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Abstract

Background: The concurrent sampling design was developed for case–control studies of

recurrent events. It involves matching for time. Standard conditional logistic-regression

(CLR) analysis ignores the dependence among recurrent events. Existing methods for

clustered observations for CLR do not fit the complex data structure arising from the con-

current sampling design.

Methods: We propose to break the matches, apply unconditional logistic regression

with adjustment for time in quintiles and residual time within each quintile, and use a

robust standard error for observations clustered within persons. We conducted exten-

sive simulation to evaluate this approach and compared it with methods based on

CLR. We analysed data from a study of childhood pneumonia to illustrate the meth-

ods.

Results: The proposed method and CLR methods gave very similar point estimates of as-

sociation and showed little bias. The proposed method produced confidence intervals

that achieved the target level of coverage probability, whereas the CLR methods did not,

except when disease incidence was low.

Conclusions: The proposed method is suitable for the analysis of case–control studies

with recurrent events.
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Introduction

In an important article on case–control studies, Rodrigues

and Kirkwood described three designs to sample the partic-

ipants: the exclusive design, the inclusive design and the

concurrent design.1 The interpretation of the odds ratios

(ORs) obtained from these different sampling designs is

different.1–3 With the concurrent sampling design, the OR

estimator provides the incidence rate ratio (IRR) for an ex-

posed group compared with an unexposed group.1

The concurrent design is more generally referred to as

an incidence density sampling design,1–3 which has the fol-

lowing defining characteristics: (i) controls are sampled at

a rate proportional to the incidence rate of disease cases,

(ii) the probability of any person being selected as a control

is proportional to that person’s amount of time at risk dur-

ing the study period and (iii) it is possible for a subject to

be sampled multiple times. Controls are most commonly

chosen from among those at risk at the moment each case

occurs, i.e. concurrent sampling. In this design, the ratio of

exposed to unexposed person-time in the source popula-

tion is estimated by the ratio of the number of exposed to

unexposed controls.1,3 It thus estimates the IRR. A graphi-

cal illustration of the concurrent design is included in

Supplementary File 1, available as Supplementary data at

IJE online.

Rodrigues and Kirkwood were explicit that the design

can be used to study either first/terminal events such as

death or first episode of a disease, or recurrent events such

as episodes of diarrhoea.1 In the conceptual framework of

the concurrent design, a person may recover from the tar-

get disease and return to the at-risk population, becoming

available again for sampling as a control or as a case. In

contrast, epidemiology textbooks appear to implicitly limit

the discussion of the incidence density sampling to the

studies of first/terminal events, assuming that, once a per-

son becomes a case, s/he permanently drops out from the

at-risk population. A matched estimator of the OR has

been recommended for the analysis of data obtained from

the concurrent design unless the prevalence of exposure is

constant over time in the source population.1,4

Recurrent events are common in clinical and epidemio-

logical evaluations. Some examples include episodes of in-

fectious diseases (where the infection does not confer

lifetime immunity), injuries and hospital admissions. The

concurrent design is an important extension of the case–

control study approach. However, Rodrigues and

Kirkwood did not shed light on how to perform statistical

inference,1 i.e. estimation of confidence interval and hy-

pothesis testing, when a person can become a case multiple

times. Standard statistical methods are not valid for such

correlated data. Approaches to the analysis of recurrent

events have been well discussed in the setting of prospec-

tive studies (e.g. 5–9). There is a gap in the literature on

case–control studies.

In the literature, case–control studies of ‘disease recur-

rence’ or ‘recurrent event’ often define the outcome as a bi-

nary variable that is not repeatable, such as ‘having a

disease the second time’ (case) vs ‘having a disease the first

time’ (control) (e.g. 10,11). Despite using the phrase ‘recur-

rence’ or ‘recurrent’, they are studies of a single event.

Examples of case–control studies that truly used the con-

current design for recurrent events include studies of diar-

rhoea episodes,12 malaria episodes,13 asthma attacks14 and

hospital readmissions.15 Their statistical analyses treated

the data as if all events were independent, mostly using

conditional logistic regression (CLR).

