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Abstract

Genome-wide association studies (GWAS) have revealed that the striking natural variation

for DNA CHH-methylation (mCHH; H is A, T, or C) of transposons has oligogenic architec-

ture involving major alleles at a handful of known methylation regulators. Here we use a con-

ditional GWAS approach to show that CHG-methylation (mCHG) has a similar genetic

architecture—once mCHH is statistically controlled for. We identify five key trans-regulators

that appear to modulate mCHG levels, and show that they interact with a previously identi-

fied modifier of mCHH in regulating natural transposon mobilization.

Author summary

DNA methylation is an epigenetic mark common across eukaryotes. It is associated with

transcriptional silencing, in particular of transposable elements. Multiple elements,

including epigenetic inheritance, shape DNA methylation patterns, and the complexity

makes it challenging to dissect the regulation. Our work on the 1001 Arabidopsis Epigen-

omes project led to the unexpected discovery that much of the natural variation for CHH

methylation (mCHH; H is A, T, or C) on transposable elements could be attributed to

allelic variation in three genes known to be involved in epigenetic regulation. However,

our analysis of methylation in other sequence contexts (mCHG and mCG) revealed no

genetic regulator.

Here we show that if mCHG variation is analyzed while taking mCHH into account,

mCHG is also strongly influenced by allelic variation in a small number of genes with

known or highly plausible direct roles in epigenetic regulation. The presence of common

allelic variation of large effect is suggestive of some form of local adaptation. The nature of

this adaptation remains obscure, but we present further evidence that allelic variation reg-

ulating DNA methylation influences transposon mobilization.
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Introduction

Organisms have developed defense systems to protect the genome from transposable elements,

which can act as ‘selfish genes’ and cause considerable damage [1,2]. DNA methylation is a

major component of genome defense that is found in both mammals and plants, albeit with

significant differences [2,3]. For instance, whereas mammals mostly have CG methylation

(mCG), methylation in plants also occurs in the CHG and CHH contexts (H is A, T, or C).

mCG in plants is known to be maintained through both mitosis and meiosis by DNA
METHYLTRANSFERASE 1 (MET1; DNMT1 in humans)—in contrast to CHH methylation

(mCHH), which is re-established after cell division by several pathways, including the RNA-

directed DNA methylation (RdDM) pathway and the CHROMOMETHYLASE 2 (CMT2) path-

way [4,5]. Unlike mCG, which is stably inherited, mCHH behaves like a molecular phenotype

and is strongly influenced by the environment, such as growth temperature [6] and stress [7].

CHG methylation (mCHG) falls somewhere between mCG and mCHH in the sense that it can

be maintained via positive feedback between CHROMOMETHYLASE3 (CMT3) and KRYPTO-
NITE (KYP), which recognize dimethylation of histone 3 lysine 9 (H3K9me2) and mCHG,

respectively [8–11]. Molecular mechanisms aside, the forces shaping variation in DNA methyl-

ation remain obscure, and the same is true for its biological significance [7,12–19]. Previously,

we demonstrated the existence of large-scale geographic clines for DNA methylation in A.

thaliana, and used genome-wide association studies (GWAS) to show that mCHH on transpo-

sons is heavily influenced by major polymorphisms at trans-acting modifiers corresponding to

known DNA methylation regulators in silencing pathways: CMT2, NUCLEAR RNA POLY-
MERASE D1B (NRPE1), ARGONAUTE 1 (AGO1), and AGO9 [6,20]. In particular, an allele of

NRPE1 (named NRPE1’) strongly affects mCHH levels in RdDM-targeted transposons.

NRPE1, which is the largest subunit of RNA polymerase V, localizes to promoter regions of rel-

atively young transposons [21], and Baduel et al. [22] recently showed that the NRPE1’ allele is

associated with recent transposon mobilization, presumably through its effect on DNA meth-

ylation. All in all, these findings point to a highly variable genome defense system.

While both mCHG and mCG showed high heritability, GWAS yielded little in terms of sig-

nificant associations. This might be because these “traits” are highly polygenic, or because they

are at least partly transgenerationally inherited, and hence do not behave like standard pheno-

types (i.e. the observed trait does not necessarily reflect current genetics or environment). In

this study, we revisit mCHG variation and use a conditional GWAS approach to reveal that

multiple major alleles at trans-acting regulators modify this type of methylation, and are also

associated with transposon mobilization.

Results

mCHG is strongly correlated with mCHH

Our starting point is the observation that mCHG and mCHH levels on transposons are

strongly correlated in the 1001 Epigenomes data set [20], especially for RdDM-targeted trans-

posons (Fig 1A; see Methods). Much of the variation in these two traits is due to differences in

the environment—including tissue, which can be viewed as a cellular environment. It is

important to note that these are not single-cell data, and that differences in DNA methylation

levels may arise simply because of different levels of cell division states between samples [23],

although hyper-mCHG in flower tissue samples probably also reflect tissue-specific CMT3
expression [24–26]. At the same time, variation across individuals is enormous even when

controlling for known tissue and environmental effects, as observed in the largest leaf sample

data set (“Leaf SALK ambient temperature”; n = 846).
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Interestingly, the covariance between mCHH and mCHG showed the same pattern in data

generated by knocking out known or potential DNA methylation regulators in the same

genetic background (Fig 1B) [27]. This demonstrates strong co-regulation of these types of

methylation, in particular for RdDM-targeted transposons. Loss of RdDM regulation, such as

Fig 1. Covariance between mCHH and mCHG levels across individuals. (A) Correlation of genome-wide average mCHH and mCHG levels in RdDM- and

CMT2-targeted transposons across 1028 natural inbred lines measured in different conditions (including 79 lines measured in more than one condition; see [20])

Colors correspond to environments/tissues. Plots on axes show marginal densities. Circled lines carry known natural null alleles of CMT2. (B) The same correlation as

in A, but for 84 epigenetics-related loss-of-function mutants [27]. Gray areas indicate 99% confidence intervals around the linear regression lines. Green points denote

“wildtypes” (see [27]); magenta, major DNA methyltransferases. Blue points denote lines with a highly significant effect on mCHG.

https://doi.org/10.1371/journal.pgen.1010345.g001
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in the double mutant of DOMAINS REARRANGEDMETHYLASE (DRM) drm1 drm2, causes

loss of almost all mCHH and mCHG because mCHG in these regions is mainly established via

siRNA [28]. At the same time, the data demonstrate that some genetic perturbations can affect

one type of methylation much more than the other. For example, knocking out mCHG-regula-

tors, like CMT3 or KYP, affects mCHG levels much more than mCHH levels.

