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Abstract

Multiple recent studies have shown that motor activity greatly impacts the activity of primary sensory areas
like V1. Yet, the role of this motor related activity in sensory processing is still unclear. Here, we dissect how
these behavior signals are broadcast to different layers and areas of the visual cortex. To do so, we leveraged
a standardized and spontaneous behavioral fidget event in passively viewing mice. Importantly, this behavior
event had no relevance to any ongoing task allowing us to compare its neuronal correlates with visually rele-
vant behaviors (e.g., running). A large two-photon Ca21 imaging database of neuronal responses uncovered
four neural response types during fidgets that were consistent in their proportion and response patterns
across all visual areas and layers of the visual cortex. Indeed, the layer and area identity could not be decoded
above chance level based only on neuronal recordings. In contrast to running behavior, fidget evoked neural
responses that were independent to visual processing. The broad availability of visually orthogonal standar-
dized behavior signals could be a key component in how the cortex selects, learns and binds local sensory in-
formation with motor outputs. Contrary to behaviorally relevant motor outputs, irrelevant motor signals could
project to separate local neural subspaces.

Significance Statement

Recent studies have shown contextual and behavioral variables to dominate brain-wide activity, yet it is un-
known what role they play across the majority of cortex. To study their impact, we leveraged a large two-
photon dataset collected in mice passively viewing a battery of visual stimuli. We characterized the neuronal
response of neurons of the visual cortex to a standardized fidget behavior. We found that as much as 47%
of excitatory neurons show significant co-activity with fidgets. Throughout all areas and layers we recorded
from, those responses were distributed across three robust neural response types. Further analysis showed
no interaction between fidget neural events and cells’ visual stimulus responses, contrasting with feedback
neural signals induced by running. These contrasting response distribution patterns suggest that behavioral
neuronal correlates are broadly available but will modulate sensory responses depending on their relevance
to local sensory inputs.
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Introduction
Traditionally, the sensory cortex has been modeled as a

feed-forward structure where low level information, e.g.,
pixel-wise visual inputs, are integrated with global behav-
ior signals like motor output downstream of the visual
cortex (Eliasmith et al., 2012). Many principles of deep
learning were inspired by this view and fueled the modern
rise of artificial networks. Indeed, initial reports of visual
response modulation in V1 show weak modulation by be-
havior in monkeys (Wurtz and Mohler, 1976). This result
was experimentally challenged in mice with the discovery
of strong running modulation in V1 (Niell and Stryker,
2010) as well as across multiple sensory areas (Lecoq et
al., 2014; Schneider et al., 2014; Ayaz et al., 2019; de
Vries et al., 2020). In addition, it was demonstrated that
nonvisual events are not mere modulators but can also di-
rectly evoke neuronal activity in V1 (Keller et al., 2012).
In fact, contextual and behavioral variables have recently
been shown to largely dominate brain-wide activity (Musall et
al., 2019; Stringer et al., 2019; Guitchounts et al., 2020). This
result brings into question the role of these events. If the brain
broadcasts behavior relevant variables like motor outputs,
this should allow each brain area to integrate this information
into its computation (Schneider et al., 2014; Harris et al.,
2019). As a result, understanding the microcircuit computa-
tion occurring across all cortical layers and cell types in this
context requires a detailed physiological characterization of
the neuronal correlates of motor outputs.
One approach to tackle this challenge is to monitor all

potential behavior events and characterize all associated
neuronal correlates (Petreanu et al., 2012). This is chal-
lenging since motor outputs, contrary to sensory stimuli,
are highly variable from trial to trial and hard to standard-
ize and control. In addition, behavioral events like running
are correlated with a complex symphony of sensory-
motor events, tangling together feedforward visual and
visually-relevant feedback signals. Running behaviors are
also inherently associated with visual motion, triggering
visual predictions mismatch in head-fixed mice (Keller et
al., 2012; Heindorf et al., 2018). Thus, to extract principles
on the neuronal correlates of behavioral events, it is help-
ful to investigate a nonvisually relevant behavioral event.
Here, our goal is to characterize how a standardized be-
havior output differently affects all areas, layers and cell
types of the cortex to provide foundational knowledge for

modeling cortical computation. To achieve this goal, we
leveraged the natural occurrence of fidgets in experimen-
tal mice.
Fidgets are stereotypical behavioral responses that are

potentially part of a stressful state (Cooke et al., 2015).
They manifest as a fast, spontaneous, startle response
accompanied with stereotypical body chest movements.
We used fidgets detected in behavioral videos to quantify
and compare the neuronal correlates of standardized behav-
ior events across all layers and most areas of the mouse vis-
ual cortex. To this end, we leveraged a large survey of
neuronal responses recordedwith in vivo two-photon calcium
imaging in the mouse visual cortex (de Vries et al., 2020).
While the brain-wide impact of behavioral events is now es-
tablished, our analysis revealed that neurons in three different
cortical layers and four visual areas have homogenous post-
fidget neural responses. Fidget response profiles were ster-
eotypical and equally distributed among four response types.
In addition, in contrast to running behaviors, visually evoked
neuronal responses showed no interaction with fidget neural
events.

