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Background. Diabetic retinopathy (DR) is a serious ophthalmopathy that causes blindness, especially in the proliferative stage.
However, the pathogenesis of its effect on endothelial cells, especially its relationship with immune cell infiltration, remains
unclear. Methods. The dataset GSE94019 was downloaded from the Gene Expression Omnibus (GEO) database to obtain
DEGs. Through aggregate analyses such as Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG)
pathway enrichment analysis, a protein-protein interaction (PPI) network was constructed to analyze the potential function of
DEGs. Weighted gene coexpression network analysis (WGCNA) and Cytoscape software including molecular complex
detection (MCODE) and cytoHubba plug-ins were used to comprehensively analyze and determine the hub genes.
ImmuCellAI analysis was performed to further study the relationship between samples, hub genes, and 24 types of immune
cell infiltration. Finally, gene-set enrichment analysis (GSEA) was employed to identify the enrichment of immune cell
infiltration and endothelial cell phenotype modifications in GO biological processes (BP) based on the expression level of hub
genes. Results. 2393 DEGs were identified, of which 800 genes were downregulated, and 1593 genes were upregulated. The
results of functional enrichment revealed that 1398 BP terms were significantly enriched in DEGs. Three hub genes, EEF1A1,
RPL11, and RPS27A, which were identified by conjoint analysis using WGCNA and Cytoscape software, were positively
correlated with the number of CD4 naive T cells and negatively correlated with the numbers of B cells. The number of CD4
naive T cells, T helper 2 (Th2) cells, and effector memory T (Tem) cells were significantly higher while CD8 naive T cells and
B cells significantly were lower in the diabetic group than in the nondiabetic group. Conclusions. We unearthed the DEGs and
Hub genes of endothelial cells related to the pathogenesis of PDR: EEF1A1, RPL11, and RPS27A, which are highly related to
each other and participate in the specific biological process of inflammation-related immune cell infiltration and endothelial
cell development, chemotaxis, and proliferation, thus providing new perspectives into the diagnosis of and potential “killing
two birds with one stone” targeted therapy for PDR.

1. Introduction

According to the latest digital information from the Interna-
tional Diabetes Federation, there were an estimated 463 mil-
lion diabetics among adults aged between 20 and 79
worldwide in 2019, and the number is expected to reach
642 million by 2040, with the pervasiveness rate increasing
from 8.8% to 10.4%. In 2019, half (50.1%) of diabetics do

not know they have the disease [1]. Diabetic retinopathy
(DR) and DR-related blindness occur in 34.6% and 2.6%,
respectively, among the total population of diabetic patients
[2]. DR, especially proliferative diabetic retinopathy (PDR),
makes a relatively minor contribution to vision deprivation
or blindness in working-age people in developed countries
[3], and its prevalence has been increasing in some develop-
ing countries with large populations [4, 5]. This has caused a
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heavy economic burden on all countries and has imposed
serious obstacles to the development of global economic
productivity [6].

DR is a neurovascular disease caused by the destruction
of retinal neurovascular unit (NVU) due to diabetes, in
which the lesions of intraocular microvessels are still domi-
nant [7]. Chronic progressive diabetes leads to retinal micro-
vascular leakage and occlusion and a series of secondary
fundus lesions, such as microhemangioma, rigid exudation,
cotton spots, neovascularization, vitreous proliferation, mac-
ular edema, and even retinal detachment [8]. The main risk
factors for DR are the course of diabetes and blood glucose
levels. Other important risk factors include HbA1c levels,
blood pressure, serum total cholesterol, and low-density
lipoprotein [8]. According to the pathogenesis of DR, non-
proliferative diabetic retinopathy (NPDR) and PDR are the
two major stages of DR observed in the clinic [9]. NPDR
can be subdivided as mild, moderate, or severe based on
fundus examination findings [9]. Approximately 16% of
patients with moderate NPDR will progress to PDR within
5 years [10]. For very severe NPDR patients, the risk of
developing PDR within one year is about 75% [11]. Once
the disease progresses to PDR, the eye is 4.0 times more
likely than an eye with mild NPDR to become blind within
2 years of DR diagnosis [12]. The main treatment methods
are intravitreal injection of antiangiogenic drugs, macular
and pan-retinal laser photocoagulation, and vitrectomy
[13]. Antineovascularization therapies, mainly aimed at vas-
cular endothelial growth factor (VEGF) and its receptors,
have been the focus of DR treatment for many years. How-
ever, a considerable number of patients cannot benefit from
these treatments [14], so there is an urgent need for new
molecular targets and target-specific therapies.