Based on these observations, it is clear that a substantial fraction of variation in non-CG

methylation is due to factors that affect both mCHH and mCHG. Without replicate measure-

ments, it is difficult to say what fraction of these factors is genetic and what is environmental,

but, irrespective of this, we hypothesized that the substantial covariance could reduce the

power of GWAS for either mCHH or mCHG (when using a standard univariate model), and

that an analysis accounting for this covariance might perform better [29–31]. In essence, we

sought to simplify a complex trait by breaking it into constituent parts [32–34]. This worked,

as we shall see below.

Conditional GWAS reveals new associations

Multi-trait GWAS can be carried out using transformations (e.g., the difference or ratio

between traits), conditional approaches in which one or more traits are accounted for as covar-

iates, or full multivariate models [29–31]. We tried several different approaches, including a

multivariate GWAS, but this paper will focus on results from a conditional GWAS of mCHG

with mCHH as a covariate (denoted mCHG|mCHH) because this gave the clearest results. Other

approaches produced consistent results, and we will briefly discuss them later.

Fig 2 contrasts the performance of univariate and conditional GWAS. As previously noted,

univariate GWAS of mCHG does not yield any significant associations despite moderate SNP-

heritability (37% and 38% for RdDM- and CMT2-targeted transposons, respectively). As

expected given the very strong correlation between mCHH and mCHG on RdDM-targeted

transposons, the strong associations at AGO1 and NRPE1 found in univariate GWAS of

mCHH [20] give rise to associations for mCHG as well, but they are not genome-wide signifi-

cant (AGO1 Chr1:17895231, -log10p-value = 6.51 and NRPE1 Chr2:16714815, -log10p-

value = 5.23). The previously identified CMT2-association with mCHH on CMT2-targeted

transposons [6,20,35,36] is not apparent, consistent with the much weaker correlation between

mCHH and mCHG on these transposons.

The contrast between these univariate GWAS results and the conditional analysis is strik-

ing. GWAS for mCHG while controlling for mCHH (mCHG|mCHH) revealed five clear peaks

for RdDM-targeted transposons, three of which were also found for CMT2-targeted transpo-

sons. The peaks are above or near genome-wide significance using a conservative threshold

(Figs 2 and S1 and S1 Table). As will be discussed further below, these associations jointly

explain 30.5% and 14.8% of mCHG|mCHH in RdDM- and CMT2-targeted transposons, respec-

tively. The previously mentioned AGO1 and NRPE1 associations disappear completely, consis-

tent with their being strongly correlated with mCHH, and hence controlled for. The improved

performance of conditional GWAS is also evident from a massive enrichment of associations

near a priori candidates (see Methods and [37]). With conditional GWAS, we observed an up

to 45-fold excess of associations near annotated epigenetic modifiers [20,35], compared to an

4- to 10-fold excess for the univariate analyses (Fig 2).

The enrichment for a priori candidates also allows us to estimate a False Discovery Rate

(FDR) for this set of genes [37]. Four of the five major associations can be identified with a pri-
ori candidates at very low FDRs (e.g. FDR< 0.05 using a significance threshold of -log10p-

value > 6; see Fig 2), but it is notable that FDR is low even for associations that are nowhere

near genome-wide significance. This is not true for the univariate analyses. For example, at an
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FDR of 20%, univariate GWAS of mCHG identifies only AGO1 and NRPE1 for RdDM-tar-

geted transposons, and nothing for CMT2-targeted transposons (S2 Table), whereas condi-

tional GWAS of mCHG|mCHH generates a long list of known regulators of mCHG (S2 Table).

Fig 2. Comparison of univariate and conditional GWAS of mCHG. The analysis was done separately for (A)

RdDM-targeted and (B) CMT2-targeted transposons, using the 774 lines in the global panel from the 1001

Epigenomes Project (“SALK leaf in ambient temperature”; see Fig 1). For each case, the upper Manhattan plot shows

univariate GWAS of mCHG and the lower GWAS of mCHG controlling for mCHH. Horizontal gray lines show

genome-wide significance (p = 0.05 after Bonferroni-correction). The line plots show enrichment of a priori genes and

FDR (see text), with horizontal dashed lines indicating an FDR of 20%.

https://doi.org/10.1371/journal.pgen.1010345.g002
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For RdDM-targeted transposons, we find four a priori genes above or near genome-wide sig-

nificance: the previously mentioned CMT2 and CMT3, plus MIR823a, which encodes a micro-

RNA targeting CMT3 [26,38], and MULTICOPY SUPPRESSOR OF IRA1 (MSI1), likely a

component of chromatin assembly factor (CAF-1) responsible for proper heterochromatin

formation with FASCIATA1 (FAS1) and FASCIATA2 (FAS2) [39,40]. At lower significance

levels, we find REPRESSOR OF SILENCING 3 (ROS3) and DNAMETHYLTRANSFERASE 2
(DNMT2). ROS3 is a DNA demethylase that interacts with REPRESSOR OF SILENCING 1
(ROS1) [41] and DNMT2 is associated with histone deacetylation [42] and RNA methyltrans-

ferase activity [43] (and could therefore be a false positive since the effects on DNA methyla-

tion is under debate; see [42,43]). For CMT2-targeted transposons, the list of associated a
priori candidates includes four genes also associated with RdDM-targeted transposons, namely

MIR823A, CMT2, ROS3, and MSI1, but there are also two specific genes, FAS1 and

DECREASED DNAMETHYLATION 1 (DDM1), a chromatin-remodeler responsible for het-

erochromatin formation [44,45]. As shown in Fig 1B, ddm1 strongly reduces mCHG, and fas2,

a functionally redundant FAS1 homolog, increases CMT2-targeted mCHG in an mCHH-inde-

pendent manner [27].

Genes underlying major associations

On searching for causal genes. Identifying causal genes and mechanisms from GWAS

results is notoriously difficult [46]. Peaks of association often cover multiple genes—this is cer-

tainly true in the gene-dense genome of A. thaliana [37]—and functional annotation is of lim-

ited use for complex traits with unknown genetic basis. We are in a stronger position,

however, because, just like in our previous work on mCHH [35], the significant GWAS peaks

(Fig 2) are narrow, and clearly pinpoint genes a priori known to be specifically involved in

well-defined molecular phenotypes (Table 1 and Fig 3). Hence we will discuss these candidates,

and the indirect evidence supporting their causal role.

Multi-layered direct CMT3 regulation affects mCHG variation. Based on mutant phe-

notypes, CMT3 is a strong a priori candidate for regulating mCHG (Fig 1). Consistent with

this, one of the five major associations from GWAS of mCHG|mCHH pinpoints CMT3 and

Table 1. Significant conditional GWAS hits for mCHG|mCHH
�.

