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Abstract: The hypothalamus–pituitary–gonadal (HPG) axis is the endocrine regulation system
that controls the woman’s cycle. The gonadotropin-releasing hormone (GnRH) plays the central
role. In addition to the gonadotrophic cells of the pituitary, GnRH receptors are expressed in other
reproductive organs, such as the ovary and in tumors originating from the ovary. In ovarian cancer,
GnRH is involved in the regulation of proliferation and metastasis. The effects on ovarian tumors
can be indirect or direct. GnRH acts indirectly via the HPG axis and directly via GnRH receptors on
the surface of ovarian cancer cells. In this systematic review, we will give an overview of the role of
GnRH in ovarian cancer development, progression and therapy.
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1. Introduction

Ovarian carcinomas are the eighth most common malignant tumor disease in women
diagnosed in the world [1]. Although the risk of developing ovarian cancer in course
of their life is only 1.3% for every woman [2], ovarian cancer is the fifth most common
cancer-associated cause of death in women [3]. With a 5-year survival rate of 43%, ovarian
cancer is the deadliest gynecological disease. Due to the lack of methods for early detection,
the disease is diagnosed at an advanced stage in 70% of cases. Only 20% are discovered in
stage I and are associated with 5-year survival rates of 90% [4]. Another reason for the late
diagnosis is the unspecific symptoms. About 50% of the patients suffer from decreased
performance or weight loss [5]. Ovarian cancer is a complex disease that originates from
multiple sites [6–8]. Besides ovarian surface epithelium, ovarian cancers originate from
fallopian tubes [9–12].

Ovarian cancer is a hormone-dependent disease that is influenced by hormonal sig-
naling pathways [13,14]. This effect asserts itself after the illness and could therefore also
have therapeutic potential. Gonadotropin-releasing hormone (GnRH) is pulsatile released
from neurons in the hypothalamus and induces expression and pulsatile release of follicle-
stimulating hormone (FSH) and luteinizing hormone (LH) from anterior pituitary. Both,
FSH and LH in turn promote maturation of follicles, ovulation, corpus luteum formation
and synthesis of estrogen and progesterone. In the following, we give an overview on
the role of GnRH, the key player in the regulation of ovarian function, in ovarian cancer
development and progression. In addition, we shed light on the use of GnRH receptors
expressed on the ovarian cancer cell surface as a target of therapy in ovarian cancer.

2. Methods

We performed a literature search of PubMed using the terms “GnRH” or “LHRH” or
“gonadotropin” and “ovarian cancer”, identifying 381 articles. Abstracts and full papers
were screened independently by both authors excluding publications if they were not
related to the topic, were double publications or not in English. The remaining 83 pub-
lications are described and discussed in this review. Important studies on other tumor
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entities (42) were included when no such studies on ovarian cancer were available and
in addition, its use was necessary for better understanding. Furthermore, publications
were discussed which deal with GnRH receptor mechanisms and signaling pathways
independent of specific tumor entities (31). Due to the heterogeneity and the limitations of
the clinical data, a meta-analysis was not appropriate. Completed and published clinical
trials were discussed. A search on clinicaltrials.gov for currently ongoing trials on GnRH
and ovarian cancer did not yield any results [15]. Only ongoing studies with other tumor
entities were found.

