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Simple Summary: Due to economic, environmental, and nutritional considerations, mitigating
enteric methane production from ruminants is an important issue. Nutritionists have recently shown
that feeding livestock natural feed additives could ameliorate this problem, due to the antimicrobial
activities of the biologically active components in the additives. Bamboo is widely distributed in
Asia and is currently being used in construction and paper pulp production, which results in a
significant amount of bamboo leaves as by-products. The present study investigated whether bamboo
leaves feeding can decrease methane production in ruminants. Here we found that bamboo leaves
supplementation in vitro caused a 12.7–34.2% reduction in methane production after 12 and 48 h.
Further studies are needed to demonstrate the effect of bamboo leaves supplementation in vivo, to
determine its potential for mitigating methane production from ruminants.

Abstract: Ruminants produce large amounts of methane as part of their normal digestive processes.
Recently, feed additives were shown to inhibit the microorganisms that produce methane in the
rumen, consequently reducing methane emissions. The objective of this study was to evaluate the
dose–response effect of Phyllostachys nigra var. henonis (PHN) and Sasa borealis supplementation on
in vitro rumen fermentation, methane, and carbon dioxide production, and the microbial population.
An in vitro batch culture system was used, incubated without bamboo leaves (control) or with
bamboo leaves (0.3, 0.6, and 0.9 g/L). After 48 h, total gas, methane, and carbon dioxide production
decreased linearly with an increasing dose of bamboo leaves supplementation. The total volatile fatty
acid, acetate, and acetate-to-propionate ratio were affected quadratically with increasing doses of
bamboo leaves supplementation. In addition, propionate decreased linearly. Butyrate was increased
linearly with increasing doses of PHN supplementation. The absolute values of total bacteria and
methanogenic archaea decreased linearly and quadratically with an increasing dose of PHN treatment
after 48 h. These results show that bamboo leaves supplementation can reduce methane production
by directly affecting methanogenic archaea, depressing the metabolism of methanogenic microbes, or
transforming the composition of the methanogenic community. These results need to be validated
using in vivo feeding trials before implementation.

Keywords: bamboo leave; waste recycling; in vitro batch culture; ruminal fermentation; methane;
microbial population

1. Introduction

Greenhouse gas emissions from the livestock industry are estimated to constitute
14.5–19% of global emissions [1]. Livestock enteric methane and carbon dioxide emissions
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contribute approximately 80% of the sector’s total emissions [2,3]. In addition, enteric
methane emissions lose 6–12% of gross energy or 8–14% of digestible energy in ruminants’
energy intake [4,5]. Thus, reducing enteric methane emissions from livestock is an impor-
tant aim for livestock nutritionists who consider the economy. Bambusoideae comprise
75 genera and 1642 bamboo species. It is one of the fastest-growing plants, with a growth
rate of 7.5–100 cm/day and a short life cycle [6,7]. Bamboo is distributed across approxi-
mately 31.5 million hectares of land and is common in China, Korea, Japan, and Southeast
Asia [8,9]. Bamboo is used for construction and paper pulp production, which results
in significant amounts of bamboo leaves as a by-product. Therefore, the agro-industrial
residues are useful as animal feed or additives to promote environmental sustainability
of production systems [10,11]. The leaves of many bamboo species are used as feed for
livestock in Japan, Pakistan, Nepal, and Africa. Previous studies have isolated biologically
active compounds (flavonoids and polyphenols) from bamboo leaves, which have suitable
properties for use in new applications [12,13]. These compounds have been found to possess
useful characteristics, including antibacterial, antioxidant, and anti-inflammatory activi-
ties [14–16]. Phyllostachys nigra var. henonis (PHN) and Sasa borealis (SAB) have been shown
to contain the biologically active compounds orientin, vitexin, luteolin, vittariflavone, and
tricin [13] and isoorientin, tricin, and apigenin [12], respectively. Recently, many studies
have shown that the biologically active compounds of by-products have the potential to
mitigate methane production by modulating the ruminal microbial population [17,18].
In addition, recent studies have evaluated bamboo leaves as a feed additive for broiler
chickens [19], a substitute for hay for sheep [20], a methane-reducing agent for goats [21],
and a heat stress alleviator for Holstein dairy cows [22]. However, limited experimental
data exist on the effects of bamboo leaves supplementation on livestock fermentation,
methane production, and microbial population.