SNPs -log10

(p-value)

MAC Distance from

a priori gene

(bp)

Genes within 15K bp�

mCHG|mCHH in RdDM-targeted transposons
Chr1:4035022 10.1 77 NA AT1G11930, AT1G11940, AT1G11950 (JMJ26), AT1G11960

Chr1:26253630 7.38 290 50 AT1G69770 (CMT3)

Chr3:4496626 10.48 207 196 AT3G13700, AT3G13710 (PRA1.F4), AT3G13720 (PRA1.F3), AT3G13724 (MIR823A), AT3G13730

(SYP90D1)

Chr4:10423278 6.85 301 2069 AT4G19020 (CMT2), AT4G19030 (NLM1), AT4G19035 (LCR7)

Chr5:23553506 7.14 99 2506 AT5G58200 (ECT10), AT5G58200, AT5G58210, AT5G58220 (TTL), AT5G58230 (MSI1), AT5G58240 (FHIT)

mCHG|mCHH in CMT2-targeted transposons
Chr3:4496047 6.42 210 775 AT3G13700, AT3G13710 (PRA1.F4), AT3G13720 (PRA1.F3), AT3G13724 (MIR823A), AT3G13730

(SYP90D1)

Chr4:10423278 6.86 301 2069 AT4G19020 (CMT2), AT4G19030 (NLM1), AT4G19035 (LCR7)

Chr5:23555910 9.17 64 102 AT5G58200, AT5G58210, AT5G58220 (TTL), AT5G58230 (MSI1), AT5G58240 (FHIT), AT5G58250,

AT5G58260 (NdhN)

� Bold denotes a priori epigenetic regulators

https://doi.org/10.1371/journal.pgen.1010345.t001
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another MIR823a, a gene encoding a microRNA that directly down-regulates CMT3 by

cleaving its transcripts during early embryogenesis [26]. The most significant peak for

mCHG|mCHH on RdDM-targeted transposons was located 196 bp downstream of MIR823a,

while the peak corresponding to CMT3 was located 50 bp upstream of the gene in a potential

regulatory region (Figs 4A and S4A and Table 1). GWAS for CMT2-targeted transposons also

pinpointed MIR823a, although the association is weaker, and the most significant SNP is fur-

ther away (Fig 3B and Table 1). This association was also recently found by Hüther et al. [47]

using GWAS for unconditional mCHG levels of individual transposons.

Fig 3. Candidate loci underlying mCHG|mCHH variation. Zoomed-in Manhattan plots around conditional GWAS peaks in Fig 2 for (A) RdDM- and (B)

CMT2-targeted transposons. Gene models below the plots show the candidate genes in orange (see Table 1). Colored dots represent SNPs in strong linkage

disequilibrium with top SNPs.

https://doi.org/10.1371/journal.pgen.1010345.g003
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Fig 4. Effects of MIR823A on mCHG levels. (A) Polymorphisms in the miRNA region of MIR823A and the target in

CMT3 in 1135 natural lines. Differences from the CMT3 reference sequence are shown in light blue. Haplotype counts

are shown in parentheses. (B) Estimated effects of MIR823A alleles on CMT3 expression in natural lines with

individual values (Welch’s t-test, two-tailed, CMT3 expression was collected from transcriptome data published in

[20]). (C) Scatter plot comparing the average allelic effect of the MIR823A polymorphism with the effect of cmt3 in the

Col-0 background. Dots represent individual transposons, and the colors show the significance of the allelic effects as

-log10p-value in GWAS. (D) CMT3 expression in early embryos with standard errors in WT (Col-0) and mir823a.

Significance of the difference in mean tested using Welch’s t-test (n = 3, one-tailed). (E) The distribution of mCHG

levels in RdDM and CMT2-targeted transposons, comparing knock-outs of MIR823A to wild-type in different

backgrounds.

https://doi.org/10.1371/journal.pgen.1010345.g004
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The MIR823A polymorphism appears to almost exclusively affect mCHG (S2 and S3 Figs),

primarily targeting the same transposons as a CMT3 knock-out, as expected if the former

directly regulates the latter (Fig 4C). Consistent with this interpretation, lines carrying the

non-reference MIR823A allele and a CMT3 reference allele showed lower CMT3 expression as

well as lower mCHG (Fig 4B). The specificity of the phenotypic effects and known regulatory

mechanism provides strong evidence for a direct causal role for these genes.

Knock-outs of MIR823A in several backgrounds affected CMT3 expression and mCHG in a

manner consistent with this regulatory model [26], although the effects on methylation were

very weak (Figs 4D, 4E and S4D). The natural polymorphism almost certainly does not involve

a loss of function, as there is no common polymorphism in the 21-nt mature miRNA region of

MIR823A, nor in the target region of CMT3 (Fig 4A). There are also no other non-synony-

mous polymorphisms in CMT3 significantly associated with the different alleles. There is no

SNP in the stem-loop region of MIR823A that is significantly associated with mCHG|mCHH,

and the most significant SNP (Chr3:4496626) does not appear to affect predicted RNA second-

ary structure [48] (S4C Fig).

Further evidence for allelic heterogeneity at CMT2. In addition to de novo establishment

of methylation in heterochromatic regions, CMT2 plays a role in mCHG maintenance through

regulation of H3K9 methylation via a self-reinforcing loop [11,49]. Previous work has identi-

fied two common natural alleles, CMT2a’ and CMT2b’, affecting mCHH [6,20,35], but neither

appears to affect mCHG (S2, S3 and S5 Figs). Here we identify a new association, 2 kb down-

stream of CMT2 (Fig 3), that does appear to affect mCHG (on both RdDM- and CMT2-tar-

geted transposons) (S5 Fig). The top SNP is only weakly correlated with CMT2a’ and CMT2b’
(r2CMT2b’ = 0.37; r2CMT2a’ = 0.24), but caution is needed when interpreting associations in

regions that apparently harbor multiple causal polymorphisms [50].

A complex association on chromosome 5 includes two a priori genes. The major peak

on chromosome 5 was associated with mCHG|mCHH on both RdDM- and CMT2-targeted

transposons, although the shape of the peak differs slightly. The strongest association was

found for CMT2-targeted transposons and is located 102 bp upstream of a known epigenetic

regulator, MSI1, but substantial linkage disequilibrium extends over a 30 kb region which also

includes another a priori gene, ROS3 (Figs 3 and S6A).

The loss-of-function mutant ros3 does not show altered mCHG in leaves (Fig 1B)[27]. Loss

of MSI1 causes embryonic lethality [51], but the heterozygous mutant msi1-2 does not show a

significant effect on mCHG levels in leaves either. However, MSI1 has been copurified with a

tesmin/TSO1-like CXC domain-containing protein, a component of a DREAM complex that

controls mCHG via repression of CMT3, KYP, MET1, and DDM1 [52]. In addition, a loss of

FAS2, a component of CAF-1, which also includes MSI1, induces mCHG hypermethylation in

CMT2-targeted TEs (Fig 1B right) [27,53]. Therefore, MSI1 remains a strong candidate. Fur-

thermore, the strongly associated SNP at Chr5:23555910 could explain almost all phenotypic

variation associated with the chromosome 5 peak (S6B Fig), making MSI1 the top candidate,

although further experiments are clearly needed. The allelic variation is presumably regulatory,

since the SNP is not correlated with any non-synonymous SNPs.