3. Results and Discussion
3.1. Expression of GnRH and Its Receptor in Ovarian Cancer

GnRH is a peptide consisting of 10 amino acids that plays a main function in the
control of human reproduction. The GnRH receptor belongs to class A of the G-protein-
coupled receptor family with 7 transmembrane domains [16]. In addition to expression in
gonadotropic cells of the pituitary gland and reproductive organs such as myometrium [17]
or ovaries [18], expression of GnRH and GnRH receptor could also be detected in some
human carcinomas of the urogenital tract. This includes cancers of the ovary [19], en-
dometrium, urinary bladder and prostate [20]. In initial studies, GnRH receptors were
found in almost 80% of human epithelial ovarian carcinomas [20–23]. The serous-papillary
ovarian tumor is the most common epithelial tumor disease of the ovary. Histologically,
the malignant form is a serous-papillary cystadenocarcinoma. This is divided into the
less aggressive low-grade and the more common and more aggressive high-grade sub-
type. A recent study showed that nearly 90% of patients with high-grade serous ovarian
cancer were GnRH receptor-positive [24]. In another study, it was demonstrated that all
low-grade (100%) and about 82% high-grade serous ovarian cancer showed GnRH receptor
expression [25]. The receptor binding abilities differ between gonadotropic cells in the
pituitary and cancer cells. Two types of GnRH coupling sites were found in ovarian cancer
cells. The first site has a low affinity and a high capacity. The second binding site has a
high affinity with low capacity and is comparable to the GnRH receptor expressed in the
pituitary gonadrotrophs [20,26,27]. The low-affinity binding site is similar to the binding
site found in the human placenta and corpus luteum. It cannot differentiate between GnRH
antagonists and high active GnRH agonists [28]. In addition, the GnRH receptor with low
affinity can only be activated with high concentrations of GnRH agonists, while the GnRH
receptor with high affinity is already completely activated at low concentrations of GnRH
agonists. After the GnRH receptor gene sequence in human pituitary gonadotrophs was
shown in 1992 [29], intensive research work was carried out which led to the detection
of high-affinity GnRH receptors in ovarian cancer cell lines and in about 80% of primary
ovarian cancers [29–32]. High affinity/low capacity binding sites closely related to the
GnRH receptor in the pituitary gonadotrophs have been found in samples of ovarian
carcinomas and cell lines expressing mRNA for the GnRH receptor found in the anterior
pituitary [30,31,33–37]. Kakar et al. [38] demonstrated that the gene sequence of the GnRH
receptor isolated from human ovarian cancers does not differ from that in the pituitary
gland. Not only the GnRH receptor was found in these tumors, but also its ligand, GnRH.
First of all expression of GnRH mRNA was found in two human breast cancer cell lines [39].
Later, GnRH immunoreactivity, biological activity, and mRNA expression by cell lines and
in most tissue samples of ovarian cancers were demonstrated [33,36,37]. As ovarian cancers
show expression of GnRH and the GnRH receptor, it seems plausible to speculate about
the existence of a paracrine system based on GnRH in many of these cancers. A first very
important indication was, on one hand, that treatment with authentic GnRH inhibited the
growth of cell lines derived from ovarian cancer. On the other hand, by removing GnRH
secreted by the tumor cells by using an anti-GnRH antiserum, proliferation of these cancer
cells was upregulated [19].

clinicaltrials.gov
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3.2. Direct Effects of GnRH on Ovarian Cancer

Time- and dose-dependent anti-proliferative actions of GnRH agonists have been
observed in many cell lines from different cancer entities of the reproductive tract. This
includes ovarian cancer [20,21,40–42]. GnRH antagonists also show significant growth-
inhibiting actions on most GnRH receptor-positive cancer cell lines [20,21]. This indicates
that GnRH agonists and antagonists may not be differentiated in the GnRH system in
cancer cells. In addition, the signaling mechanisms of the GnRH receptor known to be
activated in gonadotropic cells of the pituitary, are not connected in the transmission of the
proliferation inhibiting actions of GnRH analogs in cancer cells. In pituitary gonadotrophs,
specific binding of GnRH to its receptor leads to a conformational change and subsequent
activation of the heterotrimeric G-protein subunit αq/11, which leads to calcium-dependent
signal transduction [43,44]. Activation of phospholipase C (PLC) causes the hydrolysis
of phosphatidylinositol-4,5-bisphosphate (PIP2). This creates diacylglycerol (DAG) and
inositol-1,4,5-trisphosphate (IP3) [45–47]. IP3 diffuses from the plasma membrane and
activates receptors on the endoplasmic reticulum (ER). This leads to an outflow of calcium
from the ER into the cytosol [48,49]. DAG remains in the membrane and induces Ca2+-
dependent protein kinase C (PKC), which in the course of the induction of mitogen-
activated protein kinases (MAPK) [50,51] leads to gondotropin synthesis (LH and FSH) and
secretion [50,52–54]. The signaling found to be activated by GnRH agonists in the pituitary
is not turned on in cancers of the ovary, although PLC, PKC and AC can be activated in
these cells by pharmacologic stimulation. [40,55].

In contrast to the pituitary gland, the GnRH receptor-mediated signal transduction
in gynecological tumors takes place via coupling with G-protein αi instead of G-protein
αq, which may result in variable receptor conformations and signaling complexes [55–57]
(Figure 1). Since the gene sequence of GnRH receptors in human carcinomas of the ovary is
the same as that in the pituitary gland, different receptor conformations may explain why
GnRH receptors in ovarian cancer show different mechanisms compared with cells derived
from the pituitary. After binding to G-protein αi, the activated GnRH receptor induces a
phosphotyrosine phosphatase (PTP) and prevents the signaling of growth factor receptors,
which leads to a reduction in proliferation of cancer cells [40,55,58–61]. Growth factor-
driven mitogenic signal transduction is prevented which leads to downregulation of growth
factor-mediated activation of mitogen-activated protein kinase (MAPK) [40], c-fos expres-
sion [62], and growth factor-induced proliferation [63]. These findings are in agreement
with other research on GnRH analogs showing reduction of growth factor receptor expres-
sion [64–66] and/or growth factor-induced tyrosine kinase activity [40,58,59,61,65,67–69].
Induction of apoptosis does not appear to be involved in the down-regulation of cancer
cell proliferation by GnRH agonists [20]. In contrast, Imai et al. have reported, that GnRH
agonist leuprorelin stimulated intratumoral expression of apoptosis-inducing Fas ligand in
GnRH receptor-positive tumor cells. At a concentration of 10 µM, leuprorelin induced up
to a 90% reduction in cell number preceded by Fas ligand production [70–73]. However,
GnRH agonist triptorelin did not induce apoptosis. On the contrary, by activating NFκB,
triptorelin even seems to protect against apoptosis [74,75].

