29, SER31, TRP80, and PRO180

residues were observed in all three drug complexes involved in hydro-

phobic interactions. The TRP80 forms π–π stacking interaction. In

Nafamostat and Camostat, SER31 was shown to form transient

hydrogen bonding. Interestingly, ILE177 and MET179 are involved in

hydrophobic interactions in Camostat transiently and Zotatifin

continuously. Similarly, in Figure 7A,B, the HDAC2 residues TYR29,

MET35, ARG39, ILE40, ALA141, GLY143, LEU144, CYS156, GLY305

form hydrophobic interactions with the drug Nafamostat and Valproic

acid. There was a transient hydrogen bonding interaction with resi-

dues ARG39 in both and TYR308 in Nafamostat and GLY294 in

Camostat. We observed the π–π interactions only in Nafamostat at

residues HIS134, HIS135. In CK2-Silmitasertib, the hydrophobic inter-

actions were observed with LEU46, GLY47, ARG48, GLY49, VAL54,

LYS69, IL196, PHE114, ILE117, ASN119, MET164, ILE175, ASP176.

At the beginning of the simulation, we observed transient hydrogen

bonds in LYS69 and ASP176. These hydrogen bonds eventually

F IGURE 7 Interaction fingerprint for (A) HDAC2–Nafamostat. (B) HDAC2–Valproic acid. (C) CSK22–Silmitasertib

F IGURE 8 ‘FES’ versus ‘distance’ for six target-ligand
combinations. Averaged FES profiles have been shown averaging over

35 independent simulations for HDAC2–Nafamostat, HDAC2–
Valproicacid, eIF4E2–Nafamostat, eIF4E2–Camostat and over
20 independent simulations for eIF4E2–Zotatifin, CSK22–
Silmitasertib.
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disappear at the end of the simulations. We noticed π–π interactions

formed by PHE114 at the start of the simulations.

2.3 | Correlation between thermodynamics and
kinetics of drug–target combinations

Further, to correlate the host target–drug complexes' thermody-

namic behavior and kinetics, we calculated free energy barriers

and dissociation rates, as shown in Table 2. Figure 8 shows the

averaged free energy profiles for all six systems. Free energy

values have been tabulated in Table 2. Figure 9 shows the ‘log
(koff)’ versus “free energy barrier (ΔG)” plot for all the drug–target

combinations. For better efficacies of drug molecules, the free

energy barriers are suggested to be high, and the rate of dissocia-

tion of the drugs is proposed to be low and vice versa. We

observe that for systems with higher free energy barriers (low

values of ΔG), log(koff) values are lesser, and for low free energy

barriers (higher values of ΔG), the log(koff) is higher. We observe

such a scenario, especially in the off-target combinations.

HDAC2-Nafamostat showed a low dissociation rate, and

eIF4E2-Nafamostat displayed high dissociation rates. Specifically,

for eIF4E2 combinations, the dissociation rates are higher,

suggesting the drugs are bound less tightly and have lesser affini-

ties. The HDAC2 and CSK22 combinations showed lower ΔG

values, indicating more stable and energetically favorable at the

bound state. As a result, it will take longer to dissociate from the

binding pocket to the solvent crossing the transition barrier.

To check the experimental efficacy of these drugs, we com-

pared the dissociation free energy with the reported activity

(IC50 values). The IC50 value measures the amount of a drug

required for 50% inhibition of its target. For Silmitasertib–CK2

inhibitor, we observe an excellent correlation between the

obtained free energy value (�11.5 [0.33] kcal/mol) and the

reported activity52 IC50 value 1 nM. For Zotatifin–eIF4E2,

reported53 IC50 value 2 nM and in simulation we obtained free

energy of �2.9 (0.26) kcal/mol. For Valproic Acid and its target

inhibitor HDAC2, we observe a low free energy (�12.6 [0.33]

kcal/mol), whereas its reported activity54 is 1.02–2.15 mM. For

Nafamostat, we studied two off-targets, HDAC2 and eIF4E2, for

which we get barriers of �12.3 (0.44) kcal/mol and

�4.1 (0.36) kcal/mol, respectively. The reported activity25 for

Nafamostat with its on-target serine protease one inhibitor

(TMPRSS2) is 55 (7) nM. Hence, for Nafamostat, we also observe

a good agreement for the selected off-target combinations. For

Camostat–eIF4E2 (off-target) we got free energy of �3.2 (0.29)

kcal/mol and activity25 of 142 (31) nM. Hence, comparing free

energy from simulations with the activity (IC50) of the reported

drug, we observe an overall excellent correlation. Clearly,

Silmitasertib, Zotatifin, and Nafamostat show high efficacy as

F IGURE 9 ‘Log(koff)’ versus ‘free energy barrier (ΔG)’ has been
plotted here for various target–ligand combinations as shown by
separate colors and symbols. Different drugs have been shown in

separate symbols

TABLE 3 List of target protein
residues interacting with the ligand from
wt-metaD simulations from all
independent runs for each system.