A jmjC gene is a novel modifier of mCHG in RdDM-targeted transposons. The final

peak (Chr1:4035022; -log10p-value = 10.1) in our study did not pinpoint any a priori gene.

However, it is highly significant and narrowly centered on the coding region of a jmjC gene,

JUMONJI26 (JMJ26) [54]. JMJ26 is a close homolog of JMJ25, also known as INCREASE IN
BONSAI METHYLATION 1 (IBM1), a histone H3K9m demethylase targeting genic regions in

a KYP/SUVH4- and CMT3-dependent manner [55,56]. In contrast to IBM1, the function of

JMJ26 has barely been studied. Among the most significant associations were two non-synony-

mous SNPs resulting in amino acid changes (Chr1:4035683, Glu678Val; Chr1:4035690,
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Leu676Val) in the conserved JMJ domain, suggesting allelic effects on the enzymatic activity

(Figs 5 and S7).

To explore the function of JMJ26, we measured mCHG levels of a loss-of-function mutant,

jmj26 (Fig 5). Unlike IBM1 loss-of-function mutants, jmj26 did not show any morphological

phenotype (S8A Fig), but mCHG levels increased significantly in RdDM-targeted transposons

(Fig 5B and 5C). Furthermore, jmj26 showed increased mCHG in pericentromeric transposons,

whereas ibm1-like hypermethylation was not observed in genic regions (Fig 5D and 5E). Gene

expression was barely affected except for a few DNA methylation sensitive genes, including

transposon genes (AT5G35935, AT4G01525) (S3 Table). These observations support the func-

tionality of JMJ26 as a histone demethylase with different targets from IBM1, and also make it a

strong a posteriori candidate for causing the GWAS peak on the left end of chromosome 1.

Major loci additively affect mCHG and influence transposon activity

Finally, we investigated how the five major loci jointly shape mCHG variation at the popula-

tion level. Although some of these genetic variants are clearly interacting at the molecular level

(e.g., MIR823A directly regulates CMT3), the phenotypic effects appear to be additive (Fig 6A),

and jointly explain a large fraction of the variation: 30.5% and 14.8% of mCHG|mCHH in

RdDM- and CMT2-targeted transposons, respectively, while SNP-based heritabilities of these

traits are 65% and 69%. mCHG levels decrease linearly with the number of mCHG-decreasing

alleles, and the single line (out of 774) harboring mCHG-decreasing alleles at all five loci exhib-

its strong hypo-mCHG|mCHH in RdDM-targeted transposons (Fig 6A).

These five loci also affect the geographic distribution of mCHG for both RdDM- and

CMT2-targeted transposons. In European lines (n = 971), mCHG-decreasing alleles are almost

exclusively found in the west, from 0 to 30˚E (Figs 6B, S9 and S10). Lines carrying more than

three mCHG-decreasing alleles are rare (2.5%), and the one line carrying all five such alleles is

from the Iberian peninsula: IP-Mun-0 (9561), an admixed line of relict and western European

descent [57].

Interestingly, the longitudinal gradient in the number of mCHG-decreasing alleles is oppo-

site to the longitudinal cline of NRPE1’ associated with lower mCHH [35] and higher transpo-

son mobilization [22] (Fig 6B). No line was found carrying NRPE1’ with more than three

mCHG-decreasing alleles, and a permutation test shows that this negative correlation is

unlikely to be due to population structure (Figs 6C and S10C). A plausible alternative is some

form of stabilizing selection on methylation levels: multiple mCHG-decreasing alleles in lines

with lower mCHH levels might affect fitness analogously to double knockout mutants of the

RdDM and CMT3 pathways that show pleiotropic morphological phenotypes and high trans-

poson transcriptional activity [10,28,49].

To explore this further, we examined the effect of mCHG-negative alleles on transposon

mobilization by intersecting our data with those of Baduel et al. [22], who found a significant

correlation between recent transposon mobilization and the NRPE1’ non-reference allele. We

found that this effect reflects an epistatic interaction with the five loci reported here: signifi-

cantly increased transposon mobilization is only found in lines carrying the NRPE1’ non-refer-

ence allele and two or more mCHG-decreasing alleles (p-value < 0.01; Figs 6D and S11). In

particular, lines carrying three mCHG-decreasing alleles and the NRPE1’ non-reference allele

have about thirty times more recent transposon insertions than lines carrying no mCHG-

decreasing alleles and the NRPE1’ non-reference allele. Such lines are not closely related and

carry different transposon insertions, mostly Copia and MuDR. They are found in two distinct

regions: north-western Africa, including the Canary Islands, and the south-eastern Balkans

(Fig 6B and S4 Table).
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Fig 5. Effects of JMJ26 on mCHG levels. (A) Read density and SNP across the gene model. (B) Volcano plots showing the

effects on DNA methylation levels of jmj26 on RdDM- and CMT2-targeted transposons. (C) Violin plots showing the

distribution of mCHG levels of RdDM- and CMT2-targeted transposons in WT (Col-0), jmj26, and two lines with JMJ26ref or

JMJ26alt transgenes in Col-0 jmj26 background. The gray horizontal line shows the mean value of WT. (D) The genome-wide

distribution of transposons affected by JMJ26. Black lines show differential mCHG levels of jmj26 from Col-0 in 30 kbp sliding

windows. Orange dots show transposons with significantly changed mCHG levels (n = 2, p<0.01 by two-tailed Welch’s t-test &

differential mCHG> 0.1 or< -0.1). (E) Heat map comparing JMJ26 and IBM1 targets. Rows correspond to standardized

mCHG levels in each gene or transposon for jmj26, ibm1, and WTs.

https://doi.org/10.1371/journal.pgen.1010345.g005
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Fig 6. Cumulative effects and geographic distribution of mCHG-decreasing alleles. (A) Cumulative effect on

mCHG|mCHH. Chr1:4035022 (JMJ26) was excluded from the analysis of CMT2-targeted transposons as it has no effect.

Chr5:2355910 was used for MSI1. Inserted plots show mCHG levels around transposons, calculated using 20 sliding

windows across the transposon body and flanking regions. (B) Longitudinal frequency distribution of mCHG-

decreasing and NRPE1’ alleles (top); geographical distribution of the number of mCHG-decreasing alleles (middle),

and mCHG|mCHH levels in RdDM-targeted transposons (bottom). Triangles correspond to lines in the inserted plot of

panel D. (C) The frequency of distribution of the number of mCHG-decreasing alleles, separately for NRPE1’
genotypes. (D) The number of recent transposon insertions [22] as a function of NRPE1’ genotype and the number of

mCHG-decreasing alleles. Significance was tested using a permutation test (see Methods; ��� is p< 0.01, � is p< 0.1).