Many studies have confirmed that hyperglycemia is the
central precipitating factor in diabetic retinopathy [15–17].
Chronic injury and pathological changes to vascular endo-
thelial cells are the core histopathological changes in DR
injury [18, 19]. The effect of a hyperglycemic state on retinal
vascular endothelial cells is multilayered and multifaceted.
Retinal vascular endothelial cell function is affected by dis-
rupting transmembrane glucose transport [20], extracellular
matrix metabolism [21], protein transcription, and posttran-
scriptional regulation as well as cells’ translation and post-
translational modification [22–24]. Abnormal function of
vascular endothelial cells has been detected in the early stage
of DR, and the damage is further aggravated by increased
blood glucose [25]. In PDR, due to the breakdown of
immune privilege and the destruction of the blood-retinal
barrier (BRB), circulating immune cells will pass from reti-
nal endothelial cells and infiltrate the retina and vitreous,
causing retinal blood vessel damage which is characterized
by chronic microvascular inflammation and neuronal dam-
age [26–28]. Retinal vascular endothelial cells are the first
vital station of circulating immune cell infiltration, and the
overall immune infiltration situation is still unknown.

RNA sequencing (RNA-seq) is a technology that utilizes
second-generation sequencing transcriptomics research
methods to reveal a snapshot of the presence and quantity
of RNA in a genome at a given moment [29]. It has been

applied extensively as a powerful tool for exploring molecu-
lar mechanisms of diseases and identifying genome expres-
sion profiles [29]. The overall aim of this study was to use
gene analysis technology to gain novel insights into the path-
ogenesis, diagnosis, prognosis, and treatment of DR. To
achieve this aim, we adopted an RNA-seq dataset to deter-
mine differentially expressed genes (DEGs), filtrate potential
biomarkers, analyze GO and KEGG pathways, and identify
hub genes and their related immune cell infiltration abun-
dances using the ImmuCellAI algorithm [30].

2. Materials and Methods

2.1. GEO Dataset Processing. The GEO database (https://
www.ncbi.nlm.nih.gov/geo/) [31] was searched using “diabetic
retinopathy, endothelial cell” as the subject term, yielding a
total of 18 datasets. These data were filtered by selecting
“expression profiling by high-throughput sequencing” as a
study type and “Homo sapiens” as the organism, after which
two datasets remained. After studying the specific details of
the two datasets, dataset that did not meet the study criteria
was discarded; we chose and downloaded GSE94019 which
is based on the GPL11154 Illumina HiSeq 2000 (Homo
sapiens) platform. The dataset GSE94019 contains a total of
13 human eye vascular endothelial cell samples, of which nine
are from the fibrovascular membrane of patients with prolifer-
ative diabetic retinopathy, and four are from the retinas of
people without diabetes. All samples were extracted, the data
of each sample were preprocessed, and the average value at
which the gene corresponded to multiple probes was recorded.

2.2. Analysis of Differential Expression. R software (version
4.1.0; https://www.r-project.org/) coupled with the Bioconduc-
tor package (http://www.bioconductor.org/) were implemented
to correct and analyze the original data. RNA-seq data process-
ing and normalization were performed using the edgeR package
with trimmed-mean of M values (TMM) modus [32]. Criteria
for statistical significance were logFC ðfold changeÞ > 2 and
false discovery rate ðFDRÞ < 0:05. DEGs, which are identified
as genes that meet the screening criteria, were visualized on a
heatmap by utilizing the pheatmap package and on a volcano
plot by applying the EnhancedVolcano package.

2.3. Functional Enrichment Analysis. GO functional annota-
tion and KEGG enrichment analysis were conducted on the
DEGs, and results were visualized by implementing the R
packages clusterProfiler, org.hs.eg.db, and enrichplot. The
GO enrichment analysis consists mainly of biological pro-
cesses (BPs), cellular components (CCs), and molecular
functions (MFs). For the purposes of the present study, BP,
which is the most important part of GO, was used for
screening and analysis. The statistical significance criterion
was set as adjust value of p < 0:05.

