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Severe acute respiratory syndrome (SARS) caused by a coronavirus (CoV), SARS-
CoV, emerged into human populations in south China (Anon., 2003d; Peiris et al.,
2003b,c; Poon et al., 2004a) from bats (Guan et al., 2003; Kan et al., 2005; Lau
et al., 2005; Li et al., 2005d; Normile, 2005) in late 2002. Subsequently, SARS-CoV
that had adapted to humans caused an epidemic in 29 countries and regions to
which it had been carried by airline passengers. The epidemic was controlled by
public health measures coordinated by the WHO and on July 5, 2003 it was of-
ficially declared to have ended. Because of these public health measures, a pan-
demic was averted (Enserink, 2003b). Close to 10% of the 8000 persons infected in
this epidemic died. Molecular studies dissected the adaptation of this virus as it
jumped from an intermediary animal, the civet, to humans, giving us valuable
insights into processes of molecular emergence. Global research efforts are con-
tinuing to increase our understanding of the virus, the pathogenesis of the disease it
causes (SARS), the ‘‘heterogeneity of individual infectiousness’’ (described below)
as well as shedding light on how to prepare for other emerging viral diseases.
Promising drugs and vaccines have been identified. The milestones achieved have
resulted from a truly international effort.
The beginning of the epidemic and the identification of SARS-CoV

The epidemic began in Guangdong province, China, in late 2002. It spread to Hong
Kong on February 21, 2003, and from there to other parts of the world. A week
later, Carlo Urbani (Reilley et al., 2003), an Italian infectious disease expert work-
ing in the Hanoi, Vietnam, office of the WHO, responded to a possible avian
influenza alert from French Hospital. That action by one man set into motion the
engagement of the WHO, emergency measures by the Vietnamese government, and
eventually the attention of the world. In Geneva, WHO team member Klaus Stöhr
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(Stafford, 2005) put together and maintained a network of 11 microbiology labo-
ratories in nine countries to respond to the epidemic and to identify the etiologic
agent (Anon., 2003b).

Early encounters with SARS in Hong Kong suggested that a virus may have
been the cause of the illness (Tsang et al., 2003a). Early candidate agents suggested
were a paramyxovirus and a coronavirus, as well as the bacterial agent Chlamydia

pneumoniae (Stadler et al., 2003). In the last week of March 2003, laboratories in
Hong Kong (China), the United States, and Germany isolated a novel coronavirus
from clinical material obtained from patients with SARS (Drosten et al., 2003a;
Ksiazek et al., 2003; Peiris et al., 2003b). Serological studies and RT-PCR specific
for this coronavirus (subsequently called SARS-CoV) were positive in most ‘‘prob-
able’’ SARS patients but not in controls. RT-PCR products of several specimens
from different geographical locations had identical nucleotide sequences, support-
ing the existence of a point-source outbreak. No other potential agent was con-
sistently identified.

SARS-CoV could be grown in cell culture in Vero/African green monkey kid-
ney cells (Drosten et al., 2003b; Ksiazek et al., 2003) and FRhK-4/fetal Rhesus
kidney cells (Peiris et al., 2003b). The Hong Kong group led by Malik Peiris (Peiris,
2003) was the first to observe the cytopathic effect of the virus, seen after 2–4 days
of incubation, consisting of cell rounding, refractile appearance, and detachment.
The initial cytopathic effect was sometimes delayed until 6 days post-inoculation
(Drosten et al., 2003a). (More recently, a clone of persistently infected Vero E6 cells
has been established [Yamate et al., 2005].)