Materials and Methods
Transgenic mice
All animal procedures were approved by the Institutional

Animal Care and Use Committee (IACUC) at the Allen
Institute for Brain Science. Triple transgenic mice (Ai93, tTA,
Cre) were generated by first crossing Ai93 mice with
Camk2a-tTA mice, which preferentially express tTA in fore-
brain excitatory neurons. Double transgenic mice were then
crossed with a Cre driver line to generate mice in which
GCaMP6f expression is induced in the specific populations
of neurons that express both Cre and tTA. A total of 28
males and 23 female mice were used, with each mouse ex-
posed in multiple sessions to various visual stimuli.
Rorb-IRES2-Cre;Cam2a-tTA;Ai93 (n=10) exhibit GCaMP6f

in excitatory neurons in cortical layer 4 (dense patches) and
layers 5, 6 (sparse). Cux2-CreERT2;Camk2a-tTA;Ai93 (n=16)
expression is regulated by the tamoxifen-inducible Cux2 pro-
moter, induction of which results in Cre-mediated expression
of GCaMP6f predominantly in superficial cortical layers 2, 3,
and 4. Slc17a7-IRES2-Cre;Camk2a-tTA;Ai93 (n=2) is a
pan-excitatory line and shows expression throughout all
cortical layers. Scnn1a-Tg3-Cre;Camk2a-tTA;Ai93 (n=5)
exhibit GCaMP6f in excitatory neurons in cortical layer 4
and in restricted areas within the cortex, in particular pri-
mary sensory cortices. Nr5a1-Cre;Camk2a-tTA;Ai93 (n=1)
exhibit GCaMP6f in excitatory neurons in cortical layer 4.
Rbp4-Cre;Camk2a-tTA;Ai93 (n=11) exhibit GCaMP6f in
excitatory neurons in cortical layer 5. Ntsr1-Cre_GN220;
Ai148 (n=1) exhibit CaMP6f in excitatory corticothalamic
neurons in cortical layer 6.

Animal head-implants and cortical window
implantation
Transgenic mice expressing GCaMP6f were weaned

and genotyped at ; postnatal days (p)21, and surgery
was performed between p37 and p63. Surgical protocols
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were described in previous publications associated with
the two-photon datasets (de Vries et al., 2020).

Intrinsic imaging andmapping of the visual cortex
Retinotopic mapping was used to delineate functionally

defined visual area boundaries and enable targeting of the
in vivo two-photon calcium imaging to retinotopically de-
fined locations in primary and secondary visual areas.
Retinotopic mapping protocols were described in previ-
ous publications associated with the two-photon datasets
(de Vries et al., 2020).

In vivo two-photon chronic imaging
Calcium imaging was performed using a two-photon-

imaging instrument, Nikon A1R MP1. The Nikon system
was adapted to provide space to accommodate the be-
havior apparatus). Laser excitation was provided by a Ti:
Sapphire laser (ChameleonVision – Coherent) at 910 nm.
Precompensation was set at ;10,000 fs2. Movies were
recorded at 30Hz using resonant scanners over a 400-
mm field of view.
Mice were head-fixed on top of a rotating disk and free to

walk at will. The disk was covered with a layer of removable
foam (Super-Resilient Foam, 86375K242, McMaster) to alle-
viate motion-induced artifacts during imaging sessions.
An experiment container consisted of three imaging

sessions (60min each) at a given field of view during
which mice passively observed three different stimuli. The
same location was targeted for imaging on all three recording
days to allow repeat comparison of the same neurons across
sessions. One imaging session was performed per day, for a
maximum of 16 sessions for eachmouse.
On the first day of imaging at a new field of view, the ISI

targeting map was used to select spatial coordinates. A
comparison of surface vasculature patterns was used to
verify the appropriate location by imaging over a field of
view of ;800mm using epi-fluorescence and blue light il-
lumination. Once a cortical region was selected, the imag-
ing objective was shrouded from stray light from the
stimulus screen using opaque black tape. In two-photon
imaging mode, the desired depth of imaging was set to
record from a specific cortical depth. On subsequent
imaging days, we returned to the same location by match-
ing (1) the pattern of vessels in epi-fluorescence with (2)
the pattern of vessels in two-photon imaging and (3) the
pattern of cellular labeling in two-photon imaging at the
previously recorded location.
Calcium imaging data were collected at the four cortical

depths of 175, 275, 350, and 375 mm. Throughout our
analysis, data from the cortical depth of 175 mm were
classified as layer 2/3, 275 and 350 mm as layer 4, and
375 mm as layer 5.
More details on our imaging protocols are available in

our previous publication (de Vries et al., 2020).

Visual stimulation
Visual stimuli were generated using custom scripts writ-

ten in PsychoPy as described previously (de Vries et al.,
2020).

Visual stimuli included drifting gratings, static gratings,
locally sparse noise, natural scenes and natural movies.
These stimuli were distributed across three ;60-min
imaging sessions. During session A, the drifting gratings,
natural movie one and natural movie three stimuli were
presented. During session B, the static gratings, natural
scenes, and natural movie were presented. During ses-
sion C, the locally sparse noise, natural movie one and
natural move two were presented. In each session, the
different stimuli were presented in segments of 5–13min
and interleaved with each other. In addition, at least 5min
of spontaneous activity were recorded in each session.

Drifting gratings
The total stimulus duration was 31.5min. The stimulus

consisted of a full field drifting sinusoidal grating at a sin-
gle spatial frequency (0.04 cycles/degree) and contrast
(80%). The grating was presented at eight different direc-
tions (separated by 45°) and at five temporal frequencies
(1, 2, 4, 8, 15Hz). Each grating was presented for 2 s, fol-
lowed by 1 s of mean luminance gray before the next gra-
ting. Each grating condition (direction and temporal
frequency combination) was presented 15 times, in a ran-
dom order. There were blank sweeps (i.e., mean lumi-
nance gray instead of grating) presented approximately
once every 20 gratings. This stimulus was used to mea-
sure the direction tuning, orientation tuning, and temporal
frequency tuning of the cells.

