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Brain functional network (BFN) has become an increasingly important tool to explore

individual differences and identify neurological/mental diseases. For estimating a “good”

BFN (with more discriminative information for example), researchers have developed

various methods, in which the most popular and simplest is Pearson’s correlation

(PC). Despite its empirical effectiveness, PC only encodes the low-order (second-order)

statistics between brain regions. To model high-order statistics, researchers recently

proposed to estimate BFN by conducting two sequential PCs (denoted as PC2 in this

paper), and found that PC2-based BFN can provide additional information for group

difference analysis. This inspires us to think about (1) what will happen if continuing

the correlation operation to construct much higher-order BFN by PCn (n>2), and (2)

whether the higher-order correlation will result in stronger discriminative ability. To answer

these questions, we use PCn-based BFNs to predict individual differences (Female vs.

Male) as well as identify subjects with mild cognitive impairment (MCI) from healthy

controls (HCs). Through experiments, we have the following findings: (1) with the increase

of n, the discriminative ability of PCn-based BFNs tends to decrease; (2) fusing the

PCn-based BFNs (n>1) with the PC1-based BFN can generally improve the sensitivity for

MCI identification, but fail to help the classification accuracy. In addition, we empirically

find that the sequence of BFN adjacency matrices estimated by PCn (n = 1,2,3,· · · ) will

converge to a binary matrix with elements of ± 1.

Keywords: brain functional network, Pearson’s correlation, mild cognitive impairment, gender prediction,

higher-order correlation

1. INTRODUCTION

Brain functional network (BFN), learning from the resting-state functional magnetic resonance
imaging (rs-fMRI), has become an increasingly important tool to understand the brain working
mechanism (Liu et al., 2015; Jiang et al., 2020; Xue et al., 2020; Chen et al., 2021), reveal the
biomarkers of neurological/mental disorders (Bijsterbosch et al., 2017; Li et al., 2017; Liu et al.,
2017; Sun et al., 2020), and predict the individual differences (Dubois and Adolphs, 2016). However,
establishing a “good” BFN (with more discriminative information for example) is currently a
challenging problem, due to the low-quality of fMRI data and the high complexity of our brain.

In the past decades, numerous BFN constructionmethods (McLntosh andGonzalez-Lima, 1994;
Marrelec et al., 2006; Ramsey et al., 2010; Qiao et al., 2016; Li et al., 2017; Jiang et al., 2019) have
been proposed. The main difference among these methods lies in the calculation of the relationship
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between different brain regions of interest (ROIs). Pearson’s
correlation (PC) is the commonly used method for constructing
BFN due to its relative simplicity and reliability (Smith et al.,
2013).

However, traditional PC cannot capture the complex
relationship (e.g., non-linearity and non-Gaussianity) among
ROIs because it can only encode the simple linear correlation
(Wan et al., 2006; Xie et al., 2008; Zhang et al., 2016). In contrast,
the two sequential PCs (denoted as PC2 in this paper) provide
a high-order statistic that, in theory, can encode more complex
relationship (Swami et al., 1997; Zhou et al., 2018). In fact, PC2

has been used to estimate BFN and some findings have been
obtained in recent years (Chen et al., 2016; Zhang et al., 2016;
Zhou et al., 2018). For instance, Chen et al. (2016) revealed
that PC2 can encode the complex interactions between different
ROIs, and Zhang et al. (2016) found that PC2 is more sensitive to
AD identification.

In order to have an intuitive explanation of the original low-
order PC and high-order PC (i.e., PC2), we provide a simple
analogy via a friendship network in Figure 1, where each node
corresponds to a person and each edge means existence of
friendship between two nodes. As shown in Figure 1, we note
that there is no direct edge between Node 1 and Node 2, meaning
that these two persons have no relationship in a low-order form.
However, from a high-order view, Nodes 1 and 2 may have some
kinds of relationship since they share three common friends.
Such a friend-sharing relationship (with similar friend circles)
can be easily captured by the high-order PC, according to its
definition (i.e., two sequential correlations). This indicates that
the high-order PC can find more complex relationship that
cannot be directly modeled in a low-order way.

Inspired by the potential powerfulness of PC2, a natural
question is (1) what will happen if continuing the correlation
operation to construct much higher-order BFN by PCn (n>2),
and (2) whether the higher-order correlation will result in
stronger discriminative ability or other useful information.