In the context of some studies in ecology, a robust stan-

dard error for CLR analysis of clustered data has been pro-

posed.16,17 However, this method is not suitable for the

data structure in the concurrent design. In these ecology

studies, each animal makes choices. What an animal choo-

ses and does not choose are the ‘cases’ and its matched

‘controls’, respectively. In this context, all observations—

cases or controls—within a matched set are contributed by

the same animal, making it appropriate for matched sets

concerning the same animal to be treated as one cluster of

Key Messages

• Case–control studies of recurrent events using the concurrent sampling design can be analysed by unconditional lo-

gistic regression with adjustment for time variables to obtain estimates of association highly comparable to condi-

tional logistic regression.

• Together with the robust standard error for clustered data, this analytic approach produces confidence intervals that

achieve the intended coverage probability.
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observations. In contrast, in the concurrent design, each

time a person has a disease episode (case), it is matched

with some other person(s) who are at risk (controls). The

matched set here involves multiple subjects. Furthermore,

this person who is the case (or control) may also contribute

observations as a control (or case) in some other matched

sets. The aforementioned robust standard error does not fit

this complex data structure. Similarly, the bootstrapping

method is not applicable because there is no resampling

unit that is suitable for this data structure.

In this article, we propose an approach based on break-

ing the matches and applying unconditional logistic regres-

sion (ULR) for the statistical analysis of case–control

studies that use the concurrent design with recurrent

events. We evaluate this and other methods by extensive

simulation. For illustration, we apply the methods to a

study of childhood pneumonia.

Methods

Study design and analytic methods

In this section, we describe the statistical methods to be

evaluated. Mathematical details of the statistical methods

are available in Appendix 1.

In the concurrent design, when the i-th person in the at-

risk population experiences his/her j-th outcome event at

calendar time tij, the person is recruited as the index case

and K (K�1) persons who are at risk at time tij are sam-

pled as the matched controls. That is, the matching vari-

able is calendar time (t), which is a continuous variable.

The i-th person remains eligible to be sampled as a case or

control after tij as long as s/he remains in the source popu-

lation during the study period.

A conventional view on the analysis of individually

matched case–control studies is that the data should be

analysed by CLR. However, in the analysis of case–control

studies that uses the exclusive design, it has been demon-

strated that ULR with adjustment for a binary matching

factor gives an unbiased estimate of the OR.18 For studies

that individually match cases and controls for age, a con-

tinuous variable, it has been suggested that age can be

grouped into broad intervals and adjusted for as indicator

variables,19 possibly with further adjustment for a linear

residual term within each age interval to reduce the resid-

ual coarseness.20,21 The adjustment for broad intervals as-

sumed that the event rate is a step function that jumps at

the boundaries of intervals but remains constant within

each interval. This may not be sufficient for capturing the

variation. The linear residual term within each interval

removes the assumption of a constant event rate within the

interval. It allows the event rate to decrease or increase

linearly within the interval. Hence, the combined use of the

intervals and linear residual term provides a very flexible,

non-parametric form of statistical adjustment. Previous re-

search has shown that directly adjusting for a continuous

matching variable in an unconditional model is biased.20,21

This is because, even if there is a smooth dose–response

trend in the population, the case–control matching can dis-

tort the response curve to a discontinuous form in the

study sample. Therefore, direct adjustment assuming a

smooth trend is not justified. The more complex, discre-

tized adjustment is needed.

A recent study on the analysis of case–control studies

with incidence density sampling for a single event outcome

shows that the use of ULR with adjustment for time in

quintiles usually gives results highly comparable to CLR

analysis.22 The choice of quintiles was motivated by the re-

search of Cox about grouping observations of a continuous

variable into tertiles, quartiles or quintiles that would re-

tain approximately 79%, 86% or 90% of the information,

respectively.23 The incremental information retention per

additional group is limited beyond that; inclusion of too

many groups may generate a sparse data bias.22,24 Based

on these recent findings, we propose to break the matches,

and then use ULR with adjustment for calendar time in

quintiles, with or without including a linear residual term

within each quintile, and apply the robust standard-error

estimator for clustered data,25 defining each person as a

cluster. For brevity, we call the methods that adjust for

time in quintiles with and without linear residual terms

ULR-QL and ULR-Q, respectively.