We hypothesized that bamboo leaves have biologically active compounds that would
alter the microbial population of livestock to reduce enteric methane production without
negatively affecting its fermentation. Therefore, we investigated the chemical composition
of PHN and SAB and investigated their effects on in vitro methane production, rumen
fermentation characteristics (e.g., pH, dry matter (DM) digestibility, and volatile fatty acid
(VFA) production), and rumen microbial populations.

2. Materials and Methods

All experimental management and protocols related to animals used in this study
were reviewed and approved by Gyeongsang National University Animal Research Ethical
Committee (GNU-191011-E0050).

2.1. Collection of Bamboo Leaves Samples

Immature and mature leaves samples from eight trees of two bamboo (PHN and SAB)
were harvested and pooled for leaves of each individual species over two consecutive
months (May and June). After sampling, samples classified by species of origin were
freeze-dried (Model PVTFD 10R, Ilshinbiobase CO., Ltd., Dongducheon, Korea) and stored
in air-tight bags at −80 ◦C in a freezer until use for experiments.

2.2. Chemical Composition, Total Polyphenol, Flavonoid and Antioxidant Activity

The chemical composition of substrates used in in vitro experiments is shown in
Table 1. Substrates and bamboo leaves were ground using a 1 mm screen with a Wiley
mill for chemical, polyphenol, and flavonoid analysis and for in vitro experiments. The
chemical composition of the substrate and bamboo leaves was analyzed by the AOAC [23],
Van Soest [24], and Licitra [25] methods. Total polyphenol and flavonoid of bamboo
leaves were analyzed by the Folin–Ciocalteu method [26] and the aluminum chloride
method [27]. During the analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity were used
by modifying the method of Brand-Williams et al. [28] and Re et al. [29], respectively. The
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results were calculated as IC50, which is the minimum concentration required to scavenge
50% of the DPPH and ABTS radicals. The detailed procedures of such total polyphenol and
flavonoid and radical scavenging activity analyses were the same as those of Lee et al. [18]
and Seleshe et al. [30]. Substrates and bamboo leaves were analyzed in 3 replicates for
chemical composition, total polyphenol, flavonoid, and antioxidant activity.

Table 1. Chemical composition of control diet (dry matter basis, %).

Items 1 Timothy Hay SD 2

Chemical composition
Dry matter 94.11 0.64

Ether extract 5.48 0.12
Crude protein 10.46 0.68

Crude ash 5.93 0.06
Crude fiber 30.11 0.23

NDF 62.27 0.22
ADF 38.14 0.75

1 NDF, neutral detergent fiber; ADF, acid detergent fiber. 2 SD, standard deviation of 3 replicates.

2.3. Animals and In Vitro Experiments

The whole rumen inoculum was obtained from two fistulated non-lactating Hanwoo
(440 ± 20 kg)-fed Timothy hay (Table 1) and corn-based concentrate (moisture content,
13.01%; crude protein, 9.32%; ether extracts, 2.80%; crude ash, 1.35%; neutral detergent
fiber (NDF), 35.14%, and acid detergent fiber (ADF), 5.04%) mixtures at a 6:4 ratio (DM
basis), with free access to mineral block and water. The rumen inoculum was collected
before morning feeding, transferred to the laboratory within 15 min, filtered with 4 layers
of cheesecloth, and then mixed with McDougall’s buffer at a 1:2 ratio (vol/vol) to make a
fluid mixture under constant O2-free N2 flushing at 39 ◦C. The bamboo leaves were used at
four inclusion rates: 0 g/L (CON), 0.3 g/L (PHNL and SABL), 0.6 g/L (PHNM and SABM),
and 0.9 g/L (PHNH and SABH). The fluid mixture (20 mL) was transferred to serum bottles
(50 mL) under a stream of O2-free N2; substrates (0.3 g of Timothy) and bamboo leaves
supplementation were placed into a nylon bag, which was sealed with butyl rubber and
then crimped aluminum caps. Timothy was used as a control because it has a similar
chemical composition to bamboo leaves and is a commonly used feed for ruminants. The
amount of Timothy was chosen based on a previous study [18]. The serum bottles were
incubated in a shaking incubator (120 rpm) at 39 ◦C for 6, 12, 24, 48, and 72 h. The in vitro
batch culture experiments were replicated in four separate communities. Each in vitro
batch culture experiment was a completely randomized block design and performed in
two runs.

The actual trial design was:

5 incubation times × 7 treatments × 4 repetitions × 2 runs

2.4. In Vitro Fermentation and Gas Profiles

After incubation, the headspace measurement pressure of the serum bottle was mea-
sured using a pressure transducer (Laurel Electronics, inc., Costa Mesa, CA, USA), and the
total gas production was converted according to Theodorou et al. [31].