Work at Hong Kong University and the U.S. Centers for Disease Control and
Prevention (CDC) resulted in the identification of the virus causing SARS. The
CDC workers were the first to visualize the characteristic morphology of SARS-
CoV in infected cells and in culture supernatant using transmission electron
microscopy with negative staining (Fig. 1), which they shared with the network
laboratories within 24 h (Anderson, 2005). With that information, the CDC suc-
cessfully probed the virus with group I coronavirus polyclonal antibodies, and
employed primers [IN-2(+), IN-4(�)] that targeted a conserved region of the co-
ronavirus polymerase gene (open reading frame [ORF] 1b), thus amplifying the
corresponding genomic region of SARS-CoV (Rota et al., 2003). Microarray
hybridization further confirmed that the agent was a coronavirus. In Hong Kong,
differential display priming (between SARS-CoV infected and uninfected cell cul-
tures) and cloning were used to show that the virus was a coronavirus (Peiris et al.,
2003b). German researchers performed random priming utilizing degenerate bases
followed by sequencing and translated BLAST search to identify the RT-PCR
products as those of a coronavirus (Drosten et al., 2003a).

Definitive proof of SARS-CoV as the etiologic agent of SARS came when
Rotterdam virologists led by Albert Osterhaus (Enserink, 2003a) produced data
that fulfilled Koch’s last postulates. Macaque monkeys (Macaca fascicularis) de-
veloped a SARS-like illness after experimental infection, yielded the same virus
inoculated, and developed a specific antibody response (Fouchier et al., 2003;



Fig. 1 Electron micrograph of SARS-CoV. The virus measures 60–120 nm in size. See text for descrip-

tion. Image generously provided by CDC/C.D. Humphrey and T.G. Ksiazek (US CDC Website-http://

www.cdc.gov/ncidod/sars/lab/images.htm).
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Kuiken et al., 2003). Co-infection of macaques with human metapneumovirus
(hMPV), a virus that had earlier been a candidate agent for the cause of SARS, was
not associated with more severe illness (Fouchier et al., 2003). hMPV infection
without SARS-CoV caused only minor upper respiratory illness in adults (Ksiazek
et al., 2003), although hMPV alone can cause severe pneumonia in young children
(van den Hoogen et al., 2001). SARS-CoV was deemed necessary and sufficient to
cause SARS.

On April 16, 2003, David Heymann (2004), Executive Director, WHO Com-
municable Diseases programs, Klaus Stöhr, and Albert Osterhaus announced that
SARS was caused by the novel coronavirus, SARS-CoV (Anon., 2003b), and they
dedicated the work to Dr. Urbani, who died from SARS that he had contracted
while caring for patients in Vietnam.

The epidemic—timeline and highlights

SARS was notorious for a high incidence of acute respiratory distress and respi-
ratory failure, a significant death rate even in healthy young adults (Lee et al.,
2003b; Tsang et al., 2003a), a high rate of nosocomial transmission (Booth et al.,
2003), and ‘‘superspreading events’’ (SSE) (Lai et al., 2004; Shen et al., 2004; Lloyd-
Smith et al., 2005; Galvani and May, 2005) (Fig. 2). The epidemic in China almost
became a pandemic when a physician guest at the Hotel Metropole, Hong Kong,
who had been infected while treating SARS patients in Guangzhou, unknowingly
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http://www.cdc.gov/ncidod/sars/lab/images.htm


Humanization of SARS-CoV (late October- mid November, 2002)

SARS outbreak in Guangzhou, China (mid November 2002)

SARS arrived in Hong Kong and two days later in Singapore and Toronto (Feb 21,
2002)

SARS arrived in Vietnam from Hong Kong.
Carol Urbani consulted (Feb 28, 2003)

Carlo Urbani dies (March 29, 2003); Amoy Gardens (Hong Kong) outbreak; 
WHO recommends global port screening of travelers (April 2, 2005)

WHO issues global alert following outbreaks in Vietnam and Hong 
Kong (March 12, 2003)

SARS outbreaks in Hong Kong, Beijing, Toronto, Singapore (March, 2003)

WHO global network born (Mar 17, 2002) March 21, 2003. US CDC preliminary description of SARS. SARS-CoV 
identified by Hong Kong, US CDC & German scientists almost simultaneously

Canada (Science 300, 1399), US, and Hong Kong completed sequence
data (April 12, 14 & 16, 2003). WHO named it SARS-CoV.