Standard CLR with naı̈ve standard error (CLR-N)

assumes the outcome events to be independent. This tends

to inflate the type 1 error rate when the assumption is false.

However, if only a few people have more than one event

during the study period, the impact of the violation of the

assumption of independence may be small. On the other

hand, whereas the aforementioned robust standard-error

estimator for CLR analysis of clustered data proposed in

the context of ecology research (CLR-C16,17) is in principle

not suitable for the concurrent design, its performance in

realistic epidemiological situations is unknown. It may

happen that, if most people in a case–control study are

recruited only once whereas some people are recruited

multiple times as cases, the application of the CLR-C using

the group of matched sets generated for the same person

who is the case in these matched sets as a cluster of obser-

vations may be approximately correct. To understand

whether there are situations in which the use of these meth-

ods may give approximately correct results, we included

these two methods in the evaluations described below.

Note that CLR-N and CLR-C share the same point esti-

mate of association. They only differ in the standard error

998 International Journal of Epidemiology, 2020, Vol. 49, No. 3



of the estimate. Therefore, we evaluate three methods in

terms of bias in point estimates (CLR, ULR-Q and ULR-

QL) but four methods in coverage probabilities of confi-

dence intervals (CLR-N, CLR-C, ULR-Q and ULR-QL).

Simulation settings and procedures

This section outlines the key features of the simulation.

Details of the procedures are available in Supplementary

File 2, available as Supplementary data at IJE online.

Most case–control studies and realistic situations that

epidemiologists encounter concern dynamic popula-

tions.2,26 We therefore conducted simulation of dynamic

populations over 144 scenarios defined by:

• high or low incidence;

• hazard is constant or changing over time;

• exposure is time-constant or time-varying;

• the effect of exposure is time-constant or time-varying

(waning) or it has no effect;

• with or without confounding by and adjustment for age;

• number of controls per case is one, two or four.

Within the calendar time period, the study recruited all

events in the population as cases and, for each case, ran-

domly selected K controls (K¼ 1, 2 or 4) who were at risk

of the disease at the same calendar time as the index case

event occurred. The parameters that defined the incidence

rate were chosen to resemble some previous reports of high

incidence of malaria and acute otitis media27,28 and low in-

cidence of inpatient admission due to malaria and radiologi-

cal pneumonia with consolidation in young children.6,27 We

used the Weibull distribution with shape parameter c¼1.0

or 0.7 to generate two time patterns. Exposure is either

time-constant (since birth) or time-varying (since a ran-

domly generated age at initiation of exposure). We consid-

ered three patterns of exposure effect: no effect (b¼ 0),

time-constant protective effect (b¼�0.3) or waning effect

[bðtÞ¼ b� (2� t/365)], where b¼�0.3, such that the pro-

tective effect waned as time (in days) went by. We consid-

ered scenarios with or without confounding by age.

Whenever there was confounding by age in the data-genera-

tion process, the analysis models adjusted for age but the

study design did not match for age. This serves to reiterate a

point that, in case–control studies, controlling for confound-

ers does not necessitate matching for the confounders.

We set the source population size as 1000 or 4000 for the

high- and low-incidence scenarios, respectively. This corre-

sponds to realistic situations in which a larger population (or

longer study duration) is needed for the study of a less com-

mon event. In a supplementary set of evaluations, we re-

duced the population size by 50%. Recursive algorithms

were used to simulate the data.29 They allowed the flexibility

of introducing time-varying exposure and/or time-varying

effects in the generation of recurrent-event data.