2.4. Coexpression Network Construction. The weighted gene
coexpression network analysis (WGCNA) R package was
used, and the gene expression profiles of all 17233 genes
were occupied to reveal DR-related modules. Raw data were
downloaded from the sample obtained from the GEO data-
base. The edgeR package was used to process the data, and
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the upper quantile normalization modus was introduced for
background amendment and standardization. Genes with
standard deviation less than 0.5 times that of samples in
the integrated dataset were eliminated, and other screened
genes were introduced into WGCNA. To ensure that the
network was scale-free, the pickSoftThreshold function was
used to calculate the soft threshold of adjacency. The topo-
logical overlap matrix (TOM) was constructed after the adja-
cency matrix was transformed. By hierarchical clustering
and use of a dynamic tree cutting function detection module,
the genes with analogical expression portraits were allocated
into several gene modules based on TOM dissimilitude mea-
surement with the minimal unit of the gene tree dendrogram
at 50, and the cutHeight value at 0.9. Module member (MM)
and gene significance (GS) were calculated to reveal clini-
cally related attributes. Each step of the above construction
process is visualized by WGCNA and its related R packages.
The genes and information contained in the module were
retained for further analysis.

2.5. PPI Network Construction. A PPI network diagram of
DEGs was developed using the STRING database (https://
string-db.org/) with the maximum confidential interaction
score of 0.99. Cytoscape software was used to optimize visu-
alization of the network, and the MCODE plug-in was
employed to analyze the PPI network including all DEGs
to obtain the key clusters of the most closely interrelated
genes. The network analyzer was used to calculate and ana-
lyze the score of each point in a multidimensional approach
for the entire undirected network. In the MCODE plug-in
setting, the original parameters (degree cutoff ≥ 2, node
score cutoff ≥ 2, K − core ≥ 2, maximumdepth = 100) were
introduced to calculate and detect the key gene network
model with intensive protein-protein relationship. All eleven
algorithms including MCC, DMNC, MNC, Degree, EPC,
EcCentricity, Closeness, Radiality, Betweenness, Stress, and
BottleNeck in the CytoHubba plug-in were applied, and
the intersection of the top 100 nodes from each method
was recorded to identify the latent gene clusters. The gene
cluster in the key module of WGCNA was intersected with
the gene clusters obtained by MCODE and CytoHubba
plug-ins in Cytoscape to obtain the final hub genes.

2.6. Immune Cell Infiltration Analysis. Immune Cell Abun-
dance Identifier (ImmuCellAI) was used to estimate abun-
dance of 24 immune cell types from RNA-seq digital gene
expression data and obtain the immune cell infiltration
matrix [30]. The landscapes of immune cell infiltration in
retinal endothelial cells (RECs) from nondiabetic retinal tis-
sue and fibrovascular membrane endothelial cells (FVMs)
from PDR tissue were downloaded. The proportion of each
immune cell subtype was extracted from the sample. A heat-
map including the 24 immune cell types was created using
the pheatmap package. A heatmap showing correlations
between immune cells was plotted using the R package
PerformanceAnalytics. The beanplot package was used to
compare the distributions of the 24 immune cells between
the REC and FVM groups. Lollipop plots showing the corre-
lations between hub genes and immune cells, were created

using the ggplot2 package, and the correlations were mea-
sured using the Pearson method.

2.7. GSEA of Hub Genes. The GSEA program was used to
analyze genome-wide expression profiles from microarray
data. Within this program, two reference database index files
(c2.cp.kegg.v7.3.symbols.gmt and c5.go.bp.v7.3.symbols.gmt)
were used to generate GSEA image sets. The multi-GSEA
images in the BP of GOwere redrawn using the clusterProfiler
package in R [33]. Criteria for statistical significance were
p < 0:05 and FDR q < 0:25.

2.8. Verification of Hub Genes. The software package pROC
in R was used to analyze and assess the diagnostic value of
hub genes using receiver-operating characteristic (ROC)
curves. Criteria for hub genes were area under the ROC
curve (AUC) greater than 0.80 and Wilcoxon test p < 0:05.
The details of the datasets used for analysis in this study
were presented in Table 1.

2.9. Statistical Analysis. All statistical analyses were calcu-
lated using R software (4.1.0) and associated packages as
explained above.

3. Results

3.1. Identification of DEGs. Using the EdgeR package, a total
of 2393 DEGs were identified, of which 1593 genes were
upregulated and 800 were downregulated. DEGs were fil-
tered and rendered at a set threshold and visualized by heat-
map and volcano plot, in which heatmap illustrated the first
50 upregulated and downregulated genes (Figure 1(a)), while
volcano map demonstrated the top 20 upregulated and
downregulated genes (Figure 1(b)).