Static gratings
The total stimulus duration was 26min. The stimulus

consisted of a full field static sinusoidal grating at a single
contrast (80%). The grating was presented at six different
orientations (separated by 30°), five spatial frequencies
(0.02, 0.04, 0.08, 0.16, 0.32 cycles/degree), and four
phases (0, 0.25, 0.5, 0.75). The grating was presented for
0.25 s, with no intergrating gray period. Each grating con-
dition (orientation, spatial frequency, and phase) was pre-
sented ;50 times in a random order. There were blank
sweeps (i.e., mean luminance gray instead of grating) pre-
sented roughly once every 25 gratings. This stimulus was
used to measure the spatial frequency tuning and the ori-
entation tuning of the cells, providing a finer measurement
of orientation than provided from the drifting grating
stimulus.

Locally sparse noise
Stimulus. The total stimulus duration was 37.5min. The

locally sparse noise stimulus consisted of a 16� 28 array
of pixels, each 4.65° on a side. For each frame of the stim-
ulus (which was presented for 0.25 s), a small number of
pixels were white, a small number were black, and the
rest were gray. The white and black spots were distrib-
uted such that no two spots were within five pixels of
each other.

Natural scenes
The stimulus consisted of 118 natural images. Images 1–

58 were from the Berkeley Segmentation Dataset, images
59–101 from the van Hateren Natural Image Dataset, and
images 102–118 are from the McGill Calibrated Colour
Image Database. The images were presented in grayscale
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and were contrast normalized and resized to 1174� 918
pixels. The images were presented for 0.25 s each, with no
interimage gray period. Each image was presented ;50
times, in random order, and there were blank sweeps (i.e.,
mean luminance gray instead of an image) roughly once
every 100 images.

Natural movie
Three different clips were used from the opening scene

of the movie Touch of Evil (Welles, 1958). Natural Movie 1
and natural Movie 2 were both 30-s clips while natural
Movie 3 was a 120-s clip. All clips had been contrast-nor-
malized and were presented in grayscale at 30 fps. Each
movie was presented 10 times in a row with no intertrial
gray period.

Behavioral monitoring
During calcium imaging experiments, eye movements

and animal posture were recorded. The left side of each
mouse was imaged with the stimulation screen in the
background to provide a detailed record of the animal re-
sponse to all stimuli. The eye facing the stimulus monitor
(right eye) was recorded using a custom IR imaging sys-
tem. No pupillary reflex was evoked by any of these illumi-
nation LEDs.
Eye tracking video hardware includes a camera (Allied

Vision, Mako G-032B with GigE interface) acquiring at a
rate of 30 fps, with a 33-ms exposure time and gain be-
tween 10 and 20. These videos were illuminated using an
LED (Engin Inc, LZ1-10R602) at a wavelength of 850 nm
with a fixed lens in front (Thorlabs, LB-1092-B-ML).
Animal behavior monitoring hardware includes a cam-

era (Allied Vision Mako G-032B with GigE interface) with a
785-nm short pass filter (Semrock, BSP01-785R-25), and
lens (Thorlabs MVL8M23, 8 mm EFL, f/1.4). The camera
acquires at a rate of 30 fps, with a 33-ms exposure time
and a set gain of 10. The short-pass filter is affixed to the
camera to suppress any light from the eye tracking LED.
Illumination for the behavior monitoring camera comes
from a 740-nm LED (LED Engine Inc, LZ4, 40R308-000). A
bandpass filter (747 6 33nm, Thorlabs, LB1092-B-ML) is
affixed in front of the illumination LED to prevent visible
portion of the LED spectrum from reaching the mouse
eye.
Two-photon movies 512� 512 pixels, 30Hz), eye track-

ing (30Hz), and a side-view full body camera (30Hz) were
recorded and continuously monitored.

Processing of two-photon calcium imaging movies
For each two-photon imaging session, the image proc-

essing pipeline performed: (1) spatial or temporal calibra-
tion, (2) motion correction, (3) image normalization to
minimize confounding random variations between ses-
sions, (4) segmentation of connected shapes, and (5)
classification of soma-like shapes from remaining clutter.
The motion correction algorithm relied on phase corre-

lation and only corrected for rigid translational errors.
Each movie was partitioned into 400 consecutive frame
blocks, representing 13.3 s of video. Each block was reg-
istered iteratively to its own average three times. A second

stage of registration integrated the periodic average
frames themselves into a single global average frame
through six additional iterations. The global average frame
served as the reference image for the final resampling of
every raw frame in the video.
Fluorescence movies were processed using a segmen-

tation algorithm to identify somatic regions of interest
(ROIs) that was described previously (Niell and Stryker,
2010). Segmented ROIs were matched across imaging
sessions. For each ROI, events were detected from DF/F
by using an L0-regularized algorithm. For each neuron,
we z score DF/F trial activity and compute the mean z-
scored response of each neuron aligned to the time of
fidget onset (0 s).
To determine the significance of neural activity modula-

tion postfidget, we apply several threshold criteria to clus-
tered neuronal activity. The threshold criteria were used in
previous calcium imaging literature, and here we present
two that gave very different results: one criterion where
the mean DF/F is larger than 6%, and one criterion where
the maximum DF/F during the postfidget period is.5%.