In each scenario, we conducted 1000 replicates of data

simulation and data analysis by ULR-Q, ULR-QL, CLR-N

and CLR-C. In scenarios with b¼ 0, for each analytic

method, we calculated the absolute bias (mean of observed

estimates for b� the true value of bj) and the coverage

probability of the 95% confidence interval (CI). Since the

absolute bias was small, we presented 100� absolute bias

instead. In scenarios with b 6¼ 0, we calculated the relative

bias as [(mean of observed estimates for b� true value of

b)/true value of b] and the empirical coverage probability

of the 95% CI. If the true coverage probability of the 95%

CI is 0.95, the use of 1000 replicates in the simulation gives

a standard error of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:95 � 0:05ð Þ=1000

p
¼ 0:0069:

Childhood pneumonia: a case study

For illustration, we conducted a case–control study nested

within a population-based surveillance system for monitor-

ing pneumonia and pneumococcal diseases in young chil-

dren in the Gambia, Western Africa. Details of the

surveillance system have been previously published.30 We

analysed clinical pneumonia as defined previously,31 which

was a high-incidence outcome, and radiological pneumo-

nia with consolidation as defined by the World Health

Organization,32 which was a lower-incidence outcome, in

a 2-year period among children below the age of 5 years in

relation to time-varying (age) and time-constant (e.g.

mother’s education) exposure variables.

A successful case–control study should provide results

similar to those in a cohort study.3 We began with analysing

the data as a cohort study using the Andersen–Gill model

with calendar time as the timescale.6 We applied the concur-

rent design to conduct a case–control study that included all

clinical pneumonia episodes as cases and a case–control study

of all radiological pneumonia episodes as cases. For each

case, we randomly selected four controls, individually

matched for calendar time and geographic areas defined by

distance to the nearest health facilities (seven in total). We ap-

plied CLR-N, CLR-C, ULR-Q and ULR-QL to the case–con-

trol-study data. In addition to adjusting for calendar time,

the ULR analyses also adjusted for the effects of different

geographic areas, as this was one of the matching variables.3

Results

Simulation

Figure 1 shows the results for scenarios with time-

decreasing hazard, time-constant exposure, time-constant

protective effect of exposure and no confounding by age.
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Regardless of the level of disease incidence and the number

of controls per case, the two unconditional logistic-regres-

sion methods, ULR-Q and ULR-QL, gave point estimates

that closely followed the CLR estimates. In the high-inci-

dence scenarios, all methods had a relative bias of about

�4%. Since the true b was �0.3 (IRR 0.741), the relative

bias implied b��0.288 (IRR 0.750). The magnitude of

bias was negligible.

The lower panel shows the coverage probability of the

95% CI. CLR-N gave confidence intervals that were too

narrow. In the high-incidence scenarios, the 95% CI cov-

ered the true b <90% of the times. CLR-C had coverage

probability that was higher than the 95% target level in

the high-incidence scenarios. The coverage probabilities

obtained from ULR-Q and ULR-QL were approximately

within a 62% range of the 95% target.

Figure 2 shows the results in scenarios with time-

varying exposure. Otherwise, the parameters are the same

as in Figure 1. The under-coverage of the 95% CIs from

CLR-N was less serious than in Figure 1. Other findings

are similar to those shown in Figure 1.

Figure 3 shows scenarios with the same setting as in

Figure 2, except that the exposure has no effect, i.e. b¼ 0,

and there was adjustment for age as a confounder. In both

the high- and low-incidence scenarios, all the regression

models show a slight degree of absolute bias. There was no

big difference in bias between the methods. This is similar

to the findings in Figure 2. ULR-QL and ULR-Q had similar

coverage probability that varied within the range from

about 93% to 95%. CLR-N and CLR-C had more devia-

tion from the target level of 95% coverage probability than

ULR-Q and ULR-QL in scenarios with high incidence.

Further simulation results are included in

Supplementary File 3, available as Supplementary data at

IJE online. They showed patterns similar to Figures 1–3.