Target PDB ID Drug Interacting residues

eIF4E2 2JGB Nafamostat TYR34, TRP80, LYS90, ARG94, SER128

eIF4E2 2JGB Camostat THR29, SER30, MET79, TRP80, GLU81, ARG130,

MET179

eIF4E2 2JGB Zotatifin SER30, SER31, TRP80, SER176, PRO180, ARG187

HDAC2 4LY1 Nafamostat ARG39, GLY142, LEU144, HIS146, GLY154, PHE155,

CYS156, HIS183, GLY306

HDAC2 4LY1 Valproic Acid ARG39, ILE40, GLY142, LEU144, HIS146, PHE155,

LEU276

CSK22 6HMB Silmitasertib GLY47, ARG48, GLY49, SER52, VAL54, LYS69, GLU82,

LEU86, ILE96, LYS159, MET164, ASP176, SER195

Note: The target residues having probability of > = 80% and with the distance <0.3 nm have been

chosen. The table shows interaction sites and corresponding protein residues of the target for HDAC2–
Nafamostat, eIF4E2–Nafamostat, eIF4E2–Camostat, CSK22–Silmitasertib, eIF4E2–Zotatifin and

HDAC2–Valproic acid for dissociation pathways.
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inhibitors. It is noteworthy that the drug Silmitasertib is already in

the trial phase for SARS-CoV-2. Although we see good agreement

for all the drugs, for Valproic Acid, we see its activity to be very

high, contrary to the simulated free energy. We speculate that

since Valproic Acid is a small molecule, it might interact more

strongly with other targets in the cell assay than HDAC2, hence

might be the possible reason behind its higher value of activity (�
in the mM range).

2.4 | Pathways and mechanism of drug
dissociations from the binding pocket of the host
proteins

To explore the complete dissociation pathways from its bound pose

and uncover the essential interacting residues that work as gate-

keepers facilitating the (dis)association mechanism, we analyzed the

crucial interacting residues from the dissociation trajectories for all six

F IGURE 10 Interacting
residues having probability more
than 80% and distance <0.3 nm
for six systems. Orange colors
show ligands, yellow residues
with probability 1 and lime colors
are with probability >0.8 and
distance <0.3 nm. (A) HDAC2–
Nafamostat, (B) eIF4E2–
Nafamostat, (C) eIF4E2–
Camostat, (D) CSK22–
Silmitasertib, (E) eIF4E2–
Zotatifin, (F) HDAC2–
Valproic acid
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combinations. To select the important one from the list of all the resi-

dues, we chose a minimum distance cut-off of <0.3 nm and a normal-

ized probability of 0.8 (see Figures S5–S10). In Table 3, we showed the

list of dominant residues for HDAC2–Nafamostat, eIF4E2–Nafamostat,

eIF4E2–Camostat, CK2–Silmitasertib, eIF4E2–Zotatifin, and HDAC2–

Valproic Acid while dissociating from the bound state to the solvent

environment. We observed ARG39 (HDAC2–Nafamostat), TRP80

(eIF4E2–Nafamostat), GLU81 (eIF4E2–Camostat), LYS69 and ASP176

(CK2–Silmitasertib), and ARG39 (HDAC2–Valproic Acid) with the

highest probability and with a distance cut-off of <0.2 nm, whereas the

residue SER176 (for eIF4E2-Zotatifin) with probability 0.9, distance cut-

off <0.3 nm. In Figure 10 (a-f), we showed instantaneous snapshots of

the host protein-ligand binding pocket highlighting the key residues

(ligand (orange), residues with probability 1 (yellow), other key residues

(lime)). In the case of both HDAC2 combinations, for Nafamostat and

Valproic Acid, common residues ARG39, GLY142, LEU144, HIS146,

PHE155 were shown to be interacting. Interestingly for eIF4E2 combi-

nations, TRP80 was critical in interactions with all three drugs

(Nafamostat, Camostat, and Zotatifin).