For investigating the above problems, we construct
PCn-based BFNs on two public datasets, and then apply
the constructed BFNs to conduct the classification task.
Through the experiments, we get two interesting findings:
(1) for the PCn-based BFNs, with the increase of n, their
discriminative ability tends to decrease; (2) by fusing
the PCn-based BFNs (n>1) with the original PC-based
BFN, the sensitivity for MCI identification is generally
increased, but the classification accuracy has no significant
improvement. In addition, we have empirically found that
the BFN adjacency matrix sequence constructed by PCn (n
= 1,2,3 · · · ) is convergent, where PC1corresponds to the
original PC.

The rest of this paper is organized as follows. In section 2,
we introduce the data acquisition, data preprocessing and the
PCn-based BFN construction scheme. In section 3, we design
two classification tasks for evaluating the proposed methods. In
section 4, we discuss our findings and analyze the convergence of
the PCn-matrix sequence, and also introduce several limitations
of this work with possible research plans in the future. Finally, we
briefly summarize this paper in section 5.

2. MATERIALS AND METHODS

2.1. Data Acquisition
Two public datasets, from Alzheimer’s Disease Neuroimaging
Initiative (ADNI)1 and Human Connectome Project (HCP)2,
respectively, are used in our experiments. For ADNI dataset, we
first remove the subjects if (1) the maximum translation/rotation
of the head motion exceeds 2.0, or (2) the volumes with big
frame-to-frame displacement (>0.5) accumulate more than 2.5
min (Power et al., 2012), which leaves us 299 scans (including
154 HCs and 145 MCIs) from 143 participants (with some
participants scanned at one or more times). The scanning
parameters are given as follows: the image resolution is from 2.29
to 3.31 mm for in-plane and the slice thickness equal to 3.31
mm, TE (echo time) = 30 ms, TR (repetition time) is from 2.2
to 3.1 s, flip angle = 800, field of view (FOV)= 198.75 × 212
mm2, matrix size= 64 × 64, voxel size = 3.3 × 3.3 × 3.3mm3

and the scanning time for each subject is 7 min (resulting in 140
volumes) (Wang et al., 2019). The demographic information of
143 subjects is shown in Table 1.

For HCP dataset, 1,003 subjects, including 469 males and
534 females, are involved in our experiment. Each subject was
scanned in four sessions, each of which generates 1,200 volumes,
thus resulting in 4,800 volumes. Data acquisition is performed as
follows: TR = 720 ms, TE = 33.1 ms with 72 slices, flip angle
= 520, FOV = 208 × 180 mm2, matrix size = 104 × 90, and
voxel size= 2×2×2 mm3 (WU-Minn, 2017). The demographic
information of 1,003 subjects is shown in Table 2.

2.2. Data Preprocessing
For each subject from ADNI dataset, we discard the first
three volumes for magnetization balance, and then use the FSL
FEAT software3 for preprocessing the remaining 137 volumes,
including slice timing correction, head motion estimation,
bandpass filtering, and regression of nuisance covariates (white
matter, cerebrospinal fluid, and motion parameters). After that,
we align the fMRIs (that are skull-stripped based on T1-weighted
MRI) onto the Montreal Institute of Neurology (MNI) space,
and perform spatial smoothing by the Gaussian kernel with full-
width-at-half-maximum (FWHM) of 6 mm. Finally, we divide
the preprocessed volumes into 116 ROIs based on the automatic
anatomical labeling (AAL) template (Tzourio-Mazoyer et al.,
2002), and extract its mean blood oxygen level dependent
(BOLD) signals (fMRI series) (Wang et al., 2019).

For the subjects from HCP dataset, they are pre-processed
according to WU-Minn (2017). More specifically, structural
noise in the fMRI was removed through the pairsed independent
component analysis (ICA) (Beckmann and Smith, 2004) with
FMRIB’s ICA-based Xnoiseifier (FIX) in FSL toolbox (Griffanti
et al., 2014). Then, inter-subject registration of cerebral
cortex was carried out using areal-feature-based alignment and
Multimodal Surface Matching algorithm (MSMAII) (Smith et al.,
2011; Glasser et al., 2016). In order to divide the ROIs of the brain,

1http://adni.loni.ucla.edu.
2http://www.humanconnectomeproject.org.
3http://www.fmrib.ox.ac.uk/fsl.
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FIGURE 1 | An analogy of PC2 to a friendship network. The (A,B) are the friendship networks of nodes 1 and 2, respectively.

the data was first temporally normalized and fed into group-
PCA (Beckmann and Smith, 2004; Smith et al., 2014), and then
the group-ICA based on FSL’s MELODIC tool (Griffanti et al.,
2014) was applied to the data obtained by group-PCA (Beckmann
and Smith, 2004). Note that the data dimension after group ICA
determines the number of ROIs, which is simply set to 100 in
this paper.