In human cells from ovarian cancer, GnRH agonists act not only on the mitogenic
signaling of growth factor receptors. They also induce the activation of activator protein-1
(AP-1). In addition, GnRH agonists promote activation of JNK, which triggers AP-1 [76]. In
ovarian cancer cells, GnRH agonists stimulate neither phospholipase C (PLC) nor protein
kinase C (PKC) [40]. In addition, GnRH agonists inhibit the mitogen-activated protein
kinase (MAPK, ERK) activity induced by growth factors [40]. Therefore, GnRH-induced
JNK/AP-1 activation depends not on the AP-1 activators PKC or MAPK (ERK).
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Figure 1. Schematic representation of GnRH-I receptor signaling in ovarian cancer cells. Binding
of GnRH-I and GnRH-I analogs causes G-protein αi-mediated activation of a PTP, resulting in
dephosphorylated EGF-R and inhibition of EGF-R signaling through ERK1/2 or PI3K/AKT pathway
leading to reduction of proliferation. GnRH-I-induced activation of PTP also inhibits the signal
transduction of GPER and membrane-associated ERα through transactivation of EGF-R. In addition,
GnRH induces activation of NFκB to reduce and FAS-ligand to increase apoptosis. Finally, GnRH
agonists activate the JNK/AP-1 pathway resulting in increased G0/1 phase of the cell cycle and
decreased synthesis of DNA. Further details are described in the text. Abbreviations: Akt, protein
kinase B (PKB); AP-1, activator protein-1; E2, estradiol; EGF, epidermal growth factor; EGF-R, EGF
receptor; ERα, estrogen receptor α; ERK1/2, p44/42 mitogen-activated protein (MAP) kinase; FAS,
Fas receptor; FasL, Fas ligand; GDP, guanosine diphosphate; GnRH, gonadotropin-releasing hormone;
GPER, G-protein coupled estrogen receptor; GRB2, growth factor receptor-bound protein 2; GTP,
guanosine triphosphate; HB-EGF, heparin-binding EGF-like growth factor; JNK, c-Jun N-terminal
kinase; JunD, transcription factor JunD; MEK, mitogen-activated protein kinase kinase (MAP2K);
MMP, matrix metalloproteinase; NFkB, nucleus factor kB; PI3K, phosphoinositide 3-kinase; PTP,
protein tyrosine phosphatase; RAS, G-protein rat sarcoma; SOS, guanine nucleotide exchange factor
“son of sevenless”; SRE, serum response element; Src, tyrosine kinase cellular sarcoma; SRF, serum
response factor; TAM, tamoxifen.

Since the JNK/c-jun signal transduction is activated by antiproliferative GnRH ago-
nists and since JNK/c-jun is integrated into the reduction of cell growth in different systems,
it seems plausible that the JNK/c-jun signal transduction participates in the inhibiting
effects of GnRH agonists. GnRH agonists have also been shown to induce the binding of
JunD to DNA, resulting in a reduction of cell growth, as evidenced by an increased G0/1
phase of the cell cycle and reduced synthesis of DNA [77].

Expression of the immediate-early response gene c-fos is induced by 17β-estradiol
(E2) in estrogen receptor α (ERα)-positive ovarian cancer cell lines [78–85]. Via MAPK-
dependent phosphorylation of Elk-1 the serum response element (SRE) is activated [86,87].
Since GnRH agonists inhibit EGF-induced cell proliferation and expression of c-fos through
Ras/MAPK, it was interesting to know whether activation of SRE and expression of c-fos in-
duced by E2 in ERα-positive cancer cells is also influenced by GnRH agonists and whether
GnRH inhibits E2-driven cell proliferation [20]. Resting ERα-positive/ERβ-positive cancer
cell lines were stimulated to proliferate by treatment with E2. Simultaneous treatment
with GnRH agonists prevented this effect in a time- and dose-dependent manner [88].
ERα-negative/ERβ-positive cell lines were not affected by treatment with E2. Further-
more, E2 activates serum response element (SRE) and expression of c-fos in ERα-positive
/ ERβ-positive cell lines. This was inhibited by GnRH agonists [88]. GnRH agonists had
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no influence on the activation of estrogen response element (ERE) caused by E2. Tran-
scriptional activation of SRE by ERα is due to activation of the mitogen-activated protein
kinase (MAPK) pathway. GnRH inhibits this signal transduction, resulting in a decrease in
E2-induced SRE activation followed by a decrease in E2-mediated c-fos expression. This is
causative for a reduction in E2-induced cell growth [88].