The equation used was:

V = P/24.103 (n = 144, R2 = 0.999)

where V is the gas volume (mL), and P is the measured pressure (psi).
The headspace gas samples were collected in a vacuum tube, and then they were

determined by gas chromatography (Agilent Technologies HP 5890, Waldbronn, Germany)
equipped with a thermal conductivity detector on Carboxen 1006 PLOT capillary column
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(30 × 0.53 mm; Supelco, Bellefonte, PA, USA). The concentration of methane and carbon
dioxide production was converted according to López et al. [32].

The equation used was:

Methane and carbon dioxide production (mL)
= Concentration (mL/mL) × {Total gas (mL) + Headspace (30 mL)}

Ruminal pH of the fluid sample was determined by a pH meter (S210 SevenCompact,
Mettler-Toledo, Greifensee, Switzerland) and collected and stored at −80 ◦C in a freezer for
VFA and microbial population analysis. The VFA concentration was determined by high-
performance liquid chromatography (HPLC; L-2200, Hitachi, Tokyo, Japan) following the
method described by Adesogan et al. [33]. The apparent DM digestibility was determined
following the nylon bag digestion method. Briefly, the residues were washed in a water
bath and dried in a dry oven at 105 ◦C for 24 h.

2.5. The DNA Extraction and Real-Time Polymerase Chain Reaction

The genomic DNA of the 48 h rumen fluid sample (1.8 mL) was physically disrupted
by the bead-beating method and extracted using a commercial DNA extraction kit (QIAamp
Fast DNA stool Mini Kit, Qiagen, Valencia, CA, USA) according to the manufacturer’s
recommendations. The genomic DNA yield, purity, and quality were determined by
NanoDrop (Thermo Scientific, Wilmington, DE, USA).

Real-time polymerase chain reaction (RT-PCR) assays to determine the absolute abun-
dance of total bacteria, methanogenic archaea, ciliate protozoa, fungi, hydrogen, and
formate producing (Ruminococcus albus (R. albus), Ruminococcus flavefaciens (R. flavefaciens)),
butyrate-producing (Butyrivibrio fibrisolvens (B. fibrisolvens), Butyrivibrio proteoclasticus
(B. proteoclasticus)), succinate and propionate producing (Fibrobacter succinogenes
(F. succinogenes), Prevotella ruminicola (P. ruminicola)) were performed using an RT-PCR
Machine (CFX96 Real-Time system, Bio-Rad, Hercules, CA, USA). Information on sequence,
size, efficiency, and PCR conditions references of target rumen microbes are shown in
Table 2. Real-time PCR assays were measured in triplicate, a total reaction mixture of 20 µL.
The total reaction mixture included 2 µL 10 × buffer (BioFACT, Daejeon, Korea), 0.5 µL
10 mM dNTP Mix (BioFACT, Daejeon, Korea), 1 µL forward primer (10 µM), 1 µL reverse
primer (10 µM), 1 µL genomic DNA diluted 10-fold, 1 µL Evagreen (SolGent, Daejeon,
Korea), 0.1 µL taq polymerase (BioFACT, Daejeon, Korea), and 13.4 µL PCR-grade water.
For absolute quantification of each microbe, a standard curve obtains with a 10-fold dilution
of plasmids containing the respective target gene sequence. For absolute quantification
of each microorganism, a standard curve obtained by a plasmid containing each target
gene sequence with 10-fold serial dilutions was used, and all the detailed manufactur-
ing processes of each microbe plasmid were performed according to Kim et al. [34] and
Hamid et al. [35]. All the reactions were performed in triplicate.

Table 2. Primers for real-time polymerase chain reaction assays.

Target Species Primer 1 Sequence Size (bp) 2 Efficiency 3 References

General bacteria
F CGGCAACGAGCGCAACCC

130 1.98 [36,37]R CCATTGTAGCACGTGTGTAGCC

Methanogenic
archaea

F GAGGAAGGAGTGGACGACGGTA
232 1.92 [38]R ACGGGCGGTGTGTGCAAG

Ciliate protozoa F GCTTTCGWTGGTAGTGTATT
223 1.91 [38]R CTTGCCCTCYAATCGTWCT
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Table 2. Cont.