2.3. PC-Based BFN Estimation
As described earlier, PC is the simplest and most popular
approach to construct BFNs (Smith et al., 2013). The edge weight
between the ith and jth ROIs of PC-based BFN is defined as
follows:

rij =
(xi − x̄i)

T(xj − x̄j)
√

(xi − x̄i)T(xi − x̄i)
√

(xj − x̄j)T(xj − x̄j)
(1)

where xi ∈ RMis the fMRI signal from the ith ROI, and x̄i ∈ RM

is a constant signal obtained by averaging the elements in xi.
Without loss of generality, we suppose that xi is centralized by

xi − x̄i and normalized by
√

(xi − x̄i)T(xi − x̄i). Then, Equation
( 1) can be simplified to rij = (xi)

Txj, and its matrix form is
defined as follows:

R = XTX (2)

TABLE 1 | The main demographic information of 143 subjects.

Category Scan # Age (Years) Gender (M/F)

MCI 145 71.99± 7.67 95/50

HC 154 75.36± 6.16 67/87

TABLE 2 | The main demographic information of 1, 003 subjects.

Category Scan # Age (Years)

Female 534 22–36+

Male 469 22–36+

where X = [x1, x2, · · · , xN] ∈ R(M×N) is the data matrix, and R
is the edge weight matrix of PC-based BFN. For the convenience
of presentation in what follows, we simply call the original PC as
PC1, and the corresponding edge weight matrix of PC-based BFN
as R1 = R.

2.4. From PC1 to PCn

Despite its simplicity and popularity, PC1-BFN can only model
the low-order statistics that may be insufficient to capture more
complicated relationship between ROIs. As an alternative to PC1,
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FIGURE 2 | The pipeline of building Rn. R1 is first obtained via computing PC coefficient of the BOLD signals associated with different ROIs. Then, R1 is seen as the

new data matrix to calculate R2, where the feature vector Li is considered as a new “signal” that indicates the correlation between the ith ROI and other ROIs. By

continuously conducting the above operation, we calculate Rn (n = 2,3,· · · ).

Zhang et al. (2016) recently proposed to construct the high-
order BFN by correlation’s correlation. Specifically, as shown
in Figure 2, the PC1-based BFN (i.e., R1) is first established
by Equations ( 1) or ( 2). Then, the R1 is used as a data
matrix for constructing the high-order PC2-based BFN (i.e., R2)
by considering each row (or column) of R1 as a new “signal”
associated with each ROI. Interestingly, the researchers find
that R2 can provide additional information in group difference
analysis (Zhang et al., 2016).

Motived by PC2, in this paper we go further to construct
higher-order PCn-based BFN (i.e., Rn, n > 2) by continuously
conducting the correlation operation. As a result, we obtain a
sequence of BFN adjacency matrices, and this sequence from R1
to Rn can be achieved by the following iteration formula (please
see Appendix for the details of formula derivation):

Rn =
Rn−1 CRn−1

√

diag(Rn−1 CRn−1)
√

diag(Rn−1 CRn−1)
, n = 2, 3, 4, · · ·

(3)

where C = I − E
n is a constant matrix (with I and E being

the identity and all-one matrix, respectively), and diag(A) is a
diagonal matrix that shares the same diagonal elements with A.

3. EXPERIMENT

In this section, we conduct experiments to answer the questions
about the higher-order BFNs: (1) whether the higher-order
BFN are more discriminative for achieving better classification
performance, and (2) by combinating with PC1-based BFN,
whether the PCn-BFNs (n > 2) can provide additional
information as PC2-based BFNs.

3.1. Experimental Setting
In this experiment, the classification performance is evaluated by
five-fold subject-level cross validation (5-F CV), to ensure that
fMRI scans of the subject do not appear in both training and
testing sets (Wong and Tzu-Tsung, 2015). Specifically, as shown
in Figure 3, the 143 (or 1,003) subjects of ADNI (or HCP) are
first divided into five-fold, each of which contains almost the
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FIGURE 3 | The pipeline of 5-F CV in this study.