The insert shows the six observed genotypes with three mCHG-decreasing and the NRPE1’ non-reference allele. Filled

circles indicate mCHH- or mCHG-decreasing alleles. Mapping and statistical testing were performed in R version

3.5.3. Maps were generated using the following packages: maps, ggridges, ggplot, rasrer, tidyverse.

https://doi.org/10.1371/journal.pgen.1010345.g006
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Discussion

The genetics of non-CG transposon methylation

Non-CG methylation in plants is associated with gene silencing, especially for transposons. In

previous studies, we identified an oligogenic architecture for mCHH on transposons

involving major polymorphism at CMT2, NRPE1, AGO1, and AGO9—all involved in DNA

methylation pathways [6,20,35]. Here we complement this with a conditional GWAS approach

and identify five major polymorphisms affecting mCHG, presumably acting via methylation

maintenance pathways: CMT2 (different alleles), CMT3, MIR823A (directly regulating

CMT3), MSI1 (probably), and JMJ26. All had previously been shown to affect DNA methyla-

tion except JMJ26.

We observed major polymorphisms at several of the layers of regulation controlling

mCHG, including methylation, de-methylation, and histone modification—even post-tran-

scriptional regulation, in the form of a microRNA targeting the CMT3 pathway directly. The

DDM1 and FAS1 alleles detected using a non-stringent threshold would further contribute to

the fine-tuning of DNA methylation over transposons genome-wide.

The genetic architecture revealed by these studies is very different from the “omnigenic”

model [58,59] which has come to represent a typical human GWAS result. It is also different

from trans-regulation for reported human mCG variation [60,61]. Rather than a diffuse

genetic architecture involving huge numbers of loci of small effect and unknown causal rela-

tionship to the phenotype, we find a small number of major loci with highly plausible mecha-

nistic connection to the phenotype—and a diffuse background for which we lack the power to

dissect further. The results are reminiscent of those found for other clinal traits, like flowering

time [37,62], flower color [63], or eye and coat color in mammals [64–66], suggesting that

transposon methylation is likewise under selection, most likely as part of a plastic and an

environmentally sensitive genome defense system—a notion further supported by the associa-

tion with transposon mobility reported here and be Baduel et al. [22].

The power and complexity of conditional GWAS

The performance of GWAS relies on using the right model for the relation between genotype

and phenotype. As with other statistical methods, using the wrong model may lead to unpre-

dictable results. However, lack of prior knowledge makes modeling difficult, and univariate

linear models are therefore the default in GWAS. Here we focus on correlated traits. Correla-

tions between traits may arise for a variety of reasons, most obviously a shared genetic basis

(pleiotropy), and it is clear that such traits should, in principle, be analyzed jointly using some

kind of multivariate analysis [29–31,67]. Our results provide a dramatic illustration of the

potential benefits of doing so. Despite high heritability, univariate GWAS of mCHG variation

failed to detect any significant associations, leading us to conclude that the trait was simply too

polygenic [20]. In contrast, GWAS of the same data using a conditional model that controlled

for mCHH revealed an oligogenic architecture with five major loci—qualitatively similar to

what we had previously seen for mCHH using univariate GWAS, also in that it mainly identi-

fied loci corresponding to biologically meaningful a priori candidates [6,20,35].

However, while our conditional GWAS approach clearly improved the power to reject the

null hypothesis of no association, interpreting the result in terms of causality is more difficult.

By controlling for mCHH we have effectively simplified the trait, presumably revealing genetic

factors affecting mCHG only, perhaps by affecting the maintenance of this type of DNA meth-

ylation. There is considerable background experimental evidence to support such a model. For

example, the RdDM pathway would affect both mCHH and mCHG via de novo methylation,
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while mCHG (but not mCHH) would be also maintained by the CMT3 pathway, and by con-

trolling the former, we would reveal the latter.

Our GWAS results are consistent with this interpretation. Polymorphism at NRPE1, a key

component of the RdDM pathway, was revealed in univariate GWAS, while variation in

CMT3 (and its regulator, MIR823a) was only found after controlling for mCHH. At the same

time, it seems clear that reality is more complex, and that both mCHH and mCHG are regu-

lated by multiple homeostatic mechanisms that also involve factors not included in our model,

like histone modifications [68]. It is therefore not surprising that most of the polymorphisms

we have identified seem to affect both traits, albeit not to the same extent (exceptions include

the one at MIR823A, which only seems to affect mCHG, and the previously identified CMT2a’
and CMT2b’ polymorphisms, which only affect mCHH on CMT2-targeted transposons; see S2

and S3 Figs).

Two other GWAS models produced consistent results, but had less power (S12 and S13

Figs). A fully parameterized multi-trait mixed model for mCHH and mCHG (MTMM; see

[29]) confirmed that the new associations presented in this paper were “specific” to one of the

two traits, while a conditional model for mCHH while controlling for mCHG (mCHH|mCHG)

also identified most of these loci, plus the previously identified CMT2 associations [6,35],

which affect mCHH only.

In conclusion, we agree with Stephens [31] that multi-trait association methods can have

much greater power than univariate methods, but require an appropriate statistical framework

for interpretation. However, in a model organism like A. thaliana, further experiments should

guide the construction of such a framework.

Functional importance of non-CG transposon methylation

While genomics has revealed striking geographic variation in DNA methylation, and an

equally striking genetic architecture underlying this, the functional importance of all this varia-

tion has been rather less clear. Based on decades of molecular biology studies, it is reasonable

to speculate that it must play some role in regulating transposon activity [5,27,69,70]. Non-CG

methylation is part of a redundant system with strong epistasis between mCHH and mCHG in

keeping transposons transcriptionally silent [10,28,49]. However, direct evidence based on

transposon mobility in nature has been missing. Now, the evidence is gathering that the allelic

variants responsible for transposon methylation variation do indeed affect transposon mobil-

ity. Baduel et al [22] showed that the NRPE1’ polymorphism identified as affecting mCHH on

RdDM-targeted transposons by Sasaki et al [35] is associated with recent transposon mobility,

and we show here that the multiple loci controlling mCHG appear to play a similar role. Our

findings connect complex genome defense systems proposed in molecular biology studies with

natural populations. Furthermore, the geographic distribution of the relevant multi-locus

genotypes suggests that selection may be acting to maintain the appropriate level of transposon

silencing—for unknown reasons. Further studies, such as crosses with new allele combinations

and common garden experiments, will be required to address these questions.

Materials and methods

Analyzed data sets

DNA methylation data. The DNA methylation data sets are summarized in S5 Table.

Briefly, we analyzed a bisulfite-sequencing data set published in the 1001 epigenome project

[20], 85 epigenetic-related mutants [27], and our own sequence data described below. All

reads were mapped on the appropriate pseudo-genome provided by the 1001 genome project

(1001 Genomes Consortium., 2016) using a Methylpy pipeline v1.2 [71]. DNA methylation
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levels were estimated as weighted methylation levels for each transposon defined in Araport11

annotation. CMT2- and RdDM-targeted transposons were defined as having differential levels

of methylation (> 0.1) between wild-type and cmt2 or drm1drm2 in Col-0 previously

described in [20]. For each line, average DNA methylation was calculated using all transposons

for which at least one read was mapped.