Target Species Primer 1 Sequence Size (bp) 2 Efficiency 3 References

Fungi F GAGGAAGTAAAAGTCGTAACAAGGTTTC
120 1.83 [36]R CAAATTCACAAAGGGTAGGATGATT

Ruminococcus albus
F CCCTAAAAGCAGTCTTAGTTCG

176 1.93 [39]R CCTCCTTGCGGTTAGAACA

Ruminococcus
flavefaciens

F CGAACGGAGATAATTTGAGTTTACTTAGG
132 1.81 [36]R CGGTCTCTGTATGTTATGAGGTATTACC

Fibrobacter
succinogenes

F GTTCGGAATTACTGGGCGTAAA
121 1.88 [36]R CGCCTGCCCCTGAACTATC

Butyrivibrio
fibrisolvens

F ACCGCATAAGCGCACGGA
65 1.89 [40]R CGGGTCCATCTTGTACCGATAAAT

Butyrivibrio
proteoclasticus

F TCCGGTGGTATGAGATGGGC
185 2.22 [41]R GTCGCTGCATCAGAGTTTCCT

Prevotella
ruminicola

F GCGAAAGTCGGATTAATGCTCTATG
78 2.04 [37]R CCCATCCTATAGCGGTAAACCTTTG

1 F, forward; R, reverse. 2 bp, base pair. 3 efficiency is calculated as [10−1/slope].

2.6. Statistical Analysis

Data were analyzed using the Interactive Matrix Language (IML) procedure and
a completely randomized block design. Statistical analyses were conducted using SAS
software (version 9.4, SAS Institute, Cary, NC, USA).

The statistical model used was:

Yijkl = µ + αi + βj + γk + εijkl,

where Yijkl represents the experimental data, µ the overall mean, αi the random effect of
the fermentation run (I = 2), βj the fixed effect of dietary treatments, γk the fixed effect of
incubation times, and εijkl the unexplained random error. Polynomial contrasts were used
to test the linear and quadratic effects of the treatments (i.e., bamboo leaves inclusion rate).
Differences between means were identified using Tukey’s multiple comparison test, and
significance was defined as p < 0.05.

3. Results
3.1. Chemical Composition and Antioxidant Activity

The chemical composition and antioxidant activities of the bamboo leaves of two cultivars
(PHN and SAB) are shown in Table 3. The chemical compositions of the two cultivars are
different: SAB had a higher percentage of crude protein, crude fiber, NDF, and NDICP, and
a lower percentage of ether extract, crude ash, ADF, and ADFIP than PHN. In addition, SAB
had higher total polyphenol and flavonoid content than PHN. The PHN and SAB cultivars
contained 31.04 and 44.54 mg CE/g extract of polyphenols and 16.73 and 19.6 mg QE/g
extract of flavonoids, respectively. Moreover, PHN leaves possessed ABTS, DPPH free
radical scavenging properties, and higher antioxidant activities compared to SAB leave.

3.2. Effects of Bamboo Leaves on pH of Rumen Fluid and Dry Matter Digestibility

The pH of rumen fluid and DM digestibility results are shown in Table 4. The pH
of rumen fluid ranged from 6.19 to 7.20 and increased linearly (p < 0.05) with increasing
doses of bamboo leaves supplementation at 12 and 24 h. The highest pH was observed for
SABH treatment at 12 h and PHNL treatment at 48 h (p < 0.05). Dry matter digestibility was
affected quadratically (p < 0.05) with increasing doses of SAB supplementation at 12 and
24 h. Moreover, DM digestibility was significantly decreased following PHNL treatment
(p < 0.05) compared to the CON group at 24 h.
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Table 3. Chemical composition and antioxidant activity of bamboo leaves (DM basis, %).

Items 1 Phyllostachys nigra
Var. Henonis SD 2 Sasa

borealis SD

Chemical composition
Dry matter (DM) 45.39 0.24 54.84 0.22

Ether extract 2.49 0.56 0.65 0.15
Crude protein (CP) 13.15 0.32 14.82 0.20

Crude ash 12.12 0.11 7.99 0.05
Crude fiber 21.08 0.07 24.19 0.38

NDF 65.6 0.84 70.58 0.88
ADF 38.02 0.30 35.57 0.27

NDICP
(CP basis, %) 12.83 0.06 14.26 0.07

ADICP
(CP basis, %) 5.26 0.13 2.92 0.09

Total polyphenol
(mg CE/g extract) 31.04 5.83 44.54 6.07

Total flavonoid
(mg QE/g extract) 16.73 0.52 19.6 0.49

IC50 for DPPH
(µg/mL) 115.58 6.06 125.43 3.83

IC50 for ABTS
(µg/mL) 47.43 0.61 54.17 2.53

1 NDF, neutral detergent fiber; ADF, acid detergent fiber; NDICP, neutral detergent insoluble crude protein;
ADICP, acid detergent insoluble crude protein; CE, catechin equivalent; QE, quercetin equivalent; IC50, half
maximal inhibitory concentration. 2 SD, standard deviation of 3 replicates.