Behavioral analysis
We use histogram of oriented gradients (HOG) descrip-

tors as our model features because of their invariance to
position, rotation, scale, and changes to lighting between
mice. Additionally, HOG vectors have been shown to per-
form well in dynamic behavioral classification across dif-
ferent individuals (de Vries et al., 2020).
Side-view full-body camera (30Hz) videos were converted

to grayscale, normalized using power law compression

Movie 1. Example live calcium imaging of neuronal activity dur-
ing fidget (fidget initiation indicated). The size of each calcium
imaging frame is 400 � 400 mm. Videos are trial-averaged cal-
cium responses during fidget [–3 (s) to 16 (s) relative to fidget
initialization] across an imaging session. Video frames are con-
verted to greyscale, played at 2� speed and compressed as a .
mp4 file. [View online]
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before processing, and manually cropped to exclude
background elements including the screen and rotation
disk. Cropping was done by a manual selection tool that
constructed a rectangle from four clicked points. Pixels
outside this rectangle were cropped out. The four points
were systematically chosen in this order: upper-left as
the eye of the mouse, lower-left as the closest point on
the running disk forming a line to the first chosen point
that is parallel to the vertical axis, lower-right as the
point forming a line to the second point that is parallel to
the surface of the running disk, and finally upper-right as
the closest point intersecting the head-stage forming a
line to the third point that is parallel to the vertical axis.
HOGs were then computed for each frame using the fol-
lowing parameters: eight histogram orientation bins,
using square cells with a height of 32 pixels and one cell
per block, and then dimensionality reduced using princi-
pal component analysis (PCA; 50 dimensions). The fea-
tures were then concatenated in one second blocks and
fed into the model.
The training set of ;100,000 video frame labels was

collected from six human annotators who used a custom
XML-based tool. A radial basis function support vector
machine (SVM) was trained on the training set with a
cross-entropy loss function (C and g parameters of the
SVM found using a grid search).
The normalized fidget rate was computed by subtract-

ing the baseline fidget rate during interstimulus gray stim-
ulus presentation and dividing by the SD of the fidget rate.
To estimate fidget magnitude, an optical flow measure

was computed for each grayscale cropped frame using py-
thon’s OpenCV Optical flow function. We used the Gunner’s
Farneback algorithm using two-frame motion estimation
based on polynomial expansion with a 30-pixel kernel size.
For each example, the optical flow measure was integrated
over the duration of all continuous frames labeled as fidget.

Fidget neuronal response analysis
Neural responses were aligned to the onset of the fidget

behavior and cropped to keep 100 frames (;3 s) preceding
the initiation of the fidget and 200 frames (;6 s) postfidget
initiation. Neural activity was normalized on a trial-by-trial
basis by subtracting the mean activity of the 100 frames
(;3 s) of baseline neural activity preceding the initiation of
the fidget response and dividing by the SD of activity.
Across trial z-scored neural activity was then averaged to
get the mean z-scored activity for each neuron.

Clustering of fidget neuronal responses
The mean z-scored activity for all neurons postfidget

was passed into the k-means11 clustering algorithm
with clustering evaluated using the gap statistic. The opti-
mal number of clusters was found to be four.

Analysis of visually evoked responses in the visual
cortex along with their fidget and running modulation
To compare visually evoked responses during fidget

and nonfidget, we computed the mean DF/F trial activity
during frames annotated as fidget and nonfidget. Specifically,

we only compute this metric during cells’ preferred direction
and temporal frequency tuning for the drifting gratings
stimulus, defined as the stimulus parameters which elicit
the largest mean response.
To investigate whether there is an interaction between

fidget and running modulation, we computed a Fidget
Cohen’s dmetric defined as:

d ¼ �x1 � �x2

s
;

where x1 is the mean DF/F during fidget, x2 is the mean
DF/F during nonfidget, and s is the norm of the SD of DF/F
during fidget and nonfidget. We then computed the run-
ning Cohen’s d metric same as above but for running ver-
sus stationary behavior. For each cell, we then plotted the
fidget and running Cohen’s d against each other per indi-
vidual cell, and computed a covariance that indicates
whether cell’s that were highly modulated by fidget were
also highly modulated by running.

UniformManifold Approximation and Projection
(UMAP) and boosted decision tree classification
To search for any differences between fidget neural re-

sponses across different cortical layers and visual areas
we took 200 frames (;6 s) of each neuron’s normalized
average postfidget activity and passed them into a nonlin-
ear dimensionality reduction method, UMAP. In Python,
we used the umap package (umap 0.4.0rc3, hyperpara-
meters min_dist = 0.0 and n_neighbors = 20) to project the
dataset into a two-dimensional embedding to elicit any
differences in the data. The embedded data points were
then passed into a boosted decision tree classifier. An
85–15 train-test split was used along with fivefold
cross-validation with XGBoost (xgboost 1.2.0) and
Scikit-Learn (sklearn 0.23.2). A grid hyperparameter
search was used to optimize the classifier. To counter
class imbalance in the training and test sets, each class
was randomly subsampled down to the count of the
least prevalent class in the set. After training, F1-scores

(F1 ¼ TP
TP1 0:5 p ðFP1FNÞ; TP, FP, and FN are true pos-

itives, false positives, and false negatives, respectively)
were estimated for each class. To find chance-level F1-
score baselines, labels were randomized and the clas-
sifiers trained in the same way as before. We also veri-
fied that the similarity of neuronal responses was not
because of the particular choice of dimensionality re-
duction method. To do this, we conducted the same
analysis as described above (and now additionally in-
cluding different Cre-lines), but processed the neuronal
responses with UMAP at two other n_neighbors values
(5 and 200), with PCA (10 components), and UMAP pro-
jected to three dimensions. As before, chance-level F1-
score baselines were calculated by training the classifier
on a dataset with randomized labels.