3.2. GO and KEGG Enrichment Analysis of DEGs. The func-
tional enrichment results showed that 1398 BP terms, 178 CC
terms and 130 MF terms were significantly enriched in DEGs.
The BP of DEGs is mainly related to the activation and
degranulation of neutrophil-related immune response, the ini-
tiation of protein translation, and the location of organelle
assembly. Cell-substrate junction and focal adhesion are the
two most abundant items in CC, while cadherin binding, actin
binding, and enzyme inhibitory activity were the most abun-
dant terms in MF (Figure 1(c)). In KEGG terms, in addition
to some chronic and infectious disease pathways, diabetes
mellitus and its complications and DR-related pathways such
as tumor necrosis factor (TNF) signaling pathway, antigen
processing and presentation, phototransduction, IL-17 signal-
ing pathway, and AGE-RAGE signaling pathway in diabetic
complications were significantly highly enriched. The results

Table 1: Datasets implemented for analysis.

Dataset
Gene

number
Platform

Case
samples

Control
samples

GSE941019 17233 GPL11154 9 4

GSE102485 14108 GPL18573 22 3

GSE142025 17184 GPL20301 21 9
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also illustrated significant enrichment in pathways in cellular
processes such as phagosome, lysosome, regulation of actin
cytoskeleton, focal adhesion, apoptosis, and pathways in
genetic information processing such as ribosome, protein pro-
cessing in endoplasmic reticulum (Figure 1(d)).

3.3. Gene Coexpression Web Development and Fundamental
Module Recognition. When constructing the sample dendro-

gram, there were no outlier specimens, so no specimen was
removed (Figure 2(a)). Through the analysis of sample gene
expression distribution, it could be seen that the baseline dis-
tribution of sample gene expression was uniform and at the
same level (Figure 2(b)). Using the pickSoftThreshold func-
tion, the optimal soft threshold was automatically set at 13,
which makes the evaluation coefficient R2 of scale-free net-
work run up to 0.9 for the first time (Figure 2(c)). After
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Figure 1: (a) DEG heatmap. The top 50 upregulated (red) and top 50 downregulated (blue) DEGs are shown, in order of FDR value from
low to high. (b) DEG volcano plot showing the 20 most upregulated and downregulated genes. (c) GO bubble chart showing the top 10
terms manifested from the BP, CC, and MF directories. (d) KEGG bubble chart. Top 30 KEGG enrichment terms are shown.
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merging similar modules in the cluster tree with a cutting
height of 0.3, 48 modules of genes with similar coexpression
specificities were identified from the coexpression network
(Figures 2(d) and 2(e)). The module eigengene (ME) in the
violet module (r = −0:85; p = 2e − 4) displayed the highest
negative correlation, while the ME in the blue4 module
(r = −0:75; p = 0:003) showed the second highest negative cor-
relation. These two modules were top two modules which
were significantly correlated with clinical traits. Both the violet
(cor = 0:75, p = 1:2e − 114) and blue4 (cor = 0:7, p < 1e − 200)
modules showed significant positive correlations betweenMM
and GS of the target gene (Figures 2(f) and 2(g))). There-
fore, violet module and blue4 module were recognized as
key modules.

3.4. PPI Network and Identification of Hub Genes. After
screening with a filter score of 0.99, the highest available in
the string database, a network containing 789 nodes and
2755 edges was created using the cytoscape software. In the
MCODE plug-in results, a total of 39 core networks were
obtained, of which the three with the highest scores
(48.208, 8.250, and 7.250) were extracted separately and
visualized using Betweenness scores (Figures 3(a)–3(c)).
The first of these with a score far exceeding other networks
and the top 100 genes obtained by the eleven algorithms in
CytoHubba were intersected using the upsetR method, and
ultimately, a total of four candidate hub genes were obtained
(Figure 3(d)). Intersection of these four genes with the gene

sets of the two most critical modules obtained from
WGCNA showed that two genes (EEF1A1, RPL11) were in
the blue4 module and one gene (RPS27A) is in the violet
module. After repeated screening, three genes, EEF1A1,
RPL11, and RPS27A, were identified as hub genes.