Table 4. Effects of bamboo leaves on pH and dry matter digestibility in in vitro incubation.

Incubation
Time (h) CON 1

Treatment 2

SEM 3 p
Value

Contrasts 4

PHN SAB PHN Set SAB Set

PHNL PHNM PHNH SABL SABM SABH L Q L Q

pH

12 6.91 d 7.03 c 7.09 bc 7.08 bc 7.14 ab 7.12 abc 7.20 a 0.02 <0.0001 *** * *** ***
24 6.59 b 6.72 a 6.69 a 6.71 a 6.77 a 6.72 a 6.73 a 0.02 0.0003 *** ** ** **
48 6.19 b 6.30 a 6.27 ab 6.25 ab 6.23 ab 6.20 ab 6.20 ab 0.02 0.0218 ns * ns ns

Dry matter digestibility (%)

6 31.1 31.4 31.5 32.4 34.3 33.4 33.3 1.32 0.5560 ns ns ns ns
12 38.7 b 43.0 ab 40.8 ab 42.6 ab 42.9 ab 43.5 a 42.0 ab 1.01 0.0392 ns ns * *
24 53.1 56.2 53.9 57.0 56.9 56.6 54.1 1.32 0.2069 ns ns ns *
48 65.5 a 61.8 b 64.9 ab 63.5 ab 64.0 ab 64.6 ab 65.4 ab 0.79 0.0466 ns ns ns ns
72 68.7 66.4 67.5 66.4 67.3 67.8 69.3 0.85 0.1797 ns ns ns ns

1 CON, control (without bamboo leaves). 2 PHN, Phyllostachys nigra var. henonis; SAB, Sasa borealis; PHN and SAB
dose levels of 0.3 g/L (PHNL and SABL), 0.6 g/L (PHNM and SABM), and 0.9 g/L (PHNH and SABH). 3 SEM,
standard error of the mean. 4 orthogonal contrasts for L, linear and Q, quadratic effects. The levels of significance
were assigned as follow, ns, non-significant; *, p < 0.050; **, p < 0.010; ***, p < 0.001. abc Means (n = 4) with different
superscripts in the same column differ significantly (p < 0.05).

3.3. Effects of Bamboo Leaves on Gas Profiles

In Table 5, total gas production decreased linearly (p < 0.01) with increasing doses
of bamboo leaves supplementation, and the CON group was the highest (p < 0.05). The
greatest decrease (p < 0.05) was observed in the PHN supplementation. After 12 and 48 h,
methane and carbon dioxide production and proportions were decreased linearly (p < 0.05)
with increasing doses of bamboo leaves supplementation.
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Table 5. Effects of bamboo leaves on gas profiles in in vitro incubation.

Incubation
Time (h) CON 1

Treatment 2

SEM 3 p
Value

Contrasts 4

PHN SAB PHN Set SAB Set

PHNL PHNM PHNH SABL SABM SABL L Q L Q

Total gas (mL·g−1 DM 5)

12 87.0 a 82.1 b 82.0 b 81.2 b 82.2 b 81.2 b 77.5 c 0.77 <0.0001 *** * *** ns
24 121 a 115 ab 115 abc 112 bc 116 ab 115 bc 109 c 1.31 0.0002 *** ns *** ns
48 156 a 147 ab 147 b 146 b 151 ab 147 b 147 ab 1.97 0.0146 ** * ** ns

Methane (mL·g−1 DM)

12 7.40 a 5.84 ab 4.87 b 5.83 ab 6.26 ab 6.15 ab 5.57 b 0.37 0.0051 ** * *** ns
24 14.8 12.7 13.7 14.6 14.2 14.1 13.8 0.79 0.6162 ns * ns ns
48 23.7 a 20.7 ab 19.1 b 18.5 b 19.1 ab 19.7 b 19.4 ab 0.73 0.0010 *** ns ** *

Methane/Total gas (%)

12 8.52 a 7.12 ab 5.94 b 7.19 ab 7.62 ab 7.57 ab 7.19 ab 0.49 0.0488 ns * * ns
24 12.2 11.0 11.9 13.0 12.3 12.3 12.7 0.64 0.4616 ns * ns ns
48 15.2 a 14.1 ab 13.0 ab 12.7 b 12.6 b 13.5 ab 13.9 ab 0.53 0.0249 ** ns ns *

Carbon dioxide (mL·g−1 DM)