Koch’s postulates fulfilled (Nature 423, 240)

China identified ~3,000 SARS cases; China’s Vice Premier, Wu Yi
commands the battle against SARS in China. SARS outbreak in Taiwan China completed a new1,000 bed infectious disease hospital (Xiaotangshan) in 8 days

229/3947 (deaths/cases)

Chinese and Hong Kong researchers found SARS CoV in wild animals in
Guangdong markets (May 23, 2003). WHO begins removing cities/regions
from travel alert

Outbreaks in satellite cities around Guangzhou city, Guangdong
province, China (late October, 2002)

WHO removes last region (Taiwan) from list of travel alert (July 5, 
2003) and declares end of human to human transmission

Four cases reported in Guangzhou city (Dec 20, 2003); not linked to 
laboratory (http://www.who.int/csr/don/2004_01_05/en/)

Scientist in Singapore gets SARS from laboratory
(http://www.who.int/csr/don/2003_09_24/en/index.html)

Senior scientist in Taiwan gets SARS from laboratory
(http://www.who.int/csr/don/2003_12_17/en/index.html)

Dec 31, 2003

Transmission on aircraft (Mar 15, 2002)

Postgraduate student in Beijing gets SARS from laboratory and initiated 
three generations of transmission in a total of 8 cases with one fatality

Scientist in Beijing gets SARS from the same laboratory in April 2004 
(http://www.who.int/csr/don/2004_04_30/en/index.html)

774/8096 (deaths/cases)

HKU virologist Yi Guan traveled to China to obtain clinical specimens

Fig. 2 Timeline of the SARS epidemic. Major events are listed from top to bottom. Each interval in the arrow represents 1 week. For information on the

first weeks of the epidemic in China, consult the book by Thomas Abraham, Twenty-First Century Plague. The Story of SARS. The Johns Hopkins

University Press. Baltimore, Maryland, 2005. (For colour version: see Colour Section on page 348).
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introduced SARS-CoV into Hong Kong on February 21, 2003. He was probably a
‘‘superspreader’’ and Hong Kong became ‘‘ground zero.’’

However, in most other places where SARS-CoV spread, the chain of trans-
mission stopped promptly with the isolation of patients. According to the Basic
Reproductive Number (R0), arrived at by averaging the number of infections pro-
duced by infected individuals in susceptible populations, SARS was not as con-
tagious as influenza (R0 ¼ 2.7 [Riley et al., 2003] and 5–25, respectively). However,
this simplification ignores a property of certain infectious diseases, including
smallpox, influenza, and SARS, called the ‘‘heterogeneity of individual infectious-
ness.’’ Highly variable infectiousness means that some infected individuals may
cause explosive transmissions, giving rise to SSEs. During the SARS epidemic, a
spectrum of infectiousness was seen that included SSEs, uneventful terminations of
transmission chains, and explosive outbreaks (Galvani and May, 2005; Lloyd-
Smith et al., 2005).

SSEs likely require high levels of viral shedding and others factors, which
together determine the Individual Reproductive Number (Lloyd-Smith et al.,
2005). One of these factors might be production of a large amount of bioaerosol
by certain individuals (Edwards et al., 2004). Reducing bioaerosol by inhalation
of nebulized saline (Edwards et al., 2004) and/or the use of cough suppressants
could impact the Individual Reproductive Number and reduce the occurrence
of SSEs.