3.5. Immune Cell Infiltration in RECs and FVMs. The Immu-
CellAI algorithm was used to predict immune cell infiltra-
tion in the RECs and FVMs groups. Bar chart and
heatmap show the relative percentage proportion of 24
immune cell types within the sample (Figures 4(a) and
4(b)). Absolute score differences between the two immune
cell subgroups show that CD4 naïve cells, Th2 cells, and
Tem cells in the FVMs group were significantly more
advanced than in the RECs group, while the converse was
true for CD8 naive cells and B cells, with significantly more
cells in the RECs group than in FVMs group (Figure 4(d)). A
significant correlation was found between DC and the other
11 types of immune cells; CD4 naïve cells, Tr1 cells, and
CD4 T cells were significantly related to the other 10 types
of immune cells; nTreg cells was significantly related to the
other nine types of immune cells; Tfh cells, Tcm cells,
Monocyte, NK cells, and CD8 T cells were significantly
related to the other eight types of immune cells
(Figure 4(c)). These correlations mean that one third or
more of immune cell types were cross-correlated and may
be considered as potential core immune cells with close links
to the manifestation and improvement of diabetic retinopathy.
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Figure 2: (a) Clustering of samples was executed to check outliers. All samples were subsumed in the cluster and were well classified, and no
sample contains outliers. (b) Violin box plots show the expression profile distributions of all samples. (c) The soft threshold was calculated
and determined using the pickSoftThreshold function. (d) A hierarchical clustering dendrogram was used to analyze coexpressed gene
clusters, with each color representing a coexpression module. (e) Heatmap of the clinical distinguishing feature relevance of eigengenes,
showing for each coexpression module gene cluster the correlation between the REC and FVM groups. (f, g) Scatter plots showing the
correlations between MM and GS in the blue4 and violet modules.
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Figure 4: Continued.
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Furthermore, three hub genes, the expression of which were
considerablymore advanced in the FVMs than the RECs group
(EEF1A1, p = 0:0044; RPL11, p = 0:014; RPS27A, p = 0:0043)
(Figure 4(h)), showed strong and significant positive correla-
tion with CD4 naive, and a similar level of negative correlation
with B cells (Figures 4(e)–4(g)). Thus, correlations exist
between hub genes EEF1A1, RPL11, RPS27A, and immune
cells, as well as between the different immune cell types.

3.6. GSEA Analysis Based on the Expression of Hub Genes.
Correlation analysis indicated that hub genes in this study
have a strong relevance (Figure 5(a)), so when conducting
GSEA analysis, the hub gene expression level was divided
into two groups to observe any similarities and differences
in the KEGG and GO analysis results under different gene
expression levels, and the overlapping results are displayed
(Figure 5(b)). GSEA analysis shows that for 47 of the 3

DC
CD_naive

EEF1A1

nTreg
Monocyte

Tr1
Central_memory

�2
CD8_T
CD4_T

�17
Effector_memory

Macrophage
iTreg

T�
NK
�1

Gamma_delta
Cytotoxic

NKT
MAIT

Exhausted
Neutrophil
CD8_naive

Bcell

–0.6 –0.4 –0.2 –0.0 –0.2 –0.4 –0.6 –0.8 1.0

0.02
0.07
0.14
0.77
0.76
0.75
0.74

0.55
0.67

0.44
0.32
0.29
0.25
0.25
0.24
0.2
0.12
0.06
0.05
0.05
0.02
0.01 0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.6

0.8

0.01
0
p value p value

0.2
0

Correlat on

Correlation coefficient (r)

(e)

DC
CD4_naive

nTreg

Monocyte
Tr1

Central_memory

�2
CD8_T

CD4_T

�17

Effector_memory

Macrophage

iTreg

T�

NK
�1

Gamma_delta

Cytotoxic
NKT

MAIT
Exhausted

Neutrophil
CD8_naive

Bcell

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0

Correlation coefficient (r)

0.6

0.8
0.2
0.4

Correlation

p value p value

0.05
0.08
0.1
0.56
0.98
0.94
0.78

0.38
0.74

0.37
0.3
0.28

0.8

0.6

0.4

0.2

0.0

0.27
0.24
0.25
0.18
0.18
0.14
0.03
0.03
0.03
0.02
0.01
0

RPL11

(f)

DC

CD4_naive

nTreg

Monocyte

Central_memory

�2

CD8_T

CD4_T

�17

Effector_memory

Macrophage

iTreg
T�

NK

�1

Tr1

Gamma_delta

Cytotoxic

NKT

MAIT

Exhausted

Neutrophil

CD8_naive
Bcell

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0

Correlation coefficient (r)

0.6

0.8
0.2
0.4

Correlation

p value p value

0.02
0.04
0.05
0.9
0.95
0.82
0.79

0.66
0.72

0.57
0.49
0.36
0.32
0.28
0.24
0.22
0.19
0.16
0.09
0.07
0.04
0.03
0.01
0

0.8

0.6

0.4

0.2

0.0

RPS27A

(g)