Understanding the complete dissociation pathways for a ligand

from its bound state and knowledge about the central residues facili-

tating the (dis)association mechanism is vital in accurate, fast, and

effective drug development purposes. To have a rigorous understand-

ing, we analyzed the wt-metaD trajectories of the dissociation events

for all the systems. We explored all possible pathways for a ligand to

dissociate from the bound state. In Figure 11 (A–F) we have schemati-

cally shown all the dissociation pathways for (A) HDAC2–Nafamostat,

(B) HDAC2–Valproic acid, (C) eIF4E2–Zotatifin, (D) eIF4E2–Camostat,

(E) eIF4E2–Nafamostat and (F) CSK22–Silmitasertib. Solid lines show

the most probable pathway, while other dashed lines show lesser

probable pathways. Different pathways have been demonstrated by

the notation “Path 1”, “Path 2”, and “Path 3.” Key gateway residues

of the protein have been shown in yellow colors corresponding to the

main dominating pathway only. Figure 12A–F explicitly demonstrates

instantaneous snapshots for all six systems and possible pathways.

For HDAC2–Nafamostat, we observe two dissociation pathways as

shown in Figure 11A and Figure 12A (i and ii). Along ‘path 1’ (shown

in Figures 11A and 12A (i), PHE155 works as the gatekeeper while for

F IGURE 11 Schematic representation of the ligand dissociation pathways for (A) HDAC2–Nafamostat, (B) HDAC2–Valproic acid,
(C) eIF4E2–Zotatifin, (D) eIF4E2–Camostat, (E) eIF4E2–Nafamostat, (F) CSK22–Silmitasertib. Ligands have been shown in orange color. Solid
lines show most probable pathway and other dashed lines show lesser probable pathways. Different pathways have been demonstrated by
notation “path 1”, “path 2” and “path 3.” Key gateway residues of the protein have been shown in yellow colors corresponding to the main
dominating pathway only
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F IGURE 12 Explicit demonstration of the ligand dissociation pathways for (A) HDAC2–Nafamostat (i and ii), (B) HDAC2–Valproic acid (i, ii,
and iii), (C) eIF4E2–Zotatifin (I), (D) eIF4E2–Camostat (i and ii), (E) eIF4E2–Nafamostat (i, ii and iii), (F) CSK22–Silmitasertib (i). The time evolution
of the dissociation events for the ligands have been shown in Timestep representation with licorice drawing method and the colors denote: red
(bound state) ! pink ! white ! light blue ! blue (unbound state).
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‘path 2’ (Figure 12A (ii) HIS183. Out of 35 independent dissociation

events, we observed 60% dissociations along the pathway shown in

Figure 11 (a) ‘path 1’, whereas 40% along ‘path 2’ shown in

Figure 12A (ii). Hence, the dissociation pathway along the PHE155

residue is the most probable pathway facilitating the (dis)association

mechanism for the HDAC2-Nafamostat system. For HDAC2-Valproic

acid (Figures 11B and 12B, the ligand is deeply embedded inside the

binding cavity surrounded by ARG39, ILE40, GLY142, LEU144. While

dissociating, it reaches the top of the surface and dissociates inter-

acting through PHE155 (Figure 12B i), ‘path 1’. It also follows two

more distinct paths between the helices, one interacting with ILE24,

LEU117, GLU113 (Figures 11B and 12B (ii), ‘path 2’, and in another,

‘path 3’, the ligand reaches the top between LEU276 and PHE155.

Then it dissociates interacting with TYR308, ILE310, PHE155, PRO34

(Figure 12B (iii). Thus, in 35 independent dissociation events, we

observe three distinct pathways for the HDAC2-Valproic acid system.