Statistical tests
Multiple comparisons were corrected using the Benjamini–

Hochberg false discovery rate framework (q, 0.05), and all
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statistical tests in the study were two-tailed, two-sample
Kolmogorov–Smirnov tests.

Code accessibility
The data that support the findings of this study are

available at this GitHub repository available to the pub-
lic (https://github.com/mahdiramadan/Fidget_Paper),
and the needed data can be downloaded from this
Dryad link (https://datadryad.org/stash/share/S-QAenoUCDe
DypT64bgG6Vxz6HE0bQAFPomMx6eUW_k).

Results
Fidget as a standardized behavior output
We first sought to characterize the range of behavioral

events that mice displayed under head fixation. While
we recorded neuronal activity in vivo using two-photon
imaging, mice were free to run on a rotating disk while
a camera captured mouse body posture (Fig. 1a–c).
We observed a variety of behaviors such as whisking,
grooming, mastication, flailing (uncoordinated move-
ment), walking, running, and a startle behavior we de-
note as a “fidget.” Fidgets manifested as a combination
of abdominal flexion (causing the abdomen to be raised
above the rotating disk) and an upward force generated
from the lower limbs causing lower trunk curvature and
contraction (Fig. 1d). Fidgets were qualitatively stereo-
typed across mice in their duration, pattern of move-
ment, and motor response magnitude. Following this
observation, we sought to develop a computer vision
model to automatically identify fidget events from hours
of mice behavioral videos. Six human annotators first
established a training dataset (20 mice, 10,000 fidgets
manually annotated; see Materials and Methods). We
computed the HOGs for each video frame and con-
catenated a feature vector from a 1-s section of frames
(30 frames; Fig. 1e). HOGs are transformation invariant
visual features extracted using edge-detection-like
computation. HOG features are largely invariant to varia-
tion in lighting conditions and image transformations
such as translation, rotation, scale. This allows us to
carry out robust behavioral feature detection as others
have firmly established (Dolensek et al., 2020). Another
advantage of using HOG vectors is the biologically
inspired emphasis on interpretable edge detection
computations and has been found to be superior to
Eigen-feature-based face recognition models (Turk
and Pentland, 1991).
Using this feature, we trained a SVM classifier in a su-

pervised manner using the human-annotated labels. Our
final trained model had a recall performance of 74 6
4.2% (mean 6 SD, n= 7) and a precision performance of
78 6 5.3% (mean 6 SD, n= 7) for the seven 1-h-long ex-
periments held out as a validation test set. Our trained
classifier was as accurate at identifying fidgets and other
mouse behaviors as human annotators. Indeed, seven
pairs of annotators analyzed the same videos and their
annotations were compared head-to-head. Each video
was drawn from a seven-video validation test set. Head-
to-head human versus human performance recall for the

seven videos was 736 5.9% (mean6 SD, n= 7) and had
a performance precision of 74 6 7.2% (mean 6 SD,
n= 7); this was within the range of the model’s perform-
ance. Having established a robust computer vision model,
we automatically annotated 144 1-h experiments total (re-
call p=0.51, performance p=0.26).
To quantify the standardization of fidget events across

mice, we integrated the optical flow magnitude of the fidg-
et motor response (see Materials and Methods) over the
duration of the fidget. 80% of all fidget events from 20 1-h
experiments and across 20 unique mice fell within 30% of
the maximum magnitude; this consistency reaffirmed the
stereotypy of fidget events (Fig. 1f).

Occurrence of fidget across mice and visual stimuli
We next sought to establish whether the occurrence of

fidgets could relate to our visual stimuli. Fidget behavior
has been associated with stress and surprise responses
in mice (Toth et al., 2013; Yilmaz and Meister, 2013;
Cooke et al., 2015). As described in a previous publication
(de Vries et al., 2020), mice passively viewed a range of
both artificial (drifting and static gratings, locally sparse
noise) and natural visual stimuli (natural scenes and natu-
ral movies), organized into three different recording ses-
sion (sessions A, B, and C; Fig. 2a). We hypothesized that
artificial visual stimuli (e.g., drifting gratings) induce a
more stressful or surprising context than natural stimuli
that are more ethologically familiar to the mouse (e.g., nat-
ural movies). In particular, the moving drifting gratings,
through its perceived motion, evoke an innate avoidance
response (Lecoq et al., 2014). In line with our prediction,
the average normalized fidget rate was significantly higher
during drifting gratings (Fig. 2a, p=0.023, two tailed t test,
n=60) than other stimuli (Fig. 2b).
We found that fidget rate was highly variable across

mice (see Extended Data Fig. 2-1), raising the possibility
that various mouse Cre-lines have different stress sensi-
tivities, thus accounting for the fidget rate variance. The
absolute fidget rate did not significantly differ between
mice from different Cre-lines (ANOVA, p=0.14, n=144).
This result did not exclude that mice could be more sensi-
tive to individual stimuli. To account for variability across
individual mice, we normalized the change in fidget rate
evoked during the session with drifting gratings (session A)
by the fidget rate during session C (Fig. 2c). Similar to the
absolute rate, we saw nonsignificant changes (ANOVA,
p=0.14, n=144).
Previous research has shown that fidget behaviors can

be learned (Cooke et al., 2015). Our passive viewing pro-
tocol included two weeks of habituation to our visual stim-
uli (see Materials and Methods), suggesting we could
have reached a more stable state. To check whether the
fidget occurrence we see is learned over the course of
our two-photon experiments, we quantified the average
fidget rate across mice as a function of the number of
visual stimulation sessions the mouse has already seen.
We found a nonsignificant change in the fidget rate with
an increased number of sessions experienced (Fig. 2d),
supporting the claim that we are operating in a stable
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behavioral regime and that the mice are adequately habi-
tuated (ANOVA, p= 0.21, n= 144).
In summary, we saw no significant difference in the fidget

rate between Cre-lines but different visual stimuli evoked dif-
ferent fidget rates. Importantly, there were no learning ef-
fects as mice were already habituated to the stimulus.
These results allowed us to explore the neuronal correlates
of fidgets across layers and areas of the visual cortex with
two-photon calcium imaging.