Activation of PTP by GnRH also inhibits Src/MMP/HB-EGF signaling via the G-
protein βγ subunit of G-protein coupled estrogen receptor 1 (GPER1), a membrane-bound
estrogen receptor [89–92]. Due to the inhibition of GPER signaling, cancer cell proliferation
by E2 in breast cancer cells without expression of ERα was inhibited [89–91]. In human
breast cancer cells, GnRH analogs counteract EGF-dependent proliferation. GnRH analogs
likely disrupt the change in growth regulation from estrogen dependency to EGF depen-
dence that occurs after the acquisition of secondary resistance against 4OH-tamoxifen. This
disruption of EGF receptor signal transduction re-sensitized the resistant cell lines for a
therapeutical use of 4OH-Tamoxifen [93]. Especially in breast cancer, GnRH is not only
involved in cancer cell proliferation. In metastatic breast cancer cells, GnRH inhibits cell
invasiveness in vitro and metastasis in vivo [94–98]. In addition, it was shown that GnRH
is involved in epithelial to mesenchymal transition (EMT) [98]. However, these effects of
GnRH still have to be researched in ovarian cancer in the future.

3.3. Expression of GnRH-II and Its Receptor in Ovarian Cancer

In addition to the well-known GnRH, many mammals express a second structural
version of GnRH. The so-called GnRH-II is completely identical in its amino acid se-
quence from fish to mammal and differs from GnRH in three amino acids. A specific,
functionally active receptor for GnRH-II has been found in many species. This also in-
cludes non-human primates [99–102]. Whether there is a GnRH-II receptor in humans is
controversial [100,101,103–108]. There are, however, several indications for a functional
GnRH-II receptor in humans [109] (Figure 2A). GnRH-II has inhibitory actions on human
ovarian cancer cell proliferation that are significantly larger than those of the high active
GnRH-I agonist triptorelin [104]. As well as GnRH-I agonists, GnRH-II agonists inhibit
mitogenic signaling from growth factor receptors by activating a PTP. This leads to a
down-regulation of the proliferation of cancer cells [55,62,110]. In contrast to GnRH-I and
GnRH-II agonists and in addition GnRH-I antagonist cetrorelix, GnRH-II antagonists pro-
mote apoptosis in human ovarian cancer cells [111]. GnRH-II antagonist-induced apotosis
is permitted via the intrinsic apoptotic pathway. This happens via the MAPKs p38- and
JNK-induced activity of the pro-apoptotic protein Bax, followed by the loss of the mito-
chondrial membrane potential and subsequent cytochrome c release followed by caspase-3
activation [111,112]. Confirming these anti-tumor effects in nude mice it was shown that
antagonistic analogs of GnRH-II significantly reduced the growth of human ovarian cancer
xenografts in mice with no noticeable side effects [111].

SK-OV-3 cells are a cell line derived from ovarian cancer without GnRH-I receptor
expression [23]. Here, the GnRH-I agonist triptorelin showed no effects on cell prolifera-
tion [23]. The GnRH-I antagonist Cetrorelix and GnRH-II, on the other hand, had a strong
antiproliferative effect on this ovarian cancer cell line [113]. In addition, it was shown
that in cell lines in which both, the GnRH-I agonist triptorelin and the GnRH-I antagonist
cetrorelix act, only the effects of the former were abolished when the GnRH-I receptor was
knocked down. The effects of cetrorelix and GnRH-II, however, were retained [113]. These
results suggest that the proliferation reducing effects of the cetrorelix and of GnRH-II are
not permitted via the GnRH-I receptor. These findings are in accord with results published
by other researchers. Enomoto et al. [114] have shown that the human GnRH-II receptor is
working and its splicing variant indicates the way of the cell response that follows GnRH-II
stimulation. Expression of GnRH-II was detected in normal neoplastic cells of the ovarian
surface epithelium and in cancers developed from these cells. Furthermore, they could
show that GnRH-II had antiproliferative effects in immortalized cells from the ovarian
surface epithelial [115].