0.0044

EEF1A1

RECs FVMs

0

10000

20000

30000

40000
0.014

RPL11

RECs FVMs

0

1000

2000

3000

0.0043

RPS27A

RECs FVMs

0

2

4

6

Group
RECs
FVMs

G
en

e e
xp

re
ss

io
n

(h)

Figure 4: (a, b) Bar plot and heatmap of percentage distribution involved in 24 immune cell infiltrations in all samples. The upper part of
the figure revealed the grouping of RECs and FVMs with square bars in different colors. (c) Correlation heatmap of 24 immune cells. The
bottom left of the figure depicted the correlation distribution and linear regression between each immune cell subtype and all samples, and
the top right described the correlation coefficient value and the value of p (∗ means p < 0:05, ∗∗ reveals p < 0:01, ∗∗∗ exhibits p < 0:001). (d)
Bean plot. The distribution discrepancies of 24 kinds of immune cell subtypes between RECs and FVMs are exposed. ∗∗ in the figure
indicated a significant increase in the FVMs group compared with the RECs group, and ∗ implied a significant increase in the RECs
group compared with the FVMs group (p < 0:05). (e–g) Lollipop chart. Correlation between the hub genes EEF1A1, RPL11, and RPS27A
and 24 kinds of immune cells are, respectively, unshrouded. The size of the dot represented the correlation coefficient between the hub
gene and immune cells, and intensity of dot color represents the p value. (h) Box plot. Reflected the grouped expression of hub genes
EEF1A1, RPL11, and RPS27A in the samples. The bar at the top of the diagram illustrated the p value of the difference between groups.
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Figure 5: (a) The correlation heatmap of the hub genes EEF1A1, RPL11, and RPS27A. ∗∗∗ means p < 0:001. (b) Venn diagram. The
intersection of KEGG terms of hub genes EEF1A1, RPL11, and RPS27A was manifested, including 47 common intersection items. (c)
KEGG bar graph. The related terms are rearranged and classified according to the six classifications of KEGG pathways, and the length
of the bar represented the number of gene count. (d, e) Multiple GSEA plot classified by the amount of hub gene expression. The former
illustrated the enrichment of biological process pathways of GO related to endothelial cell phenotypic modifications, while the latter
demonstrated the enrichment mode of endothelial cells participating in innate immunity and adaptive immunity.
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hub gene KEGG pathways were significantly more enriched
in the high expression than low expression group (p < 0:05).
Based on the KEGG pathway database, 47 important
pathways were subdivided into six functional categories
(Figure 5(c)). Some key pathways such as TGF-beta signal-
ing, MAPK signaling, JAK-STAT signaling, VEGF signaling,
citrate cycle (TCA cycle), and insulin signaling pathways
have been indexed from the KEGG disease database to be
closely related to diabetic retinopathy. Other pathways such
as Wnt signaling, Notch signaling, mTOR signaling, ErbB
signaling, ECM-receptor interaction, and GnRH signaling
pathways require further research into interaction with the
three hub genes. Research on the biological functions of
GO analysis using GSEA has found that three hub genes
are significantly and highly enriched in endothelial cell
development and regulation, positive chemotaxis and regu-
lation, proliferation and positive regulation, establishment
of barrier, and VEGF receptor pathways in the high expres-
sion group (Figure 5(d)). Similarly, they are also highly
enriched in the endothelial cell-related immune response
pathways, such as the activation, differentiation, regulation
of B cells and T cells, coupled with the activation as well as
regulation of innate immune responses (Figure 5(e)).

3.7. Verification of Hub Genes Using GEO Database. The
AUC of the training set GSE94019 and the validation set
GSE102485 used in this study were both over 0.8, the AUC
of the set GSE142025 exceeding 0.9 (Figure 6). These results
show that the three hub genes have potential for high differ-
entiation between RECs and FVMs and have good diagnos-
tic value.

4. Discussion

While recent studies increasingly indicate that chronic low-
grade inflammation and neurodegeneration of the retina
are early manifestations of DR and play a role in its develop-
ment, microangiopathy remains a dominant factor in this
condition [34]. Endothelial dysfunction dominates the path-
ophysiology of microangiopathy in the diabetic retina and
includes leukocyte adhesion, basement membrane thicken-
ing and pericyte loss, BRB damage, and neovascularization
[35]. An increasing body of evidence illustrates that immune
mechanisms are key to DR pathogenesis [34, 36]. Therefore,
it is particularly important to fully understand the regulation
of neovascularization and immune infiltration of vascular
endothelial cells in DR.