Neuronal correlates of fidgets
We analyzed experiments where adult mice (906 15d) ex-

pressed a genetically encoded calcium sensor (GCaMP6f)
under the control of specific Cre-line drivers (Rorb, Cux2,
Rbp4, and Scnn1a excitatory lines; see Materials and
Methods). Data were collected from four visual cortical
areas (VISal, VISI, VISp, VISpm) and three different corti-
cal layers (Layer 2/3, Layer 4, and Layer 5; 175-, 275-,
and 375-mm laminar depths, respectively) based on the

Figure 1. Detection of behavioral fidget during two-photon imaging in freely-viewing mice. a, Computer design of our apparatus to mon-
itor the behavior of mice during head-fixation and two-photon imaging. b, Example two-photon imaging field of view (400 � 400mm)
showcasing neurons labeled with Gcamp6f. c, Example video frame of mouse captured by the body camera at 30Hz. d, A pair of video
frames showing the progression of a prototype fidget behavior in time. i, First, the mouse is stationary. ii, Then, during the initiation of the
startle response, the mouse stereotypically pushes its body up using its bottom paws while arching the back and contracting the abdo-
men. e, Computational strategy for detecting fidgets automatically. f, Cumulative probability sum of labeled fidget moment magnitude,
showcasing the consistency of the stereotyped behavior across experiments and mice. Fidget magnitude is calculated as the sum of 2D
optical flow vectors throughout the fidget duration (n=20 sessions; for optical flow calculation, see Materials and Methods).
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work of Niell and Stryker (2010). In total, we analyzed the
activity of 20, 253 neurons imaged during 144 1-h imag-
ing sessions. Visual responses of neurons at the reti-
notopic center of gaze were recorded in response to
drifting gratings, flashed static gratings, locally sparse
noise, natural scenes and natural movies displayed on a
screen. The analysis of these visually evoked responses
was published previously (Niell and Stryker, 2010). Here,
we focused on the neuronal correlates associated with
fidgets and their overlap with a subset of visual stimuli.
Many neurons showed a robust and prolonged re-

sponse after fidget onset, in line with multiple previous
studies studying the brain wide effects of motor re-
sponses (Niell and Stryker, 2010; Saleem et al., 2013;
Musall et al., 2019; Steinmetz et al., 2019; Fig. 3b). We
first checked that this large neural response was not be-
cause of motion artifacts caused by the fidget itself (see
Extended Data Fig. 3-1). First, these calcium events were
prolonged and delayed, a temporal dynamic incompatible
with an immediate motion artifact. In addition, many fidg-
ets evoked clear global events across large portions of
the field of view with minimal movements of the 2p image
(see Movie 1).
To investigate the structure of these seemingly global

neural events, we looked at individual neuron responses
across trials. Interestingly, neuronal responses fell into

four distinct types based on the direction, magnitude and
durations of the response: Neutral neurons did not have
activity changes from prefidget to postfidget, Phasic neu-
rons displayed a transient increase of activity right after
fidget initiation, Active neurons maintained this increase
throughout the postfidget period, while Depressed neu-
rons displayed a decrease in activity postfidget. These re-
sponse patterns were stable across trials for each neuron
and displayed little deviation from the trial mean. Similar re-
sponse clusters have been identified previously (Hyland,
1998; Lemke et al., 2019; Sauerbrei et al., 2020; Fig. 3c).

Neuronal fidget responses across layers and areas
are uniform
Although it is now established that behaviorally related

neural events are evoked in the visual cortex, we wanted
to evaluate whether these neural response types were lo-
calized to a certain layer or area of visual cortex. To quan-
tify how these response types were distributed, we first
used a time series k-means clustering algorithm (see
Materials and Methods). Across all 144 sessions, we
found a surprisingly large portion of neurons whose activ-
ity was impacted by fidgets. 47.2% of neurons were clas-
sified as active (12%), phasic (13.9%), or depressed
(21.3%), and as neutral (52.8%). The clustered activity