Cells 2021, 10, 437 6 of 17

Figure 2. Schematic representation of GnRH-II signaling in ovarian cancer cells assuming that a
truncated GnRH-II receptor (A) or no GnRH-II receptor (B) exists. (A) Binding of GnRH-II agonists,
GnRH-I antagonists and GnRH-II antagonists to the truncated GnRH-II receptor cause PTP activation
leading to dephopsphorylation of activated EGF-R. In addition, GnRH-II antagonists induce apopto-
sis through activation of p38, JNK and the intrinsic apoptotic pathway. GnRH-I agonists only couple
to the GnRH-I receptor. Signal transduction mechanisms and further details are described in Figure 1
and the text. (B) Signal transduction of GnRH-I and GnRH-II and their agonistic as well as antag-
onistic analogs through the GnRH-I-R if no GnRH-II-R exists. Signaling and details are described
in the text. Abbreviations: AP-1, activator protein-1; Bax, B-cell lymphoma 2 (Bcl-2)-associated X
protein; EGF, epidermal growth factor; EGF-R, EGF receptor; ERK1/2, p44/42 mitogen-activated
protein (MAP) kinase; GDP, guanosine diphosphate; GnRH, gonadotropin-releasing hormone; JNK,
c-Jun N-terminal kinase; JunD, transcription factor JunD; P38, mitogen-activated protein kinase P38;
PI3K, phosphoinositide 3-kinase; PTP, protein tyrosine phosphatase. Signal transduction pathway
affected by GnRH-I agonists, GnRH-I antagonists, and GnRH-II agonists are marked brown. GnRH-II
antagonist-induced signaling is marked red.

However, at first glance, these findings appear to be in contrast to the fact that the
human GnRH-II receptor gene has a stop codon in exon 2 [104,108]. The complete human
GnRH-II receptor is known to be a 7-transmembrane receptor. Therefore, it was specu-
lated that a working GnRH-II receptor might be a truncated 5-transmembrane domain
receptor lacking transmembrane regions 1 and 2 [101]. This is in accord with data showing
the expression of a GnRH-II receptor-like antigen in human ovarian cancer cells [109].
Photochemical reaction of 125I-labelled (4-azidobenzoyl)-N-hydroxysuccinimide-[D-Lys6]-
GnRH-II with isolated cell membranes of human ovarian cancer cells provided a signal at
about 43 kDa. A Western blot of the same gel showed that this signal could be a GnRH-II
receptor-like antigen, which would indicate the existence of a shortened GnRH-II recep-
tor [109]. In competition experiments, treatment with the GnRH-I agonist triptorelin led to
a slight decrease in the binding of 125I-labelled (4-azidobenzoyl)-N-hydroxysuccinimide-
[D-Lys6]-GnRH-II to its binding site. Treatment with the GnRH-I antagonist cetrorelix
led to a significantly greater decrease, while the GnRH-II agonist [D-Lys6]-GnRH-II was
the strongest competitor [109]. Indeed, these data suggest that the GnRH-II receptor-like
antigen shown may be the specific binding site for GnRH-II sought.

On the other hand, it could be shown that GnRH-II antagonists as well bind to the
GnRH-I receptor with affinities for the GnRH-I receptor that are comparable to those of the
cetrorelix [112,116]. It was also shown that [D-Lys6]-GnRH-II has agonistic characteristics
at the GnRH-I receptor, while GnRH-II antagonists clearly act as antagonists on the GnRH-I
receptor [112]. This would mean that GnRH-I and -II antagonists, as clear antagonists,
should not have any effects and are only block the GnRH-I receptor. Therefore, it was
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speculated that, besides the known autocrine GnRH-I system, a further autocrine system
based on a GnRH-II could be present in human ovarian cancers.

Although there are the above mentioned indications for the presence of a working
GnRH-II receptor in humans [104,109,113], other groups assumed that the human GnRH-
II receptor is not functional. Kim et al. were able to show that the actions of GnRH-I
and GnRH-II can be undone by transfecting siRNA in order to abolish expression of
GnRH-I receptor [117]. These results suggest that the effects of GnRH-I and GnRH-II
are permitted through the GnRH-I receptor (Figure 2B). These contradictions are a little
confusing. Ultimately, it has not yet been possible to clarify whether there is a functional
GnRH-II receptor in humans.