Through annotation and functional enrichment analysis
of DEGs, we found that DEGs are closely connected with
immunoreaction and inflammatory signals, such as the
innate immune response involving neutrophils, chemokine
signal pathways, protein localization and transport and
translation, cell-substrate adhesion, cell-mediated immunity,
and apoptosis signaling pathways. During development of
DR, increased retinal blood flow, abnormal leukocyte stasis,
neutrophil as well as macrophage infiltration, alexine
coupled with microglia activation, upregulation of cytokines,
elevated vascular permeability and tissue edema, and the
pathological manifestations of chronic retinal inflammation

have been confirmed in animal models and DR patients
[37, 38]. These objective findings are in accordance with
the results of GO assay. Similarly, via KEGG analysis, we
can clearly see that phagosomes, lysosomes, TNF signaling
pathway, AGE-RAGE signaling pathway in diabetic compli-
cations, apoptosis, IL-17 signaling pathway, and others are
also relevant to the chronic inflammatory pathological pro-
cess of DR. Some studies have shown that photoreceptor
cells are the source of diabetic retinal inflammatory proteins,
and the release of soluble mediators can lead to the apoptosis
of retinal endothelial cells [39], which is also consistent with
the pathways obtained by KEGG.

After a series of complex model constructions and oper-
ation verifications, reliable hub genes EEF1A1, RPL11, and
RPS27A were obtained. EEF1A1 gene, which encodes the
same type of α subunit of complex named elongation fac-
tor-1, is responsible for aminoacyl tRNA enzymic transmis-
sion to ribosomes. EEF1A1 not only plays the leading role in
protein translation prolongation, but also promotes cell
growth and proliferation and inhibits apoptosis [40]. Studies
have found that it also presides over protein posttransla-
tional modification, protein degradation, and regulation of
the cytoskeleton [41–43]. In the present study, the cytoscape
plug-in MCODE showed that the gene cluster encoding
ribosomal subunits in DEGs has the highest score, far
exceeding that of other clusters, and contains 49 genes or
their related genes. The RPL11 gene encodes 60s ribosome
protein L11, which is an element of the 60s subunit and is
related to the L5P ribosome proteins family. The RPS27A
gene encodes 40s ribosome protein S27A, which is a constit-
uent of the ribosomal 40s subunit and is a member of the
S27AE ribosome protein family. Controlled alterations in
ribosomal heterogeneity can upregulate or downregulate
specific genetic networks [44]. When ribosomal proteins
are reduced or eliminated, ribosomal biosynthesis is reduced
or blocked, and in turn, the biosynthesis process is acceler-
ated or increased [45]. The three hub genes identified in the
present study are involved in the process of cellular translation
including initiation, extension, termination, and posttransla-
tion. They differ significantly between the two groups com-
pared here, so they merit special attention and further
investigation in the pathophysiological process of PDR.

Considering the importance of chronic inflammation
and leukocyte stasis in the pathogenesis of PDR, ImmuCel-
lAI was used to look for differences in distribution of
immune cells between RECs and FVMs groups. The result
is partly consistent with the results observed by Obasanmi
et al. [46] and El Asrar et al. [47]. The immune cells with sig-
nificant differences between the two groups are also core
immune cells, which correlate strongly with most other
immune cells. At or prior to the NPDR stage, one of the
early events of diabetic retinal inflammation is leukocyte
adhesion to the microvascular system. Increased leukocyte
adhesion leads to the loss of endothelial cells and the
destruction of the BRB [48, 49]. In the present study, neutro-
phils associated with vascular endothelial cells were lower in
the FVMs group than in the RECs group, while other studies
have shown that the level of neutrophils from blood in cir-
cumambient circulation was significantly higher in PDR
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than in a nondiabetic group [46, 50]. It has been demon-
strated that the diseased vasculature releases a secretome
that attracts neutrophils and triggers the production of neu-
trophil extracellular traps (NETs), which can clear diseased
endothelial cells and reshape unhealthy blood vessels [51,
52]. In the PDR stage, especially in the inactive phase, due to
the removal of neutrophils in the earlier stage, the abnormal
intraocular endothelial cells were terminated, and the vascular
remodeling was completed. The secretome of the abnormal
vascular system was decreased, leading to a decrease in NETs,
leading in turn to reduced attraction of neutrophils. At this
point, the absolute number of vascular endothelial cells
decreased, so the degree of neutrophil infiltration around the