FIGURE 4 | The classification pipeline based on the PC1- and PCn (n>1)-based BFNs. We first train two classifiers based on the PC1- and PCn (n > 1)-based BFNs,

respectively, and then fuse the outputs (i.e., O1 and O2 ) of the two classifiers via λO1 + (1− λ)O2, where λ is the optimal parameter obtained by an inner 5-F CV.
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FIGURE 5 | The visualization of BFNs with different order n. We empirically note that the adjacency matrix sequence will converge after dozens of iterations.

FIGURE 6 | The ACC of (A) MCI identification and (B) gender prediction based on BFNs with six different orders and four different p-values (for filtering features). The

PCconv-based BFN is the empirically convergent adjacency matrix through thirty iterations. Note that, with the increase of n, the ACC of PCn-based BFN tends to

decrease in all the cases.

same number of subjects. Then, four-fold are used to train the
classifier, and the remaining one is used to test the classification
performance. Linear support vector machine (SVM) (Chang and
Lin, 2011) with default parameter C = 1 is utilized to perform
the classification task. The edge weights of the BFN are adopted
as features for classification. In consideration of the fact that the
number of edges far exceeds the sample size, t-test is used to select
edge weight features prior to the classification task. Two binary
classification tasks are conducted to evaluate the constructed
BFNs with different orders. One is to identify subjects with MCI
from HCs based on the ADNI dataset, and the other is to predict
gender based on the HCP dataset.

Furthermore, we design experiment to verify whether the
PCn-BFNs (n > 2) can provide additional information by
combining the PCn- and PC1-based BFNs. In particular, we first
train two classifiers (SVM with C = 1) based on PC1- and PCn

(n > 1)-based BFNs, respectively, and then fuse the outputs
of these two classifiers. As shown in Figure 4, the outputs, O1

and O2, of the two classifiers measure the probabilities that
the current subject belongs to the positive class. With the two

probabilistic outputs, we can achieve the fused classification
result via λO1 + (1 − λ)O2, where the optimal parameter λ is
selected in the range of [0.1, 0.2, 0.3, 0.4, · · · , 0.9] by an inner
5-F CV on the training set. Finally, we retrain the classifier with
the optimally selected parameter, and put the BFNs of the testing
subject into the trained classifiers for the ultimate performance as
shown in Figure 3.

3.2. Estimated Functional Brain Networks
In the first group of experiments, we visualize the sequence of
BFN constructed by PCn.

In Figure 5, we randomly select a subject from ADNI dataset
and visualize the BFNs constructed by different methods. It can
be observed that the BFNs estimated by PC16 and PC17 are
almost the same, indicating that the adjacency matrix sequence
may converge to a binary matrix with entries of 1 and −1. This
phenomenon motivates us to explore and prove it in theory.
In the discussion section, we will further analyze and discuss
this problem.
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FIGURE 7 | The SEN and SPE based on six kinds of BFNs for MCI identification, respectively. It can be observed that the SEN and SPE of PC1 is better than other

cases. In addition, under different p-values of t-test, the SEN and SPE tend to change greatly.

FIGURE 8 | The ACC of gender prediction based on the fusion of PCn-based BFN and PC1-based BFN under different p-values. The PCn&1 corresponds to the

fused classification accuracy of PCn and PC1, n = 2,3,4, convergence(conv). The dotted line is the ACC of PC1 itself (without fusion with PCn).

3.3. Experiment Results
In this group of experiments, two binary classification tasks (i.e.,
MCI vs. HC, Female vs. Male) based on the constructed BFNs
with different orders are first conducted to evaluate whether the
higher-order BFN are more discriminative, and then to verify
whether the PCn-BFNs (n>2) can provide additional information
by combining the PCn- and PC1-based BFNs. We evaluate
the classification performance of different methods by a set
of quantitative measures, including accuracy (ACC), sensitivity
(SEN), and specificity (SPE). Their expressions are defined
as follows:

ACC =
TP + TN

TP + TN + FN + FP
(4)

SEN =
TP

TP + FN
(5)

SPE =
TN

TN + FP
(6)

where TP, TN, FP, and FN denote the number of true
positive, true negative, false positive, and false negative
numbers, respectively.

As described in the experimental setting, we construct BFNs
with different orders via multiple sequential PCs and apply them
in the classification task. The classification results on two datasets
are reported in Figures 6, 7.

Furthermore, the classification results based on the fusion
of the low-order and higher-order BFNs are reported in
Figures 8, 9, respectively.