3.4. GnRH Analogs as a Possible Therapy for Ovarian Cancer
3.4.1. Suppression of Pituitary Gonadotropin Secretion by GnRH Analogs

The most obvious strategy is the suppression of gonadotropin secretion by downregu-
lation of the HPG axis using GnRH analogs. It was shown that in cancers of the ovary and
ovarian sex-cord-stromal tumors, GnRH agonists might have antitumor effects permitted
by inhibition of secretion of the gonadotrophins (reversible medical hypophysectomy) [26].
First, Parmar et al. reported a patient with advanced ovarian cancer who got a relapse
after surgery, chemotherapy and radiation therapy and was then treated with triptore-
lin [118,119] (Table 1). Simultaneously with the suppression of gonadotropins, there was a
significant shrinkage of the tumor mass over 12 months. Subsequently, several researchers
showed that the reduction in LH and FSH levels achieved by administration of GnRH
agonists in 10–50% of patients with advanced ovarian cancer who have relapsed after
standard treatment, led to objective remissions or stable disease [118–123] (Table 1). Based
on these promising data from in vitro experiments and clinical pilot studies, a prospective
double-blind randomized clinical study was started in patients with advanced ovarian
cancer who received surgical treatment and chemotherapy [124]. Unfortunately, this study
showed no benefits of suppression of gonadotropins by treatment with GnRH agonist
triptorelin in progression-free and overall survival [124] (Table 1). In a more recent phase II
trial using tamoxifen and goserelin in a patient with recurrent epithelial ovarian cancer,
no consistent correlation between suppression of LH and FSH and tumor response was
found [125] (Table 1).

3.4.2. Direct Treatment of Ovarian Cancer

In addition to the indirect use of GnRH analogs for suppression of LH and FSH, the
expression of tumor cell GnRH receptors can be used to treat cancer cells directly. The
easiest way to use the GnRH receptor as a therapeutic target is to use GnRH agonists or
antagonists. Different GnRH agonists were developed and tested including clinical trials
i.e., Triptorelin, Buserelin, and Goserelin. However, combinations of GnRH agonists with
cytotoxic chemotherapy were not more efficacious than cytotoxic chemotherapy alone.
This may be due to the fact that the doses were too low for a direct effect on the tumor cells.

Since GnRH agonists could not meet the expectations in the clinical settings, further
trials were focused on the use of high-dose GnRH antagonists. GnRH antagonist Cetrorelix
is able to safely and effectively inhibit the secretion of gonadotropins. Due to its suppression
of LH and sex steroid hormones, Cetrorelix has been used to treat hormone-dependent
cancers. Cetrorelix is also used to inhibit the premature LH surge in controlled ovarian
hyperstimulation [136]. Cetrorelix has also been shown to have a direct anti-tumor effect in
GnRH receptor-positive cancer cells. In addition, Cetrorelix had better anti-tumor efficacy
than GnRH agonists in in vivo models of human cancers. Therefore, a phase II clinical trial
with a high dose of GnRH-I antagonist Cetrorelix was performed in patients with ovarian or
müllerian carcinoma refractory to platinum chemotherapy [137]. Eligible patients received
10 mg of cetrorelix subcutaneously every day. Three of 17 evaluable patients treated with
Cetrorelix, obtained partial remission (18%) which lasted for 2 to 6 months. Six patients
did undergo disease stabilization (35%) for up to 1 year [137]. In this very refractory
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patient group, these results are quite impressive when compared with chemotherapy under
palliative situations. Only minimal toxicity was found, except for potential anaphylactoid
reactions [137]. One patient had a grade 4 anaphylactoid reaction controlled by cortisol
and cimetidine, two patients developed a grade 2 histamine reaction, one patient had a
grade 2 arthralgia, and two patients had a 20% cholesterol increase. In addition, minor hot
flushes, headaches, or local skin reactions at the site of injection were observed [137].

Table 1. Clinical trials—Suppression of pituitary gonadotropin secretion through GnRH-analogs as treatment for epithelial
ovarian cancer.

Reference Pat. Age Diagnosis Drug Results

[118] 41 42–79 advanced ovarian cancer Triptorelin depot PR: 6
SD: 5

[120] 5 50–64 refractory ovarian cancer Leuprolide acetate 1
mg/day

CR: 1
PR: 4

[121]
19
11

untreated
38–73 progressive ovarian cancer Triptorelin 0.1 mg/day or

3.2 mg/month depot SD: 12

[122] 18 21–68 progressive ovarian cancer Leuprolide acetate
1.0 mg/day

PR: 4
SD: 2
NE: 5

[124] 69
66 placebo <44–>75 stage III or IV epithelial

ovarian cancer
Triptorelin

3.75 mg/month depot

No significant
differences in

progression free and
overall survival

[125] 26 49–79 advanced ovarian cancer Tamoxifen 20 mg/month
Goserelin 3.6 mg/month

CR: 1
PR: 2

SD: 10

[126] 30 38–90 relapsed epithelial ovarian
cancer Goserelin 3.6 mg/month PR: 2

SD: 5

[127] 25 median 65.5 advanced epithelial
ovarian cancer Leuprolide acetate PR: 4

SD:15

[128] 20 average 60 progressive ovarian cancer Triptorelin 3.75 mg/4 weeks SD: 14