Another cofactor might be a pneumonic phase with airborne dissemination
of the virus (Lloyd-Smith et al., 2005). Because infectious disease agents exist as
‘‘quanta’’ and not as ‘‘plasma,’’ airborne dissemination is difficult to prove
owing to the stochastic process involved in the distribution of viruses by aerosol.
During the Toronto portion of the SARS epidemic, investigations using state-
of-the-art air sampling devices confirmed the presence of SARS-CoV in the air of
a patient’s room (Booth et al., 2005). These studies, together with data from
investigation of transmission on aircraft (Olsen et al., 2003) and the huge out-
break of SARS in Amoy Gardens, Hong Kong (Yu et al., 2004b), showed that
SARS-CoV is an opportunistic airborne pathogen (Roy and Milton, 2004). Hav-
ing recognized that airborne dissemination of SARS-CoV is the route of trans-
mission, facilities can be upgraded, with impact on other airborne infectious
diseases as well.

The high incidence of nosocomial transmission of SARS-CoV during the epi-
demic exposed a weakness in the infection control procedures in some locations, as
medical workers became vectors for SARS-CoV (Meng et al., 2005), but did not
occur everywhere (Seto et al., 2003). Multiple layers of defense are needed, as
Chowell et al. have suggested, because using their model for R0, 25% of their R0

distribution lies at R0>1 even with perfect isolation (Chowell et al., 2004). Helpful
measures might include the avoidance of crowding in clinics and wards, wearing
face masks (Seto et al., 2003), avoiding aerosolizing procedures if possible (Tong
et al., 2003; Tong, 2005b), improved ventilation design and rate (Liao et al., 2005a),
and making sure that there are no ‘‘weak links’’ in infection control.
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Emergence and origin of SARS-CoV

The theory that SARS-CoV came from an animal reservoir gained credence when
field investigations by WHO showed that significant numbers of early patients were
food-handlers (Anon., 2003c; Normile and Enserink, 2003; Xu et al., 2004c). Yi
Guan and others investigated food markets in Guangdong, where a variety of small
animals were kept in unhygienic heaped-up cages prior to sale (Guan et al., 2003).
SARS-CoV-like coronaviruses were promptly identified in several Himalayan palm
civets (Paguma larvata) and one raccoon dog (Nyctereutes procyonoides). Anti-
bodies against SARS-CoV were also found in market workers. The relationship
between these isolates from animals and isolates from humans appeared to be the
result of a one-way transmission from animals to humans, because a 29-nucleotide
deletion was found in the strain of SARS-CoV isolated from humans compared
with civet SARS-CoV (it is easier to lose nucleotides than to gain some) (Chinese,
2004; Kan et al., 2005; Song et al., 2005b). Genomic comparisons further suggested
that SARS-CoV was unlikely to be a recombinant between human and animal
coronaviruses or between various animal coronaviruses, ruling out natural or lab-
oratory chimerism (Holmes and Rambaut, 2004). Thus, SARS-CoV was probably
a zoonotic virus (Holmes, 2003; Zhong et al., 2003b). It was also found that civets
make a good amplification reservoir because SARS-CoV genomic RNA persisted
in the spleen and lymph nodes of civets for as long as 35 days (Wu et al., 2005b).

Diversity of SARS-CoV genomes among human isolates was greatest in
Guangdong, agreeing with animal studies that suggested south China was the site
of emergence of the virus (Guan et al., 2004). Moreover, ‘‘humanization’’ likely
occurred in a person of recent southern Chinese ancestry, because indigenous Tai-
wanese, with their distant HLA Class I genes, have been shown to be significantly
less susceptible to SARS than residents of Taiwan who are immigrants from
mainland China (Lin et al., 2003b). It is believed that the ‘‘humanization’’ of
SARS-CoV occurred only a few weeks before the epidemic of SARS in China. The
estimated dates of interspecies leap based on mutational analyses in both Singapore
and China are in remarkably close agreement, late October 2002 and mid-
November 2002, respectively (Chinese, 2004; Vega et al., 2004). The estimated
mutation rates were 5.7� 10�6 nucleotides per site per day in a Singapore isolate
and 8.26� 10�6 in a China isolate, again in remarkable agreement with each other
and with the rate of 1.83� 10�6 in a Taiwan isolate (Yeh et al., 2004). This rate of
mutation is among the slowest in RNA viruses.