12 35.5 a 27.3 ab 22.6 b 26.7 b 30.7 ab 28.5 ab 27.2 ab 1.89 0.0044 ** ** ** ns
24 55.0 45.9 49.0 52.1 51.8 50.9 49.4 2.90 0.4603 ns * ns ns
48 80.0 a 70.8 ab 63.5 b 60.7 b 63.5 b 65.5 b 67.6 b 2.52 0.0005 *** ns ** *

Carbon dioxide/Total gas (%)

12 40.8 a 33.3 ab 27.6 b 32.9 ab 37.4 ab 35.1 ab 35.0 ab 2.39 0.0272 * * ns ns
24 45.7 39.8 42.7 46.6 44.6 44.3 45.4 2.44 0.5343 ns * ns ns
48 51.3 a 48.1 ab 43.3 ab 41.6 b 42.0 b 44.7 ab 46.1 ab 1.85 0.0123 *** ns ns *

1 CON, control (without bamboo leaves). 2 PHN, Phyllostachys nigra var. henonis; SAB, Sasa borealis; PHN and SAB
dose levels of 0.3 g/L (PHNL and SABL), 0.6 g/L (PHNM and SABM), and 0.9 g/L (PHNH and SABH). 3 SEM,
standard error of the mean. 4 orthogonal contrasts for L, linear and Q, quadratic effects. 5 DM, dry matter. The
levels of significance were assigned as follow, ns, non-significant; *, p < 0.050; **, p < 0.010; ***, p < 0.001. abc Means
(n = 4) with different superscripts in the same column differ significantly (p < 0.05).

3.4. Effects of Bamboo Leaves on Volatile Fatty Acids Profiles

The VFA profile results are shown in Table 6. After 24 h, the total VFA, acetate,
and acetate-to-propionate ratio were affected linearly and quadratically (p < 0.05) with
increasing doses of bamboo leaves supplementation. Moreover, propionate was decreased
linearly (p < 0.05) with increasing doses of bamboo leaves supplementation. After 24
and 48 h, propionate and the acetate-to-propionate ratio were affected linearly (p < 0.05)
with increasing doses of bamboo leaves supplementation, whereas butyrate was increased
linearly (p < 0.05) with increasing doses of PHN supplementation.

3.5. Effects of Bamboo Leaves on the Abundance of Microbial Community

Regarding microbial counts, the abundance of total bacteria and methanogenic archaea
were significantly lower (p < 0.05) following PHNM and PHNH treatments compared to
the CON group, and were decreased linearly (p < 0.05) and quadratically (p < 0.05) with
increasing doses of PHN supplementation at 48 h (Figure 1). Compared to the CON
group, the abundance of ciliate protozoa was significantly higher (p < 0.05) in SABL
treatment and was increased linearly (p < 0.05) and quadratically (p < 0.05) with increasing
doses of SAB supplementation. No significant changes in ciliate protozoa abundance
were observed in PHN supplementation (p < 0.05) change. None of the bamboo leaves
supplementations significantly affected (p < 0.05) the abundance of fungi. The abundance of
R. albus, R. flavefaciens, B. proteoclasticus, and B. fibrisolvens was decreased linearly (p < 0.05)
with increasing doses of PHN supplementation, while SAB supplementation had no effect
(p > 0.05) (Figure 2). The abundance of P. ruminicola was decreased linearly (p < 0.05) with
increasing doses of PHN supplementation, while the abundance of F. succinogenes was not
affected (p > 0.05).
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Table 6. Effects of bamboo leaves on volatile fatty acid profiles in in vitro incubation.

Incubation
Time (h) CON 1

Treatment 2

SEM 3 p
Value

Contrasts 4

PHN SAB PHN Set SAB Set

PHNL PHNM PHNH SABL SABM SABH L Q L Q

Total VFA (mM)

12 54.8 54.3 54.7 54.8 54.9 54.6 54.5 0.479 0.9634 ns ns ns ns
24 73.4 bc 73.7 bc 76.6 ab 73.1 c 78.0 a 77.4 a 75.0 abc 0.741 0.0002 ns ** ns ***
48 78.4 78.2 78.4 78.2 80.3 80.5 83.6 1.259 0.0534 ns ns * ns

Acetate (mM)

12 35.3 35.0 35.5 35.5 35.2 35.0 34.9 0.354 0.7824 ns ns ns ns
24 45.6 c 47.4 bc 49.7 ab 46.8 bc 52.1 a 50.9 a 48.9 abc 0.765 <0.0001 * ** * ***
48 51.5 b 51.2 b 51.3 b 51.7 ab 54.3 ab 53.0 ab 56.4 a 1.017 0.0115 ns ns * ns