[129] 32 relapsed epithelial
ovarian cancer

Leuprolide acetate
3.75 mg depot

PR: 4
SD: 5

[130] 14 47–77 advanced epithelial
ovarian cancer Triptorelin 3.2 mg/28 days SD: 8

[131] 68 42–87
relapsed ovarian cancer,

mostly refractory
to platinum

Triptorelin 3.75 mg/on days
1, 8 and 28 followed

by 4-weekly
SD: 11

[132] 32 32–77 platinum-refractory
ovarian cancer Leuprolide 3.75 mg/month

CR: 1
PR: 2
SD: 4

[133] 37 27–75
platinum- and

paclitaxel-refractory
ovarian cancer

Leuprolide acetate
3.75 mg/4 weeks SD: 4

[134] 12 45–68 advanced ovarian cancer
Leuprolide acetate 3.75 mg
on days 1, 8, 28 followed by

28-day intervals

PR: 1
SD: 3

[135] 23 44–72 refractory ovarian cancer Goserelin 3.6 mg/month PR: 4
SD: 7

CR, complete response; PR, partial response; SD, stable disease; NE, not evaluable.
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Despite successful testing of GnRH-II antagonists in vitro and in nude mice [103,111,112],
this strategy has unfortunately not been continued so far. This may be due to the fact that
there might be no functional GnRH-II receptor in humans [102].

Since peptide GnRH analogs have to be given by subcutaneous injection, small non-
peptide GnRH analogs for oral administration were developed and successfully tested,
even in clinical trials [138–144].

3.4.3. GnRH Receptor Target Therapies

A third strategy was the use of GnRH receptors for a targeted therapy. Expression of
GnRH receptors could only be detected in a few normal tissues such as organs from the re-
productive tract and cells from the anterior pituitary. Other tissues and hematopoietic stem
cells, on the other hand, do not express the GnRH receptor. In addition, ovaries, fallopian
tubes and uterus are usually removed during surgery in ovarian cancer therapy [145]. The
GnRH receptor is therefore very suitable as a target for therapies with improved anti-tumor
effects and reduced side effects.

Cytotoxic GnRH agonists have been developed in which a cytotoxic substance is
covalently linked to a GnRH agonist [146]. These so-called cytotoxic GnRH analogs bind
specifically to the GnRH receptor with their peptide part and act as a chemotherapeutical
drug after internalization of the receptor–ligand complex into the cell [146]. Therefore,
these cytotoxic GnRH analogs only act in cells with GnRH receptors on the cell surface.
As a result, they have significantly fewer side effects than non-conjugated cytotoxic sub-
stances [146]. The cytotoxic GnRH agonist zoptarelin doxorubicin (AEZS-108, AN-152)
is such a fusion molecule. In zoptarelin doxorubicin, the cytotoxic part doxorubicin is
covalently bound to the GnRH agonist [D-Lys6] GnRH. After GnRH receptor-mediated
internalization of zoptarelin doxorubicin into the cell, the active part is split off and the now
free doxorubicin accumulates selectively in the cell nucleus. The competitive inhibition
of the uptake of zoptarelin doxorubicin by an excess of another GnRH agonist proves
that zoptarelin doxorubicin enters the cell specifically via the GnRH receptor. In tumor
cell lines that have no GnRH receptors, no intracellular zoptarelin doxorubicin could be
found [147]. In addition, zoptarelin doxorubicin was significantly more effective than
doxorubicin at the same dose at inhibiting cell growth in most ovarian cancer cell lines
with GnRH receptor expression. Another advantage of this therapeutic strategy is the
bypassing of the multidrug resistance protein-1 (MDR-1) resistance mechanism [148]. This
mechanism of entry of zoptarelin doxorubicin may overcome the resistance conveyed by
MDR-1, which is a major drawback of systemic therapies [148]. In addition, the targeting of
zoptarelin doxorubicin to GnRH receptor-positive cancers makes this analog more effective
and less toxic than doxorubicin [148].