RNA-seq data. The RNA-seq data are summarized in S5 Table. Quality control and

adapter trimming of all RNA-seq data were conducted using FASTP [72]. Adapter trimmed

reads were aligned on the reference genome Araport11 [73] using STAR v2.7 [74] with default

settings. For all annotated genes, mapped read counts were calculated using featureCounts

v2.0.1 in the Subread package [75], accepting reads that were mapped on multiple genes (option

-M). Using the count data, differentially expressed genes were detected by edgeR v3.1 [76] with

glmQLFTest() function (FDR< 0.05). For transposon expression, reads were mapped as

described above but allowing multiple hits (STAR—outFilterMultimapNmax 100 and—winAn-

chorMultimapNmax 100). Mapped reads were calculated by TEtoolkits [77] using the TEcount

() function, and differentially expressed transposons were detected using edgeR. CMT3 expres-

sion in natural populations were downloaded from the 1001 epigenome project data [20].

Statistics

Genome-wide association studies. Univariate and conditional GWAS were carried out

using LIMIX [78] version 3.0.4 with a full genome SNP matrix for 774 lines [20] from the 1001

genome project (10,709,949 SNPs) and the following linear mixed model,

Y ¼ aLþ bX þ g þ e ð1Þ

varðYÞ ¼ s2

gK þ s
2

e I ð2Þ

where Y is the n×1 vector of a phenotype, fixed terms, L and X, are the n×1 vectors corre-

sponding to a covariate and a genotype to be tested (SNP) with the parameters α and β, respec-

tively. g � N ð0; s2
gKÞ and e � N ð0; s2

e IÞ are random terms, including the identity-by-state

kinship matrix K representing the genetic relatedness [79,80] and the residuals, respectively. Y,

L, and X were z-scored. Univariate models without cofactor take α = 0. SNPs that satisfied

minor allele frequency (MAF) > 5% were used for association studies. Bonferroni-correction

was used for multiple-testing correction after excluding all SNPs less than MAF 5%. Multi-

trait linear mixed models (S12 Fig) were performed to identify common genetic effects (com-

mon) and differing genetic effects (specific) between two traits using LIMIX [78] following

models described in [29].

Enrichment. To assess the amount of signal in the data, we used the enrichment approach

introduced in [37]. The rationale behind this approach is that loci that are a priori candidates

based on independent data should be more likely to be associated than loci that are not.

Enrichment thus simultaneously demonstrates that the a priori loci are a meaningful subset

and that there is a real signal of causality in the GWAS. Importantly, the method relies on the

empirical p-value distribution, and is insensitive to these being well-calibrated (a major advan-

tage when dealing with population structure).

Let xp be the fraction of a priori loci that have p-values smaller than p, and let yp be the same

fraction among the remaining loci. Note that the loci do not have to be genes, but can also be

genomic regions (e.g. coding vs non-coding), and that the method is not limited to p-values,

but can be used for any ordinal statistic. Enrichment is then xp/yp. If desired, significance of

the observed enrichment can be assessed using a suitable permutation scheme, like the

“genome rotation” method introduced in [81].
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In this study, we focused on genes, and assigned each gene a p-value using the strongest

SNP (MAF > 5%) association within 15 kb (upstream and downstream). Our a priori set was

the 80 epigenetic regulators from [20].

As described in [37], the enrichment can also be used to calculate an upper bound for the

False Discovery Rate (FDR) among the a priori loci by assuming that all non a priori associa-

tions are false (if this is false, the true FDR will be lower, hence it is an upper bound). The FDR

is calculated as 1−(x−y)/x = y/x, and we emphasize again that it only applies to the a priori set

of loci.

Heritability. SNP-heritability was estimated using REML implemented in mixmogam

(https://github.com/bvilhjal/mixmogam/blob/master/phenotypeData.py). The proportion of

phenotypic variation explained by identified genetic variants was calculated using r2 [82] using

R scripts published in [83].

Correlation of the allelic effects and molecular phenotypes. For 9329 transposons com-

mon across 774 lines, differential mCHG levels induced by alleles were estimated for each

transposon as the differential average methylation level between lines carrying the reference

(Col-0) and the alternative allele. Differential mCHG levels induced by mutants were calcu-

lated analogously [27]. The details are described in [35].

Gene effect of loss-of-function mutants. Gene functions of MIR823A and JMJ26 were

tested using transgenic lines described below. We measured DNA methylation levels for two

or three independently grown plants, and the significance of differential mean values across

RdDM- and CMT2-targeted transposons was tested by Welch’s t-test (two-tailed). DNA meth-

ylation pattern of jmj26 was compared to ibm1 and the control samples from published data

sets [27].

Permutation tests. We evaluated the effects of mCHG-decreasing alleles using permuta-

tion tests with 3000 randomly chosen SNP sets with the same allele frequencies as the identi-

fied alleles along the genome. For correlations between the number of mCHG-decreasing

alleles and longitude or linkage disequilibrium between the five alleles and NRPE1’ alleles, we

compared the observed to the 3000 randomly chosen samples directly. For evaluation of epi-

static effects between NRPE1’ and mCHG-decreasing alleles on transposon activity, we ran-

domly chose 3000 SNPs with the same allele frequency as NRPE1’ and tested the effect of zero

to five mCHG-decreasing alleles.

Plant materials

Plants were grown at 21˚C with a 16-h light/8-h dark cycle and humidity 60%. Whole plant

rosettes were harvested individually when they reached the 9-true-leaf stage of development.

The t-DNA insertion line of jmj26 (SALKseq_069498.1) and a gamma-ray mutant msi1-2 [53]

were purchased from Nottingham Arabidopsis Stock Center (http://arabidopsis.info/) for the

functional analysis. Homozygous jmj26 was used for bisulfite sequencing after the second gen-

eration. msi1-2 was maintained as a segregating population, and heterozygous lines were

selected by genotyping and measuring MIS1 expression by qRT-PCR.

Transgenic lines

MIR823A CRISPR/CAS9 mutant lines. Loss-of-function mutants mir823a for Col-0 and

9771 were generated using CRISPR/CAS9 methods described in [84]. Briefly, to generate a

vector carrying two sgRNAs targeting MIR823A, the target sites were incorporated into for-

ward and reverse PCR primers, and the fragment amplified from pCBC-DT1T2 (S6 Table).