4. DISCUSSION

In this section, we first study the discrimination of features and
the additional information provided by higher-order BFN. Then,
we further analyze the convergence of BFNs with different orders
and show some related findings about it. Finally, we illustrate the
limitations of the current work and the direction of future work.
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FIGURE 9 | The performance (ACC, SPE, and SEN) for MCI identification based on fusion of PCn-based BFN and PC1-based BFN under different p-values. The

PCn&1 corresponds to the fused performance of PCn and PC1, n = 2,3,4, conv. The dotted line is the performance of PC1 itself (without fusion with PCn). We can

observe that the fusion of low- and higher-order BFNs fails to improve the ACC and SPE in most cases, but generally improves SEN.

4.1. Discrimination of Higher-Order BFN
Based on the classification results, we analyze the discrimination
of higher-order BFN. Based on Figures 6, 7.

(1) As n increases, the ACC of PCn generally decreases
for both MCI identification and gender prediction, even with
various p-values in t-test for selecting different groups of feature.
This illustrates that the higher-order does not result in stronger
discriminative ability. Especially when the BFN converges with a
big n, the ACC approaches 50%, meaning that its discrimination
almost disappears since our task is a binary classification.

(2) Different from the ACC that decreases monotonically, the
SPE and SEN generally fluctuate for the MCI identification task
under most p-values. However, the overall performance shows a
downtrend for both SPE and SEN. This further illustrates that the
higher-order BFNs in the sense of multiple correlations do not
necessarily help the discrimination.

(3) As a byproduct of our experiments, we find that the p-
value generally has a great impact on the final performance. For
example, as shown in Figure 6, the PCn-based BFNs have better
performance when the p-value is 0.05. In terms of the fused
classification results, it can also be observed that p = 0.05 will
result in the best ACC, SEN, and SPE, as shown in Figure 9. This
suggests that we should carefully select features (edge weights)
prior to the classification.

In order to better explain our classification results, we further
investigate the number of features involved in the PCn-based

MCI classification, and report the results with p-value of 0.001
in Figure 10.

It can be seen, from Figure 10, that PC1 includes the largest
number of features (207 features) and the number of features
selected by PCn decrease with the increase of n. This means
that the higher-order BFN instead contains less discriminative
information than the low-order BFN.

4.2. Supplementary Information of
Higher-Order BFNs
The higher-order BFNs can provide some additional information
for the classification task. As shown in Figure 9, although it
cannot benefit the ACC and SPE, the combination of PCn-based
BFN and PC1-based BFN can generally improve the SEN. The
improvement of SEN is generally important, because it may help
to detect the brain disorders in their early stage. In addition,
this also give a reason to believe that PCn(n > 1) would
provide potentially additional information for encoding complex
relationship between different ROIs.

4.3. Convergence Analysis
In the process of constructing the BFN based on the sequential
PCs, we have an interesting finding that the sequence of BFN
adjacency matrices estimated by PCn (n= 1,2,3· · · ) will converge
to a binary matrix with entries of 1 and −1 as shown in
Figure 5. Although we cannot provide a direct explanation of this
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FIGURE 10 | The number of selected features with p-values = 0.001.

phenomenon from a biological mechanism, it will inspire us to
think whether the interaction between different ROIs promotes
or inhibits each other at a certain working stage of the brain.

Currently, the convergence of the BFN sequence cannot
be rigorously proved in theory. We will explore this problem
in the future work. However, in the process of searching the
rigorous proof of convergence, we achieve several interesting
theoretical findings. In particular, let {Rn}

∞
n=1 be the sequence of

correlation coefficient matrices generated by the iterative formula
shown in Equation ( 3), and then we have the following results
or conjecture:

(1) After iterating the matrix for a certain number of times, the
elements in the matrix will be monotonic with the number
of iterations, and the sign of a small number of elements will
change once.

(2) Supposing that the rank of Rn is r
∗
n , we can achieve a sequence

of rank {r∗n}
∞
n=1 that is monotonically decreasing, since the

rank of the matrix product is not greater than the rank of any
one of them (Lancaster and Tismenetsky, 1985).

(3) According to Schauder’s fixed-point theorem (Kellogg, 1976),
we find that the iterative formula given in Equation ( 3) has a
fixed-point4.

4Schauder fixed point: suppose X is a banach space, andM ∈ X is a bounded closed

convex set. If F:M → M is a compact-operator, there is x ∈ M such that F(x)=x.