Figure 2. Fidget rate is correlated with visual stimulus type but independent of a mouse driver-line or session number. a, Left,
Standardized experimental design of sensory visual stimuli. Six blocks of different stimuli were presented to mice and were distrib-
uted into three separate protocols identified as session A, session B, and session C (right). Normalized fidget rate (black dots) for all
three session types across all mice. Gray bars indicate 95% mean confidence intervals. Color coded stimulus protocol with indi-
cated durations (minutes) are aligned with the time axis for all three session types. N indicates the number of sessions. b, Average
normalized fidget rate across all mice during the presentation of drifting grating visual stimuli in comparison to all other stimuli
(p=0.023). N indicates the number of sessions. c, Comparison of the fidget rate ratio between different session types across cre-
lines. No significant effect was found (ANOVA, p=0.14). N indicates the number of sessions. d, average percent of video frames la-
beled as fidget versus the number of experimental sessions a mouse has been exposed to, no significant learning effect found
(ANOVA, p=0.21). N indicates the number of sessions. Mice displayed a high variance in frequency of behaviors across sessions,
but this variance was not explained by mouse cre-line (Extended Data Fig. 2-1; ANOVA, p=0.14, n=144). Error bars in Fig. 2b-d
are standard devation. Asterisk in b indicates statistical significance.
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Figure 3. Neuronal fidget response types are distributed equally across visual cortical layers and areas. a, Example two-photon imaging
field of view (Cux2, 400� 400mm) showcasing all neurons recorded in one session. Four unique neuronal response types are displayed by
the four neurons identified by colored circles. Scale bar:100mm. b, The trial averaged z-scored activity of all neurons from one experiment,
aligned to the time of fidget initiation (0 s). c, The activity profiles of exemplary neurons showcasing the four types of neuronal responses
identified using clustering (see Materials and Methods). Top-left in gray, Neutral. Top-right in green, Active. Bottom-left in red, Phasic.
Bottom-right in blue, Depressed. Colored points indicate the trial averaged z-scored activity, shaded region indicate 1 SD across trials for
each time point. d, All layer 2/3 neurons from all experiments clustered into the four neuronal response types outlined by color coded bor-
ders (neutral, gray; depressed, blue; phasic, red; active, green). e, Decoding of neural response type using UMAP feature vector across cort-
ical depths (see Materials and Methods). Results suggest that the neural response types cannot be differentiated across cortical depth
(black bars: F1 score based on neural data, orange dashed line: mean F1 score based on shuffled neural data). f, Decoding of neural re-
sponse type using UMAP feature vector across cortical areas. Results suggest that the neural response types cannot be differentiated
across cortical area (black bars: F1 score based on neural data, orange dashed line: F1 score based on shuffled neural data). g, Percent dis-
tribution of neuronal response types per cortical layer for all cortical areas. N indicates the number of neurons. h, Percent distribution of the
neuronal response types per cortical area for all cortical layers. N indicates the number of neurons. Fidgets did not induce additional transla-
tional motion of the cortex compared with when the mouse was at rest (Extended Data Fig. 3-1, n=20 h sessions). Equal distribution of
clustered neuronal response types across area and layer, and clustering homogeneity is robust to threshold criteria (Extended Data Fig. 3-
2). UMAP embeddings of postfidget single neuron responses by area, layer, and mouse Cre-line (Extended Data Fig. 3-3). Lack of neuronal
activity differences between Cre-line, area, and depth is not because of the method of dimensionality reduction or hyperparameter choice
(Extended Data Fig. 3-4).
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profiles displayed high consistency within each layer and
area (Fig. 3d), and the clustering was not differentiated
between layers or areas (Fig. 3e,f). Crucially, when condi-
tioned on different layers and areas, the distribution of
neural response types was surprisingly consistent, with
around 47% of neurons on average being classified as ac-
tive, phasic or depressed (Fig. 3g,h). To verify our result
was not impacted by selection criteria on neurons to be
clustered, we applied several different criteria derived
from previous publications (Mesa et al., 2021) to our clus-
tered neural data as a control. As expected, the percent
of neurons significantly modulated in the postfidget pe-
riod spans from ;8% to ;25% of all neurons depending
on the strictness of the threshold criteria. Crucially, the
distribution of neural response types remained consistent
when conditioned on a threshold for different layers and
areas (see Extended Data Fig. 3-2).
We next investigated whether layers or visual areas

were differentially modulated by what could be a behav-
iorally relevant feedback input. To do so, we projected
each 200-dimensional postfidget neutral response (each
time point being a feature) into a two-dimensional sub-
space found using UMAP, a nonlinear dimensionality re-
duction technique (McInnes et al., 2018). If cortical layers
or areas differed in postfidget response, we would expect
to see distinct clusters of data points corresponding to
each. Instead, we find that when labeled by layer or area
identity, the data were mixed and could not be visually
separated, this implies that postfidget responses did not
differ between layer or area (see Extended Data Fig. 3-3).
To validate that area or layer identity could not be distin-
guished based on postfidget neuronal responses with
UMAP, we trained a boosted decision tree classifier based
on the UMAP-projected dataset using either the layer (175,
275, or 375mm) or area as labels (VISp, VISpm, VISal, VISl).
If differences between postfidget responses for each of
these layer/area classes exist, the model should achieve
high classification accuracy. After training (see Materials
and Methods), we found instead that the classifier had near
chance-level performance for both area and layer on test
data, with comparable performance to the classifier trained
on randomly permuted labels (Fig. 3e,f). This was not be-
cause of the choice of certain parameters for UMAP (such
as number of nearest neighbors) or of the choice of UMAP
over other methods like PCA (see Extended Data Fig. 3-4).
Contrary to behaviors such as running, fidgets in pas-

sively viewing mice are nonrelevant to vision. We there-
fore hypothesized that fidget neuronal response would
not affect visual responses as opposed to running modu-
lation. To do so, we compared the response of cells to dif-
ferent drifting grating orientations and spatial frequencies
during baseline condition with during fidget (Fig. 4a for ex-
amples). We found that all four subtypes of fidget respon-
sive cell were equally responsive to visual stimuli and their
sensory tuning properties to drifting gratings (direction,
orientation and temporal frequency selectivity) were not
significantly different (Fig. 4b–d, p=0.24, 0.30, 0.06, 0,16,
two-sided t test, comparing the response amplitude dur-
ing fidget and baseline for active, phasic, depressed, and
neutral subclass, respectively). When comparing visual