Childhood pneumonia: a case study

Table 1 shows the number of clinical and radiological

pneumonia episodes per child in the cohort. Most children

had none, 2256 children had one and 448 children had

two or more episodes of clinical pneumonia. Only eight

Figure 1. Relative bias and coverage probability in relation to levels of disease incidence, control-to-case ratios and analytic methods for a scenario in

which the hazard declines over time, exposure is time-constant, the protective effect of the exposure is time-constant and there is no age effect.

Source population size¼ 1000 and 4000 for high- and low-incidence scenarios, respectively. Solid reference lines: relative bias 0% and coverage prob-

ability 95%; dashed reference lines: coverage probability 93% and 97%.
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children had two or more episodes of radiological

pneumonia.

Table 2 shows the analytic results for clinical pneumo-

nia in the cohort and in the nested case–control study. The

cohort analysis and the four ways of analysing the nested

case–control studies mostly gave similar results, in terms of

both the IRR estimates and their level of statistical signifi-

cance. ULR-Q and ULR-QL gave IRR estimates that were

mostly identical to CLR estimates (up to two decimal pla-

ces). A difference was that CLR-N showed a statistically

significant difference between levels of mother’s educa-

tion—Madrassa/Quranic Education vs No Education (IRR

0.87; 95% CI 0.77 to 0.98)—whereas the cohort and the

other analyses of the case–control study did not. For time-

constant covariates such as gender, there was a tendency

that the width of the CI was in the direction of CLR-

N<ULR-Q/ULR-QL<CLR-C, which agreed with the

simulation results. For the time-varying covariate, age, the

width of the CI was similar for all the analyses of the case–

control-study data. This was also supported by the

simulation findings, reflecting the fact that a child who had

multiple disease episodes might not have multiple episodes

within the same age interval. So the recurrence might be

less impactful on the analysis of time-varying covariates.

Analyses of cohort and case–control studies of radiolog-

ically confirmed pneumonia are included in Supplementary

File 4, available as Supplementary data at IJE online. The

findings were similar between the cohort analysis and the

four sets of case–control-study analyses.

Discussion

In clinical trials of infectious diseases with outcomes that

can recur, until recently, it was a common practice to limit

analyses to the first episode of the disease.33 In 2008, a

WHO advisory committee highlighted the importance of

including all disease episodes in the analysis of randomized

clinical trials.33 Recently, improved statistical methods and

consensus on how best to analyse recurrent events in the

context of randomized clinical trials have emerged (e.g.
5,6). There is also an awareness that analyses of first and all

Figure 2. Relative bias and coverage probability in relation to levels of disease incidence, control-to-case ratio and analytic methods for a scenario in

which the hazard declines over time, exposure is time-varying, the protective effect of the exposure is time-constant and there is no age effect.

Source population size¼ 1000 and 4000 for high- and low-incidence scenarios, respectively. Solid reference lines: relative bias 0% and coverage prob-

ability 95%; dashed reference lines: coverage probability 93% and 97%.
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episodes do not necessarily estimate the same effect. For

example, analysis of the first episode only would likely em-

phasize the short-term effect of the exposure and downplay

the long-term effect, and vice versa. Nevertheless, the

approaches for analysis of recurrent events in case–control

studies have remained unclear.

Capitalizing on the emerging consensus on the validity of

the use of ULR with adjustment for matching variables for

individually matched case–control studies,18,20,22 we pro-

pose a strategy for analysis of case–control studies that use

the concurrent design, which involves matching for time, a

continuous variable. After breaking the matches, it becomes

straightforward to apply the robust standard error for clus-

ter data, with each person being a cluster. Our extensive

simulation evaluation has shown that this approach gave

estimates that approximately followed the CLR estimates.

They gave accurate coverage probability of the CI. In con-

trast, the use of CLR-N and CLR-C tended to give CIs that

were too narrow or too wide, respectively, although they

had acceptable performance in scenarios with low inci-

dence. Some researchers had advocated that, after breaking

the matches, a residual term within each interval of continu-

ous matching variable should be included.20,21 In some sim-

ulation scenarios, we did see that this approach performed

Figure 3. Absolute bias� 100 and coverage probability in relation to levels of disease incidence, control-to-case ratios and analytic methods for a sce-

nario in which the hazard declines over time, exposure is time-varying, the exposure has no effect (b¼ 0) and there is an adjustment for age effect.