4.4. Limitations and Future Work
First, in this paper we only study the HOBFN constructed by
multiple sequential PCs. In fact, however, many traditional BFN
estimation methods such as sparse representation (Lee et al.,
2011) can be extended to higher-order versions through the
similar way (i.e., multiple sequential calculations). In the future,
we plan to discuss more kinds of HOBFNs and systematically
compare their discrimination. Second, we cannot rigorously
prove the convergence of matrix sequence in theory, and the
biological mechanism of HOBFN is unclear at present. We will
try to prove its convergence and explore its biological mechanism
in the future.

5. CONCLUSION

Recent researches have proposed many methods to construct
high-order BFNs (HOBFNs) that can generally provide some
additional information for poring cerebral mechanisms.
For instance, Guo et al. (2017) constructed HOBFN using
minimum spanning tree and Zhang et al. (2016) recently
proposed to construct BFNs by conducting two sequential
PCs. In this paper, we mainly focus on constructing the
PCn-based BFN by multiple sequential PCs, and exploring its
performance in the classification tasks. Through experiments,
we find that the higher-order does not necessarily result
in stronger discriminative ability, but the additional
information provided by PCn (n>1) is helpful for PC1 to
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improve the sensitivity of the classifier. In addition, we
empirically find that the matrix sequence constructed by
PCn (n=1,2,3 · · · ) converges to a matrix with elements
of−1 and 1.
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APPENDIX

Construction Details of the Iterative
Formula
Suppose that R1 = (rij) ∈ R(n×n) is an initial Pearson’s
correlation coefficient matrix estimated from observed data of
an n-dimensional random vector X = (X1,X2, · · · ,Xn). If
considering R1 as new observed data, each row (or equivalently
each column, due to the symmetry) of which corresponds to
a random variable in X, we can estimate another correlation
coefficient matrix R2 based on R1. Further, by continuously
conducting the operation of “correlation’s correlation,” we can
have a sequence of correlation coefficient matrices {Rn}

∞
n=1, and

we empirically find that the matrix sequence will converge, if all
the involved calculations are legal (for example, the denominator
is not zero).

In order to prove the conjecture of convergence, we first
express the sequence of correlation’s correlation as an iterative
formula. Specifically, let ri and rj be the ith and jth rows of current

correlation matrix R = (rij) ∈ R(n×n), respectively. Then, the
Pearson’s correlation coefficient, denoted by rnewij , between the

corresponding variables is given as follows,

rnewij =
(ri − ¯ri1)(rj − ¯rj1)

T

‖ (ri − ¯ri1 ‖‖ rj − ¯rj1 ‖
(7)

where r̄i =
6n
k=1

rik
n , r̄j =

6n
k=1

rjk
n (i, j = 1, 2, · · · , n), and 1∈

R(1×n) is an all-one vector. As a result, the new correlation matrix
Rnew = rnewij can be expressed as follows:

Rnew =









r1−r̄11
‖r1−r̄11‖

...
rn−r̄n1
‖rn−r̄n1‖









[

( r1−r̄11
‖r1−r̄11‖

)T , · · · , ( rn−r̄n1
‖rn−r̄n1‖

)T
]

=









1
‖r1−r̄11‖

· · · 0

...
. . .

...

0 · · · 1
‖rn−r̄n1‖















r1 − r̄11
...

rn − r̄n1







[

(r1 − r̄11)
T , · · · , (rn − r̄n1)

T
]









1
‖r1−r̄11‖

· · · 0

...
. . .

...

0 · · · 1
‖rn−r̄n1‖









(8)

Note that









1
‖r1−r̄11‖

· · · 0

...
. . .

...

0 · · · 1
‖rn−r̄n1‖









=
1

√

√

√

√

√

√

diag(







r1 − r̄11
...

rn − r̄n1







[

(r1 − r̄11)
T , · · · , (rn − r̄n1)

T
]

)

(9)







r1 − r̄11
...

rn − r̄n1






= RC = R(I −

E

n
) (10)

where diag(A) is a diagonal that shares the same diagonal

elements with A, and C = I − E
n , with I and E being the

identity and all-one matrix, respectively. Therefore, we have
Rnew = 1

√

[diag(RCR)]
(RCR) 1

√

[diag(RCR)]
, and accordingly have the iterative formula

is given as follows below:

Rn =
1

√

[diag(Rn−1CRn−1)]
(Rn−1CRn−1)

1
√

[diag(Rn−1CRn−1)]
(11)
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