stimuli during and outside of fidget behaviors, a low per-
cent of neurons had significant visually evoked responses
(5.5%, 5.0%, 2.8%, and 4.1% for active, phasic, de-
pressed, and neutral subclass, respectively; Fig. 4e). This
is in contrast to a visually relevant behavior such as run-
ning (Guitchounts et al., 2020), which had a larger per-
centage of neurons with significantly modulated visually
evoked responses (12.7%, 14.2%, 11.6%, and 10.0%, for
active, phasic, depressed, and neutral subclass, respec-
tively; Fig. 4f), as reported previously (Niell and Stryker,
2010; de Vries et al., 2020).
Could a subset of the same cells be involved in behavior

modulation in the visual cortex? To look at this, we com-
pared the Cohen’s d of fidget (see Materials and Methods)
and running evoked responses across the four identified
neuron response types. Cells that were running modulated
(p=0.0009, 0.0002, 0.13, 0.0004, two-sided t test, compar-
ing the response amplitude during running versus station-
ary for active, phasic, depressed, and neutral subclass,
respectively) were in fact not modulated by fidget (p=0.16,
0.24, 0.06, 0.30, two-sided t test, comparing the response
amplitude during running versus stationary for active, pha-
sic, depressed, and neutral subclass, respectively; Fig. 4g).
In fact, among cells that were significantly modulated by
running, only 4% of them were also significantly modulated
by fidget. In conclusion, our data support that in passively
viewing conditions, a behavioral event with no visual rele-
vance broadly impacts the visual cortex but does not mod-
ulate visual responses.

Discussion
Multiple recent studies have shown that motor activity

greatly impacts the activity of not only the motor cortex
but primary sensory areas like V1 (Niell and Stryker, 2010;
Drew et al., 2019; Musall et al., 2019; Stringer et al., 2019;
Guitchounts et al., 2020). Given the rapid advance in
brain-wide neuronal recording (Kim et al., 2016; Jun et al.,
2017), there has been increasing concern related to the
importance of monitoring behavioral activity to account
for spontaneous brain-wide neuronal activity (Steinmetz
et al., 2019). Using a large two-photon Ca21 imaging da-
taset collected in mice passively viewing a battery of
standardized visual stimuli, we characterized the neuronal
response of neurons of the visual cortex to fidgets, a
single standardized motor output analogous to a startle
response. We found that 47% of neurons show signifi-
cant co-activity with fidgets throughout all areas and
layers we recorded from. Previous studies in behaving
mice have shown that brain-wide activity is better ac-
counted for by uninstructed motor outputs than task
driven signals (Stringer et al., 2019). Our study confirms
the importance of taking into account motor activity
when analyzing neuronal data.
We here propose a complementary approach to uncov-

ering the role of motor signals in primary sensory areas.
Many behavior tasks are associated with rich behavior
outputs that can only be properly captured with multiple
video cameras (Musall et al., 2019). Even with appropriate
monitoring, the dimensionality and variability of behavioral
outputs make any interpretation more challenging. By
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Figure 4. Contrary to running responses, neuronal fidget responses do not modulate visually evoked activity. a, Example visual
evoked responses of a cell to drifting gratings during running, fidgets, and resting conditions, shaded error bars indicate 6 SEM. b,
Normalized histograms of the direction selectivity of the four cells types during the drifting gratings stimulus is plotted (c) same as b
but for cells’ preferred drifting grating orientation (d) same as b but for cells’ preferred temporal frequency of drifting gratings. e,
The mean trial DF/F during fidget is plotted against nonfidget behavior for each cell during its preferred direction and temporal fre-
quency of the drifting grating stimulus. The dotted line indicates unity. This metric is plotted separately for all four cell types. f,
Same as d but for running versus stationary behaviors. g, The Cohen’s d metric for fidget is plotted against the Cohen’s d for run-
ning behavior for each cell, across all four cell types.
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focusing our analysis on a single standardized behavior
event, we could group together a large number of behav-
ioral trials, akin to visually-evoked stimulus trials. Closed-
loop experimental designs could prove instrumental to
extend this approach, by pairing specific visual stimuli
with specific tracked behavioral events. Such an ap-
proach could allow a more direct analysis of how motor
output modulates visual inputs.
“Visual” fidgets were previously analyzed in relation to vis-

ual stimuli (Cooke et al., 2015). They observed an increase
of behavioral visual fidget response to gratings as supported
here. Contrary to this study, all of our analyses were con-
ducted in a familiar sensory environment where all mice
were habituated to stimuli. We also included all fidgets in
our subsequent analysis regardless of their timing with a vis-
ual stimulus. This allowed us to compare a large number of
single cell responses to either fidgets or visual stimuli, ex-
tending this previous characterization to a novel direction.
We found that excitatory neurons were responding with

three distinct temporal profiles to fidgets. Remarkably the
proportion and responses of neurons in each class was
maintained in all layers and brain areas we looked at, and
consequently we could not predict the location of our re-
cording using the response to fidget despite a large data-
base to train our decoder on. This result suggests that
behavioral information is not only broadcasted broadly, but
also homogeneously throughout the cortical mantle. This re-
sult is to contrast with running modulation which typically
impacts deeper layers more strongly and is not homogene-
ously strong across the visual cortex (de Vries et al., 2020).
Our interpretation is that local sensory inputs shape local
behavioral representations depending on the causal overlap
of those events. Future research could test whether a visu-
ally conditioned behavioral event transitions from a broad
modulation to be more specific to certain visual areas during
learning (Lillicrap et al., 2016, 2020). The broad availability of
standardized behavior signals could be a key component in
how the cortex selects, learns and binds local sensory infor-
mation with relevant motor outputs.
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