Source population size¼ 1000 and 4000 for high- and low-incidence scenarios, respectively. Solid reference lines: bias 0 and coverage probability

95%; dashed reference lines: coverage probability 93% and 97%.

Table 1. Number of episodes of clinical pneumonia and radio-

logical pneumonia per child in the Gambian cohort

Episodes Clinical pneumonia Radiological pneumonia

0 43 477 45 857

1 2256 316

2 316 7

3 81 0

4 31 1

5 12 0

6 3 0

7 2 0

8 2 0

9 0 0

�10 1 0
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better than its counterpart without the residual terms, al-

though the difference was quite small.

These patterns were also found in the study of child-

hood pneumonia in the Gambia. Nevertheless, in the study

of radiological pneumonia, the number of persons with

multiple episodes was small and there was no discernible

difference in the results between any of the analyses.

Although previous case–control studies that used the con-

current design might have used naı̈ve methods to perform

statistical inference,12–15 we speculate that their conclu-

sions were approximately correct unless the degree of dis-

ease recurrence was as common as that of clinical

pneumonia we analysed here.

In conclusion, the strategy of breaking the matches fol-

lowed by ULR with adjustment for time in quintiles and re-

sidual time within quintile and robust standard error for

clustered observations provides correct statistical inference

for case–control studies of recurrent events.

Supplementary Data

Supplementary data are available at IJE online.
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Appendix 1. Statistical models

Suppose there are N individuals in the source popula-
tion. Without loss of generality, we assume that the
first M individuals had at least one episode during the
study duration. Suppose individual i (i ¼ 1; 2 . . . ;M)
with exposure status Xi had mi episodes during
follow-up time (where mi > 0). At each event
time tij ði ¼ 1; . . . M; j ¼ 1; . . . ; miÞ, we randomly se-
lect K controls from the at-risk population without re-
placement using the concurrent design and matching
criteria as described in the text. In total, we

have
PM

i¼1 mi ¼ S matched case–control sets in the
data set. The total number of observations in the case–
control study is S 1þ Kð Þ. In each matched set, there is
one case with indicator ij0 ðYij0 ¼ 1Þ and K controls
with indicators ijk ðYijk ¼ 0; k ¼ 1; . . . ; KÞ for the
selected control subjects associated with episode j of
subject i.

1. Conditional logistic regression

Conditional logistic-regression (CLR) estimates b
by maximizing the log conditional likelihood

lCLR bð Þ ¼
PM

i¼1 lnLCLR;i bð Þ, where LCLR;i bð Þ is:

LCLR; i bEð Þ ¼
Ymi

j¼1

ebXij0

ebXij0 þ
PK

k¼1 ebXijk

:

Let UCLR bð Þ be the score function,

UCLR bð Þ ¼ @lCLR bð Þ
@b

¼
XM
i¼1

UCLR; i bð Þ

¼
XM
i¼1

miXi �
Xmi

j¼1

Xie
bXi þ

PK
k¼1 XijkebXijk

ebXi þ
PK

k¼1 ebXijk

" #
;

since Xij0 ¼ Xi for j ¼ 1; . . . ; mi. Let DCLR ¼ @UCLR bð Þ
@b

be the second derivatives of the log likelihood and

b̂CLR is the solution of the score equation

UCLR bð Þ ¼ 0. Let D̂CLR be DCLR with b replaced by

b̂CLR. The naı̈ve variance estimator for the conditional

logistic regression (CLR-N) is ^varCLR bð Þ ¼ �D̂
�1

CLR.
The sandwich robust estimator of variance for clus-

tered data with the matched sets that have the same in-
dividual as the case considered a cluster of
observations is obtained by (CLR-C):