Propionate (mM)

12 13.0 ab 12.7 ab 12.5 b 12.8 ab 13.1 a 12.8 ab 12.5 ab 0.127 0.0188 ns * * ns
24 19.3 a 18.4 bc 18.8 b 18.3 c 18.0 c 18.4 bc 18.1 c 0.108 <0.0001 *** ns *** ***
48 18.8 ab 17.1 c 17.0 c 17.2 bc 17.8 abc 18.0 abc 19.0 a 0.370 0.0023 * * ns *

Butyrate (mM)

12 6.43 6.64 6.74 6.57 6.65 6.80 7.07 0.140 0.1014 ns ns ** ns
24 8.43 a 7.88 b 8.09 ab 7.94 ab 7.87 b 8.07 ab 8.05 ab 0.117 0.0463 * ns ns *
48 8.09 b 9.94 a 10.12 a 9.29 ab 8.17 b 9.40 ab 8.20 b 0.312 0.0002 ** *** ns ns

Acetate-to-propionate ratio

12 2.71 b 2.77 ab 2.84 a 2.78 ab 2.69 b 2.72 b 2.78 ab 0.026 0.0064 * ns * ns
24 2.36 c 2.57 bc 2.64 b 2.56 bc 2.90 a 2.77 ab 2.71 ab 0.046 <0.0001 ** ** ** ***
48 2.74 b 2.99 ab 3.02 ab 3.02 ab 3.06 a 2.94 ab 2.96 ab 0.064 0.0445 ** * ns ns

1 CON, control (without bamboo leaves). 2 PHN, Phyllostachys nigra var. henonis; SAB, Sasa borealis; PHN and SAB
dose levels of 0.3 g/L (PHNL and SABL), 0.6 g/L (PHNM and SABM), and 0.9 g/L (PHNH and SABH). 3 SEM,
standard error of the mean. 4 orthogonal contrasts for L, linear and Q, quadratic effects. The levels of significance
were assigned as follow, ns, non-significant; *, p < 0.050; **, p < 0.010; ***, p < 0.001. abc Means (n = 4) with different
superscripts in the same column differ significantly (p < 0.05).Animals 2022, 12, x FOR PEER REVIEW 9 of 14 
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Figure 1. Effects of bamboo leaves addition on the population of general bacteria (a), methanogenic
archaea (b), ciliate protozoa (c), and fungi (d) (Log copy number of DNA/mL of rumen fluid) at
48 h incubation time. Error bars are standard error of the mean (n = 4). abcd Means with different
superscripts in the same row indicate significant differences (p < 0.05). Orthogonal contrasts for
linear and quadratic effects were considered statistically significant at * p < 0.050, ** p < 0.010, and
*** p < 0.001.
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Figure 2. Effects of bamboo leaves addition on the population of Ruminococcus albus (a), flavefaciens
(b), Fibrobacter succinogenes (c), Butyrivibrio fibrisolvens (d), proteoclasticus (e), and Prevotella ruminicola
(f) (Log copy number of DNA/mL of culture) at 48 h incubation time. Error bars are standard error
of the mean (n = 4). abc Means with different superscripts in the same row indicate significant differ-
ences (p < 0.05). Orthogonal contrasts for linear and quadratic effects were considered statistically
significant at * p < 0.050 and *** p < 0.001.

4. Discussion

The leaves of various trees contain biologically active compounds [42]. Of the plant’s
secondary metabolites, polyphenols and flavonoids are abundant in bamboo leaves. Plant
secondary metabolites may improve ruminal fermentation, stimulate microbial metabolism,
modulate the microbial population, and mitigate methane production in the rumen [43–46].
Therefore, nutritious bamboo leaves containing biologically active compounds can poten-
tially be used as feed additives for ruminants. Teh et al. [47] reported a positive correlation
between flavonoid content and antioxidant activity (i.e., DPPH and ABTS radical scaveng-
ing activity). However, in our study, SAB leaves had higher flavonoid levels and lower
antioxidant activities compared to PHN leaves.