Out of these three pathways, we noticed the path shown in

(Figures 11B and 12B (ii) in solid line ‘path 2’ to be statistically most

probable with 52% compared to Figure 12B (i) ‘path 1’ with 37% and

Figure 12B (iii) ‘path 3’ with 11%. Hence, for HDAC2, we observe

two different dominant pathways to be present for Nafamostat and

Valproic acid. For eIF4E2–Zotatifin, out of 20 independent runs, we

observe a single pathway (Figures 11C and 12C (i) with PRO180 as

the gatekeeper residue. For eIF4E2–Camostat and eIF4E2–

Nafamostat, we performed 35 independent runs in both systems. For

eIF4E2–Camostat, MET179, THR29, SER30 are at the gateway (path-

way Figures 11D and 12D (i) with 40%, ‘path 1’ and GLU81,

MET79 at the gateway (for pathway Figures 11D and 12D (ii) with

60%, ‘path 2’. For eIF4E2–Nafamostat (Figures 11E and 12E), TRP80,

TYR34 residues (pathway Figure 12E (i) ‘path 1’ with 14%, between

helices through TRP80, TYR34 residues (pathway Figure 12E ii) with

9% ‘path 2’, residue ARG94 along with the beta-sheet (pathway

Figures 11E and 12E (iii) with 77%, ‘path 3’ shown in solid line in

Figure 11E. Hence, with target eIF4E2, we observe different dissocia-

tion pathways as dominant for respective ligands. For zotatifin we see

‘path 1’ (Figure 11C) as the dominant pathway, while for Camostat

‘path 2’ (Figure 11D) and for Nafamostat ‘path 3’ (Figure 11E) are

more specific to dissociation. For CSK22–Silmitasertib (Figure 11F

and 12F (i), out of 20 independent dissociation events, we observe a

single dissociation pathway having LYS69 and ASP176 residues to be

crucial for dissociation at the gateway. Thus, we explored various dis-

sociation pathways for three targets with different important target

inhibitors and showed dominant dissociation pathways with specific

interacting residues facilitating the dissociation events. It might be

useful in developing potential target-specific inhibitors with pharma-

ceutical importance.

3 | CONCLUSION

Designing new therapeutic approaches or repurposing existing drugs

requires understanding viral pathogenesis, host targets and pathways

that mediate the infection. Various interactome studies have

highlighted detailed information on crucial host regulatory proteins

for which repurposed drugs are shown to be effective. It is in line with

our previous study,26 where we have done an exhaustive screening of

existing drugs and human targets using molecular docking, molecular

dynamics simulations, and free energy calculations. From this study,26

we were able to filter out potential drug-target combinations that not

only have better docking scores, good free energy, and residence time

but they are in clinical phase trials. Here, we took those top listed

host-targets–drugs and investigated to enhance our understanding of

the residue-level details, kinetics, and dissociation pathways from the

targets. Using all-atom MD and well-tempered metadynamics, we per-

formed 20–35 independent dissociation pathway simulations for each

system to get statistically reliable results.

Analyzing 100 ns long all-atom trajectories, we explored the sta-

ble interactions and key residues involved at the bound state. We

observed multiple dissociation pathways with varying target-drug sys-

tems and quantified the probability of those pathways for respective

systems from the dissociation trajectories. We have explicitly shown

the most probable pathway and key residues present at the pathway,

facilitating the dissociation mechanism. For HDAC2-Valproicacid, we

observe the dominating pathway to be the one with ILE24, LEU117,

GLU113 residues present at the gateway. Similarly, PHE155 for

HDAC2-Nafamostat; ARG94 for eIF4E2-Nafamostat; MET79 and

GLU81 for eIF4E2-Camostat; PRO180 for eIF4E2-Zotatifin; LYS69

and ASP176 for CSK22-Silmitasertib are the dominant pathways and

associated key gatekeeper residues facilitating the (un)binding mecha-

nism. Since the association of a ligand from the aqueous medium to

the protein binding pocket is entropically favorable and occurs in the

long timescale, we did not perform here association simulations for

the ligands. However, we expect that the ligands will possibly follow

the same pathways as in the case of the dissociation mechanism. Our

extensive study showed that host target HDAC2 has deep concave

pockets that maximize the protein-drug interactions. The predominant

pathway taken by both HDAC2 combinations is from the catalytic

region referred to as a lipophilic tube, which includes the residues

PHE155 and HIS183.

Similarly, CSK22-Silmaterstib, the residues LYS69, and ASP176

are mediators involved in interaction with the drug molecule. Here we

observe LYS69 and ASP176 facilitating the dissociation of the drug.

Our results demonstrate how these crucial drugs interact with the

host machinery and the specific target residues, showing involvement

in the mechanism. Mutation of these important residues and further

investigation with the ligands to understand the effects of mutation

on thermodynamics and kinetics will be an essential aspect to study in

the future for these systems. From the comparative efficacy between

the free energy barriers and reported activity (IC50), we observe over-

all a good correlation for studied drugs with on- and off-target combi-

nations and propose Silmitasertib and Zotatifin to be a potential

candidates for the SARS-CoV-2 inhibition with very high efficacy.
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