In in vivo experiments with tumor-bearing mice, zoptarelin doxorubicin showed
lower toxicity than free doxorubicin. In addition, zoptarelin doxorubicin showed better
efficacy in inhibition of the growth of GnRH receptor-positive tumors [145,149]. This is
probably due to the uptake of zoptarelin doxorubicin via the GnRH receptor and the
resulting reduced resistance [148,150]. Zoptarelin doxorubicin has been used in women
with GnRH receptor positive cancer in clinical dose-escalation and pharmacokinetic studies.
The maximum tolerated dose without supportive drugs was 267 mg/m2. This dose was
proposed for the therapeutic phase II studies [151] (Table 2). In 2014, the first data from
a multicenter phase II study showed that zoptarelin doxorubicin is an effective and safe
compound [152]. The activity and toxicity of zoptarelin doxorubicin were evaluated in
42 women with platinum-refractory or resistant GnRH receptor-positive ovarian cancer.
The patients were treated with a zoptarelin doxorubicin dose of 267 mg/m2. This is
equimolar to 76.8 mg/m2 of free doxorubicin. Six (14.3%) of these 42 patients had a partial
response, 16 (38%) had stable disease, and 16 (38%) had progressive disease. Four patients
could not be evaluated. The median time to progression was 12 weeks (95% confidence
interval (CI): 8-20 weeks). Median overall survival was 53 weeks (95% CI: 39-73 weeks).
The side effects were tolerable [152] (Table 2). In a phase III advanced endometrial cancer
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trial with unknown GnRH receptor status, median overall survival was not improved with
zoptarelin doxorubicin [153]. Unfortunately, zoptarelin doxorubicin was discontinued and
no phase III trial was conducted in ovarian cancer. Therefore, it remains unclear whether
zoptarelin doxorubicin would have had an advantage in ovarian cancer. In addition, it
is unclear, whether changes in study design would have shown better results. However,
the success of most GnRH receptor-mediated therapy concepts led to a number of other
promising approaches.

Based on tumor-specific signaling of GnRH receptor in gynecological cancers including
ovarian cancer and specific distribution pattern of GnRH receptors, gene therapy by using
a GnRH analogs as an inducer for transcription of a therapeutic gene was successfully
developed and tested in vitro and in athymic mice bearing xenografts of ovarian cancer
cells [154].

Table 2. Clinical trials—GnRH receptor target therapy for treatment of epithelial ovarian cancer.

Reference Pat. Age Diagnosis Drug Treatment Results

[151]

4 55 +/− 11
epithelial cancers of
ovary, endometrium,

or breast

Zoptarelin-
Doxorubicin

10, 20, 40, or 80 mg/m2
maximum

tolerated dose:
267 mg/m2

6 59 +/− 5 160 mg/m2

7 48 +/− 11 267 mg/m2

[152] 42 49 +/− 10

epithelial ovarian,
fallopian tube or

primary
peritoneal cancer

Zoptarelin-
Doxorubicin 267 mg/m2

PR: 6 (14.3%)
SD: 16 (38.1%)
PD: 16 (38.1%)
NE: 4 (9.5%)

[155] 28 (F)
9 (M)

59 (39–80)
61 (39–80)

ovarian, endometrial,
breast and

other cancers
EP-100

Initial cohorts: 1–7,
0.6–7.8 mg/m2, n = 21
Later cohorts:: 7–11,

7.8–40 mg/m2, n = 16

recommended
phase II dose:

40 mg/m2

F, female; M, male; PR, partial response; SD, stable disease; PD, progressive disease; NE, not evaluable.

EP-100 a fusion peptide in which 18-amino-acid cationic α-helical lytic peptide (CLIP-
71) is covalently linked to GnRH, was created to deliver lytic peptides to GnRH receptor-
positive cancer cells [155] (Table 2). It was recently shown, that EP-100 in combination with
PARP inhibitor olaparib is a promising strategy for the therapy of ovarian cancer [156].

Expression of the GnRH receptor can not only be used for target therapies. The
selective expression of the GnRH receptor is also suitable to detect metastases that also
express the GnRH receptor. Liu et al. have successfully developed a selective fluorescence
probe to detect peritoneal metastases of ovarian cancer. For this purpose indocyanine green
was conjugated to a GnRH antagonist [157].

4. Conclusions

GnRH is an important player in the control of the HPG axis. In addition to this classical
hypophysiotropic function, GnRH is important as a regulator of cell proliferation and
invasion in a number of human malignancies, including ovarian carcinoma. Furthermore,
the selective expression of GnRH receptors makes it an ideal target for new effective
therapeutic strategies with little side effects. First studies using GnRH analogs for direct
tumor treatment were only moderately successful. Probably the used dosages were too low.
Therefore, further studies focused on the use of high-dose GnRH analogs showing better
efficacies. Following the discovery of GnRH-II, analogs were developed and successfully
tested in vitro and in vivo. Since the existence of a functional GnRH-II receptor in humans
is still controversial, this strategy has not been continued. The most promising strategy so
far is the use of the GnRH receptor for target therapy. Cytotoxic GnRH agonist zoptarelin
doxorubicin was shown to be an effective and safe compound. No phase III trial was
conducted in ovarian cancer so far. Even if a single phase III study was unsuccessful, it still
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makes sense to pursue the concept further. In addition, the specific expression of GnRH
receptors could be used diagnostically to detect metastases.
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