residual vascular endothelial cells decreased compared with
the nondiabetic group. The significant downward regulation
of B cells in the FVMs group compared with the RECs group
may be due to the fact that most of the samples were in the
inactive phase of PDR [53]. However, changes to several T cell
subtypes require further investigation due to a lack of previous
research data. We also found that correlations between the
highly expressed genes EEF1A1, RPL11, RPS27A, and 24
immune cell types as well as the numbers of immune cell sub-
types agreed with the differences in immune cell infiltration
between the two groups. The above findings indicate that the
three hub genes may be involved in the chronic inflammation
and immune processes of PDR development.
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Figure 6: The ROC curve was applied to verify accurateness of hub genes. The corresponding hub gene name was presented at the top of the
figure, and the GEO dataset number was manifested on the left side of the figure, where GSE941019 is the training set and GSE102485 and
GSE142025 are the verification sets. The AUC of GSE941019 and GSE102485 was both greater than 0.8 and the AUC of GSE142025 was
greater than 0.9.
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Pathological retinal neovascularization and proliferation of
endothelial cells are important features of PDR. The disorder
of retinal metabolism and immune regulation in patients with
diabetes induces glial cells to secrete a variety of inflammatory
cytokines. Activated inflammatory mediators invoke more che-
mokines to act directly on endothelial cells through cascade
amplification, which can not only participate in the expression
of leukocyte recruitment but also be used as angiogenesis
inducers of cytokines, chemokines, proinflammatory factors,
and other factors [54]. Endothelial cells are affected by cytokines
[55]. Upregulated proinflammatory cytokines may directly
induce angiogenesis by binding to endothelial cells or indirectly
induce angiogenesis by prompting endothelial cells to generate
proangiogenic transmitter substances [56, 57]. In DR, retinal
inflammation and vascular injury promote and regulate each
other, resulting in the destruction of vascular structure and dis-
solution of the basement membrane, which eventually leads to
destruction of the blood-retinal barrier. Endothelial injury
induced by high glucose is mainly caused by cytokines released
by endothelial cells, especially IL-1 β, TNF-α, and IFN-γ [58].
These cytokines can induce the expression of cytokines IL-8,
MCP-1, and VEGF originated from endothelial cells [59]. Reti-
nal ischemia and hypoxia has a strong stimulatory effect on
endothelial cells [60]. Hypoxia is the most characteristic factor
to promote expression of the VEGF gene [61]. When VEGF-
A binds to VEGF-R2, it can promote the proliferation and
exudation of vascular endothelial cells [62]. After VEGF-R2 is
activated, the processes of tyrosine kinase receptor increases,
leading to the activation of a variety of downstream signaling
pathways and damage to the internal and external retinal bar-
riers, important pathological mechanisms in the pathogenesis
of diabetic macular edema (DME) [63]. In the present study,
GSEA grouped by hub gene expression showed that the high-
expression groups of three hub genes were highly enriched in
biological processes such as the VEGF-R signaling pathway,
endothelial cell development, chemotaxis, proliferation, and
their respective regulation (chemotaxis and proliferation
showed positive regulation). These findings are consistent with
the pathological process and phenotypic transformations of
endothelial cells in PDR, suggesting that high expression of
the three hub genes was closely correlated with endothelial cell
dysfunction and pathological alterations.

Our research has some limitations. First, although the
study implemented WGCNA combined with Cytoscape soft-
ware to conduct gene expression profiling on the RNA-seq
dataset, the sample size was limited. Second, due to the lack
of sufficient clinical information, including disease phenotypes
and disease activity status, it was not possible to estimate the
relationship between immune cells and disease severity.
Thirdly, no in vivo experiments were conducted to verify these
results. In future research, a large sample size combined with
detailed clinical information is required for classification, and
detailed studies of in vivo and in vitro pathogenesis at the
molecular biology level will be required to verify our findings.

5. Conclusion

Using comprehensive bioinformatics analysis, we deter-
mined the differences in biological function of retinal vascu-

lar endothelial cells between PDR patients and normal
samples. We found correlations between hub genes,
EEF1A1, RPL11, and RPS27A and the immune response
and infiltration of chronic inflammation of endothelial cells
in PDR, as well as pathophysiological processes such as
development, chemotaxis, and proliferation. These out-
comes expand knowledge of the molecular mechanisms of
endothelial cells in PDR and demonstrate their potential as
new therapeutic targets for PDR.
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