Subsequently, an amplified and purified fragment was assembled using the Golden Gate reac-

tion into pHSE401E modified to contain a mCherry marker. The resulting vector was
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transformed into Agrobacterium tumefaciens GV3101/pSOUP, then transformed into A. thali-
ana by the floral dip method [85]. T1 seeds were screened by mCherry marker under the fluo-

rescence stereomicroscope (Discovery.V8, Zeiss), and the mutations were genotyped by

Sanger sequencing. T2 seeds without mCherry signal were kept to amplify the stable T3 gener-

ations, which were used for further analyses.

Rescue analyses of JMJ26. The gene function of JMJ26 was confirmed by rescue experi-

ments. The protein-coding genomic sequence including 3 kbp promoter sequence was PCR-

amplified and cloned into the pGreen0029 binary vector [86] using In-Fusion Cloning system

(Takara Bio Europe, Saint-Germain-en-Laye, France) for Col-0 and DraIV 6–22 (5984) carrying

the reference and the alternative allele, respectively. These constructs were used for floral dipping

transformation to Col-0 background jmj26 (SALKseq_069498.1) to create transgenic lines [85].

mRNA abundance. Total RNA was extracted using ZR Plant MiniPrep Kit (Zymo

Research) including a DNase I treatment and was quantified by fluorometer Qubit 4 (Invitro-

gen). cDNA was synthesized using the SuperScript III First-Strand Synthesis System (Invitro-

gen) according to the manufacturer’s protocols. qRT-PCR was performed using the

LightCycler 96 system (Roche) with FastStart Essential DNA Green Master (Roche). The tran-

script abundance was estimated by ddCT methods with an internal control SAND
(AT2G28390) [87]. Primer information is listed in S6 Table.

MicroRNA abundance and secondary structure

Material collection and RNA extraction. Siliques were collected five days after pollina-

tion when the embryos reached an early torpedo stage according to the previous report [26].

Using the tungsten needles, seeds were dissected from siliques and collected in 1.5 ml tubes,

and washed 3–4 times with fresh 10% RNA later solution (Thermo Fisher Scientific). After the

last wash, the buffer was replaced with 500 μl TRIzol Reagent (Ambion) and total RNA was

isolated as described in [88].

qRT-PCR Analysis. The quantification was conducted according to the protocol in [26].

Briefly. cDNA synthesis was performed using SuperScript III System (Invitrogen), and the cor-

responding stem-loop primers were added to the reverse transcription reaction. qRT-PCR

analysis was performed on the LightCycler 96 Instrument (Roche) with the FastStart Essential

DNA Green Master (Roche). The transcript abundance was estimated by ddCT methods with

an internal control miRNA160.

RNA secondary structure. RNA secondary structure was predicted by Vienna RNAFold

[48] (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) based on Minimum of

Free Energy (MEF) values [89]. We applied sanger sequences of Col-0 and 9771 carrying the

alternative allele for the prediction.

RNA sequencing

RNA was extracted in the same protocol with qRT-PCR for mRNA.Total RNA was treated

with the poly(A) RNA Selection Kit (Lexogen). Libraries were prepared according to the man-

ufacturer’s protocol in NEBNext Ultra II Directional RNA Library Prep Kit (New England Bio-

Labs) and individually indexed with NEBNext Multiplex Oligos for Illumina (New England

BioLabs). The quantity and quality of each amplified library were analyzed by using Fragment

Analyzer (Agilent) and HS NGS Fragment Kit (Agilent).

Bisulfite sequencing

Genomic DNA was extracted using GeneJET Plant Genomic DNA Purification Kit (Thermo

Scientific) and sheared by E220 Focused-ultrasonicator (Covaris) to target average fragments
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around 350 bp. Sequencing libraries were prepared using NebNext Ultra II DNA Library Prep

Kit (New England BioLabs) with Methylated Adaptor (New England BioLabs). Adapter-ligated

DNA was carried through the bisulfite conversion using EZ-96 DNA Methylation-Gold Mag-

Prep Kit (Zymo Research). Bisulfite-treated samples were amplified by EpiMark Hot Start Taq

DNA Polymerase and indexed with NEBNext Multiplex Oligos for Illumina (New England

BioLabs). All libraries were sequenced by Illumina NextSeq550 or Hiseq2500.

Supporting information

S1 Table. Linkage disequilibrium between five loci.

(XLSX)

S2 Table. a priori genes identified by enrichment tests (FDR = 0.2).

(XLSX)

S3 Table. The list of genes significantly affected in jmj26.

(XLSX)

S4 Table. Lines carrying three mCHG-decreasing alleles with mCHH-decreasing NRPE1’
allele.

(XLSX)

S5 Table. Key resources.

(XLSX)

S6 Table. Primer information.

(XLSX)

S1 Fig. Distribution of p-values for two GWAS models. QQ plots for univariate models for

mCHG levels (A) and conditional models for mCHG|mCHH (B) in RdDM-targeted transpo-

sons (left) and CMT2-targeted transposons (right).

(PDF)

S2 Fig. Distribution of phenotypes and the allelic effects. The scatter plots illustrate the alle-

lic effects on mCHH (A from [1]) and mCHG|mCHH in RdDM- (B) and CMT2-targeted trans-

posons (C). Marginal phenotypic distributions for the reference and the alternative allele are

plotted in blue and yellow, for univariate and conditional distributions. Red vectors show shifts

of the mean value from the reference to the alternative allele in 2-dimensional phenotype

space.

(PDF)
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value shift of mCHH and mCHG levels from reference to the alternative allele. Left and right

plot correspond to RdDM- and CMT2-targeted transposons, respectively. Gray arrows corre-
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S4 Fig. Characterization of MIR823A. (A) Sanger sequences around MIR823A region for

lines carrying reference allele (Col-0) and the alternative allele (763, 9771). (B) MIR823A
expression in a CRISPR/CAS9 mir823a mutant (Col-0) by qRT-PCR. Error bar shows stan-

dard deviation (n = 3). (C) Predicted secondary structure of MIR823A for reference (6909)
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region, and mountain plots were corresponding to the expanded regions, including 150 bp

upstream and 200 bp downstream. (D) Effects of MIR823A on mCHH and mCG levels in

RdDM and CMT2-targeted transposons in mir823a Col-0 and 9771 background.

(PDF)

S5 Fig. The effects of CMT2 alleles on non-CG methylation. (A) Genome structure of three

CMT2 alleles associated with non-CG methylation variation. The CMT2 region was illustrated

by mapped short-read DNA-seq data (IGV browser) for reference line (Col-0), CMT2a’
(10018), CMT2b’ (6969), and CMT2c (10023). Vertical colored lines in the IGV plots indicate

SNPs. (B) The allelic effects on genome-wide average mCHH and mCHG levels in CMT2-tar-

geted transposons. Only lines carrying one allele were compared with the reference line. Hori-

zontal gray lines show median values of the reference lines.