Based on the in vitro batch cultures, the pH of rumen fluid increased linearly in a
dose-dependent manner. This result was supported by the observation that polyphenols
and flavonoids slowed the digestion of fiber in the rumen [48]. Most acetate- and butyrate-
producing fibrolytic bacteria are sensitive to the pH of rumen fluid below 5.0–5.5 [49]. As
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confirmed in this study, bamboo leaves supplementation negatively affected fibrolytic bac-
teria (R. albus, R. flavefaciens, and F. succinogenes). Furthermore, pH changes are associated
with rumen digestion and fermentation, because they can occur through the accumulation
of VFA. Here, bamboo leaves supplementation induced a shift in the VFA pattern and
affected the pH. Notably, bamboo leaves supplementation caused a shift in ruminal fer-
mentation to a greater acetate concentration and acetate-to-propionate ratio and a reduced
concentration of propionate after 24 h. This would have a negative effect on methane
mitigation, because the formation of acetate results in the production of hydrogen [50],
while the formation of propionate creates a hydrogen sink, reducing the availability of
hydrogen to methanogen [51]. In addition, decreased ruminal propionate production
should decrease blood glucose concentration via gluconeogenesis and then decrease milk
lactose [52]. The DM digestibility by bamboo leaves supplementation was approximately
4.9–11.2% improved than the CON group, which may be influenced by plant secondary
metabolites [53].

Methane production was not affected by bamboo leaves supplementation after 24 h
incubation, but 12 and 48 h reduced approximately 12.7–34.2% more than the CON group,
without compromising total VFA production. Jafari et al. [21] reported that different
amounts of bamboo leaves (15, 25, and 50% of Alfalfa hay, which was used as substrate in
Jafari’s study and was replaced by bamboo leaves) reduced methane production by 29–62%.
The greater reduction observed here may be due to differences in substrate addition and
replacement, or the study by Jafari et al. [21] showed a linearly decreasing trend in total
VFA with increasing doses of bamboo leaves, or both. Furthermore, it may be because
the chemical compositions of plants are influenced by their geographic origin, harvest
stage, and age [54,55]. The lower abundance of methanogenic archaea following PHN
supplementation may support this result. This result is in agreement with a previous study
that reported a decreased number of methanogenic archaea in response to direct inhibition
of polyphenols and flavonoids of PHN [56]. SAB supplementation did not affect the number
of methanogenic archaea but did slightly decrease methane production, which may be due
to the depressed metabolism of methanogenic microbes, the transformed composition of
the methanogenic community, or both [57]. In addition, the lower abundance of hydrogen-
producing bacteria (R. albus and R. flavefaciens) was reduced by PHN supplementation.
This result is supported by flavonoids having antibacterial properties against gram-positive
bacteria [58]. Wann et al. [59] observed that fibrolytic bacteria numbers increased linearly
in vivo with an increase in the concentration of bamboo leaves (from 0–150 g/d per head).
Our results did not increase the abundance of fibrolytic organisms (Fungi, Ruminococcus,
and Fibrobacter), which may be due to the drying method of the bamboo leaves used in this
study. Freeze drying has a higher antioxidant capacity for secondary metabolites than sun
drying [60]. This result is also supported by the lower abundance of hydrogen-producing
bacteria (R. albus and R. flavefaciens) following PHN supplementation.

Previous studies [61,62] have observed a shift to butyrate production instead of propi-
onate production following natural feed additives supplementation, which is in keeping
with our findings following PHN supplementation at 48 h. However, the abundance of
butyrate-producing bacteria (B. proteoclasticus and B. fibrisolvens) was not decreased, sug-
gesting that this result is due to the changed butyrate-producing bacteria that produce
another metabolite, as reported by Oh et al. [63], or increased butyrate production at
the expense of acetate, or both. According to Janssen [64], since the butyrate production
pathway competes for dihydrogen, more butyrate production reduces hydrogen, which
is accompanied by a reduction in methane production. In addition, rumen epithelial cells
use butyrate as a major energy source, and butyrate stimulates its development to improve
feed utilization [65]. The reason for the mitigated methane production following SAB sup-
plementation is not clear. However, this result may be explained by the reduction of carbon
dioxide, an important substrate of methanogenic bacteria, during methane production
following SAB supplementation.
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5. Conclusions

Bamboo leaves are rich in polyphenols and flavonoids and possess antioxidant ac-
tivities. Experimental data on the effects of bamboo leaves supplementation on rumen
fermentation, methane production, and microbial populations are limited. Based on the
data obtained from the present study, it could be concluded that bamboo leaves did not
negatively affect DM digestibility and VFA production but did reduce total gas, methane,
and carbon dioxide production and alter the microbial population. Dietary inclusion of
bamboo leaves could serve as a promising additive for mitigating enteric methane pro-
duction, however; further studies are needed to demonstrate the effect of bamboo leaves
supplementation in vivo for mitigating enteric greenhouse gas production from ruminants.
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