^varCLR bð Þcluster

¼ D̂
�1

CLR

XM
i¼1

ÛCLR; i b̂CLR

� �h i2

D̂
�1

CLR ¼ D̂
�1

CLR

XM
i¼1

miXi �
Xmi

j¼1

Xie
b̂Xi þ

PK
k¼1 Xijkeb̂Xijk

eb̂Xi þ
PK

k¼1 eb̂Xijk

" #2

D̂
�1

CLR:

2. Unconditional Logistic Regression

An unconditional logistic regression (ULR) has the fol-
lowing likelihood function:

LULR bð Þ ¼
YM

i¼1

Ymi

j¼1

YK
k¼0

eYijkðb0þbXijkÞ

1þ eb0þbXijk

¼
Yn

i0¼1

Yni0

j0¼1

eYi0 j0 ðb0þbXi0 j0 Þ

1þ eb0þbXi0 j0
;

where n is the total number of individuals recruited in
the case–control study and ni0 is the total number of
times an individual is recruited as either a case or a
control. Yi0j0 ¼ 1 if individual i0 is recruited as a case at
j0-th time, otherwise Yi0j0 ¼ 0.

Let UULR bð Þ be the corresponding score function,

UULR bð Þ ¼ @lnðLULR bð ÞÞ
@b

¼
Xn

i0¼1

UULR; i0 bð Þ

¼
Xn

i0¼1

Xni0

j0¼1
Yi0j0Xi0j0 �

Xi0j0e
b0þbXi0 j0

1þ eb0þbXi0 j0

 !" #
:

Let DULR ¼ @UULR bð Þ
@b be the second derivatives of the

log likelihood and b̂ULR is the solution of the score

equation UULR bð Þ ¼ 0. Let D̂ULR be DULR with b
replaced by b̂ULR. The naı̈ve variance estimator for the

ULR is ^varULR bð Þ ¼ �D̂
�1

ULR.
The sandwich robust estimator of variance for clus-

tered data with all observations from an individual
considered a cluster of observations is obtained by:

^varULR bð Þcluster ¼ D̂
�1

ULR

Xn

i0¼1

ÛULR; i0 b̂ULR

� �h i2

D̂
�1

ULR

The unconditional logistic regression with adjustment
for time in quintiles (ULR-Q) estimates b by adding to
the simple ULR four indicator variables that contrast
the second to fifth quintiles of event time against the
first quintile as the reference:

Prob Y ¼ 1jX;Q2;Q3;Q4;Q5ð Þ ¼ e
b0þbXþ

P5

q¼2
bQq Qq

1þ e
b0þbXþ

P5

q¼2
bQq Qq

;

where Qq ðq ¼ 2; 3; 4; 5Þ is an indicator variable
for the q-th event-time quintile, Qq ¼ 0 or 1.
Due to the matching for calendar time, a case and
its control(s) must be in the same event-time
quintile.

The unconditional logistic regression with adjust-
ment for time in quintiles and a linear trend for
residual time within quintile (ULR-QL) estimates
b by adding to ULR-Q a linear trend to account
for residual changes over time within each time
quintile:
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Prob Y ¼ 1jX;Q2; . . . ;Q5;R1; . . . ;R5ð Þ

¼ e
b0þbXþ

P5

q¼2
bQq Qqþ

P5

l¼1
bRl

Rl

1þ e
b0þbXþ

P5

q¼2
bQq Qqþ

P5

l¼1
bRl

Rl

;

where Rl ¼ t � tQl

� �
Ql; ðl ¼ 1; 2; . . . ; 5Þ, t is event

time, tQl
is the mean time within the l-th quintile and

Ql is an indicator variable for the l-th event-time
quintile.

The likelihood functions of ULR-Q and ULR-QL
are straightforward modifications of the LULR bð Þ
aforementioned by including the appropriate covari-
ates. The sandwich robust-variance estimator for clus-
ter data, ^varULR bð Þcluster, described above is then
applied.

Stata codes for illustration of the ULR-Q and ULR-
QL are included in Supplementary File 5, available as
Supplementary data at IJE online.
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