(PDF)

S6 Fig. Genetic variation around MSI1 and ROS3. (A) Zoom-in Manhattan plots (Fig 3) and

the genome structure around Chr5:23553506, 23555910 (top), and 23522001 (bottom) illus-

trated by mapped short-read DNA-seq data (IGV browser). Vertical colored lines in the IGV

plots show SNPs. (B) Conditional GWAS for mCHG in RdDM- and CMT2-targeted transpo-

sons. mCHH and Chr5:23555910 were both used as co-factors. Gray vertical lines indicate the

Chr5:2355910 position, and horizontal lines show the genome-wide significance (p = 0.05 by

Bonferroni correction). r2 was calculated from chr5:23553506 and chr5:23555910 for

mCHGRdDM and mCHGCMT2, respectively.

(PDF)

S7 Fig. Characterization of JMJ26 allele. Predicted amino acid sequences around jmjC

domain of reference (6909) and the alternative allele (DraIV 6–22)(A) and the conserved

region (B). Orange bars indicate nonsynonymous mutations associated with mCHG|mCHH in

RdDM-targeted TEs. The sequences were predicted based on polymorphism data provided by

the 1001 genome project. The domain information follows the TAIR10 annotation.

(PDF)

S8 Fig. Molecular phenotypes of jmj26. (A) Characterization of loss-of-function mutants,

jmj26. Both #1 and #2 were jmj26 homozygous lines isolated from SALKseq_069498.1 and

propagated separately. WT is a segregated line carrying active JMJ26 in the same stock. Mor-

phology of jmj26 and Col-0 (left) and JMJ26 expression in leaves of jmj26 and the wild type

(right). Expression was measured by qRT-PCR. (B) Volcano plots show the effects on transpo-

son transcripts highlighted RdDM- and CMT2-targeted transposons. (C) The scatter plot

shows the effect of mCHG methylation on transposon transcripts. The gray line shows the lin-

ear regression line.

(PDF)

S9 Fig. Geographical distribution of mCHG-decreasing alleles. The plots show the origin of

lines carrying mCHG-increasing or decreasing alleles.

(PDF)

S10 Fig. Geographical distribution of cumulative mCHG-decreasing alleles. (A) Longitudi-

nal frequencies of cumulative mCHG-decreasing alleles (corresponding to five alleles in Fig

6A). (B) The histogram shows how the cumulative mCHG-decreasing allele number is corre-

lated with longitude of the origins. The blue histogram shows permuted Pearson’s correlation

coefficients (R) between numbers of mCHG-decreasing alleles and longitude of the origin,

maintaining the allele frequencies. The permutation tests were repeated 3000 times for 971

lines ranging from longitude -20˚ to 100˚. The orange vertical line indicates the observed
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value. (C) Histogram similarly shows permuted Pearson’s correlation coefficients between

number of mCHG-decreasing alleles and NRPE1’ genotype. The orange line is the observation.

mCHH-increasing and decreasing NRPE1’ alleles are 0 and 1, respectively. (D) The geographic

distribution of mCHG|mCHH levels in CMT2-targeted transposons.

(PDF)

S11 Fig. Function of mCHG-decreasing alleles on transposon activities. (A) Effects of the

cumulative mCHG-decreasing alleles in whole populations (left) and combination with

NRPE1’ allele (right). (+) and (-) are lines carrying NRPE1’ reference (mCHH-increasing) and

the alternative (mCHH-decreasing) alleles, respectively. (B) Effects of the five major mCHG-

decreasing alleles with NRPE1’ reference (left) and the alternative (right) populations. (R) and

(A) are reference and the alternative alleles, respectively.

(PDF)

S12 Fig. The genetic basis of mCHG and mCHH analyzed by MTMM. (A) Manhattan plots

for any, common, specific SNP effects on mCHG and mCHH in RdDM and CMT2-targeted

transposons (see Methods). Vertical lines correspond to genome-wide significance (p = 0.05

by Bonferroni correction). (B) Enrichment of a priori genes and FDR for each GWAS result.

(PDF)

S13 Fig. Conditional GWAS for mCHH|mCHG. The genetic effects on mCHH in RdDM- and

CMT2-targeted transposons were analyzed by the conditional GWAS model with mCHG as

cofactor. Vertical lines correspond to genome-wide significance (p = 0.05 by Bonferroni cor-

rection). Orange arrows indicate peaks reported in previous studies as affecting mCHH ([1]).

Each GWAS result was assessed by enrichment of a priori genes and FDR.

(PDF)
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29. Korte A, Vilhjálmsson BJ, Segura V, Platt A, Long Q, Nordborg M. A mixed-model approach for

genome-wide association studies of correlated traits in structured populations. Nature Genetics.

2012. pp. 1066–1071. https://doi.org/10.1038/ng.2376 PMID: 22902788

30. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals

(PEER) to obtain increased power and interpretability of gene expression analyses. Nature Protocols.

2012. pp. 500–507. https://doi.org/10.1038/nprot.2011.457 PMID: 22343431

31. Stephens M. A unified framework for association analysis with multiple related phenotypes. PLoS One.

2013; 8: e65245. https://doi.org/10.1371/journal.pone.0065245 PMID: 23861737

32. Nilsson-Ehle H. Kreuzungsuntersuchungen an Hafer und Weizen. H. Ohlssons buchdruckerei; 1909.

33. East EM. A Mendelian Interpretation of Variation that is Apparently Continuous. Am Nat. 1910; 44: 65–

82.

34. Lande R, Arnold SJ. The measurement of selection on correlated characters. Evolution. 1983; 37:

1210–1226. https://doi.org/10.1111/j.1558-5646.1983.tb00236.x PMID: 28556011

35. Sasaki E, Kawakatsu T, Ecker JR, Nordborg M. Common alleles of CMT2 and NRPE1 are major deter-

minants of CHH methylation variation in Arabidopsis thaliana. PLoS Genet. 2019; 15: e1008492.

36. Shen X, De Jonge J, Forsberg SKG, Pettersson ME, Sheng Z, Hennig L, et al. Natural CMT2 variation

is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet. 2014;

10: e1004842. https://doi.org/10.1371/journal.pgen.1004842 PMID: 25503602
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47. Hüther P, Hagmann J, Nunn A, Kakoulidou I, Pisupati R, Langenberger D, et al. MethylScore, a pipeline

for accurate and context-aware identification of differentially methylated regions from population-scale

plant WGBS data. bioRxiv. 2022. p. 2022.01.06.475031. https://doi.org/10.1101/2022.01.06.475031

48. Kerpedjiev P, Hammer S, Hofacker IL. Forna (force-directed RNA): Simple and effective online RNA

secondary structure diagrams. Bioinformatics. 2015; 31: 3377–3379. https://doi.org/10.1093/

bioinformatics/btv372 PMID: 26099263

49. Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, et al. Non-CG methylation patterns shape the epige-

netic landscape in Arabidopsis. Nat Struct Mol Biol. 2014; 21: 64–72. https://doi.org/10.1038/nsmb.

2735 PMID: 24336224
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