Retrospective seroepidemiological studies confirmed that SARS-CoV did not
begin circulating in humans until recently. Only 1.8% of 938 sera collected in Hong
Kong in May 2001 (Zheng et al., 2004b), none of 60 sera collected in Guangdong in
early 2003 (Zhong et al., 2003b), and 1 (minimal reactivity on ELISA) of 384 sera
from U.S. blood donors contained antibodies against SARS-CoV (Ksiazek et al.,
2003; Zheng et al., 2004b). When quantified, titers of antibodies in these early sera
were higher against civet SARS-CoV than against human isolates of SARS-CoV
(Zheng et al., 2004b).
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However, farmed civets elsewhere in China were mostly negative for SARS-
CoV (Tu et al., 2004), so the hunt for the natural reservoir continued. Taking clues
from other zoonotics, scientists turned to bats as a possible animal reservoir, since
bats have been shown to be a reservoir for rabies virus, Ebola virus, Hendra virus,
Menangle virus, and Nipah virus (Dobson, 2005; Leroy et al., 2005).

In 2005, two independent groups published definitive findings on the bat as a
natural reservoir of SARS-CoV. Kwok-yung Yuen discovered three novel coro-
naviruses in different species of bat, including one virus with 88% nucleotide
identity with SARS-CoV, a virus that they named bat-SARS-CoV (Lau et al., 2005;
Poon et al., 2005). Bat-SARS-CoV, found in the insectivorous Chinese horseshoe
bat (Rhinolophus sinicus), is nearly identical to civet SARS-CoV, including pres-
ervation of a 29-nucleotide segment not found in the majority of human isolates of
SARS-CoV. Also nearly identical to civet SARS-CoV is SL-CoV Rp3, and perhaps
related strains Rp1 and Rp2, found in Rhinolophus pearsoni by Li et al. (2005d).
Shi, Zhang, and Wang’s Sino-Australian cooperative effort, also involving Hong
Kong University, produced proof that the bat is the natural reservoir for the
SARS-CoV-like coronaviruses. These findings will lead to vaccines and drug treat-
ments for SARS (Dobson, 2005).

Because SARS-CoV appears to jump species easily, more wildlife reservoirs of
SARS-CoV may be discovered. Macaques, domestic cats, ferrets, raccoon dogs,
pigs, and even mice are known to be susceptible to SARS-CoV infection (Fouchier
et al., 2003; Martina et al., 2003; Wentworth et al., 2004; Chen et al., 2005b; Li
et al., 2005d). Nevertheless, the fact that bats roost in large colonies makes them
ideal reservoirs to maintain viruses and other microorganisms (Normile, 2005). In
addition, bats are in the same Mammalia Class as humans, so viruses of bats will
not require great changes to infect human cells (Li et al., 2005e).

After the epidemic was declared over, four small subsequent outbreaks oc-
curred. Three were the result of SARS-CoV escaping from the laboratory by
infecting personnel, as David Ho had predicted might occur (Enserink, 2003c),
and has occurred with Russian influenza in 1977 (Horimoto and Kawaoka,
2005). The fourth case was a form fruste reemergence in the epicenter of the
original outbreak, Guangzhou, between December 2003 and January 2004
(Enserink, 2004; Liang et al., 2004; Normile, 2004; Song et al., 2005b). In this
reemergence, four people developed SARS and were confirmed to have SARS-
CoV by RT-PCR. Three had had direct or indirect contact with palm civets, and
one lived near a hospital that earlier admitted many patients with SARS. All
recovered and seroconverted. Amplified sequences of the viruses isolated from
them were very similar to those of SARS-CoV found in the preceding winter in
caged animals (Chinese, 2004; Song et al., 2005b). The one patient in the reemer-
gent outbreak who had had no contact with civets had earlier disposed of a dead
rat, leading health officials of Guangdong to trap rodents near his residence; some
of the rats (Rattus rattus) were found to have SARS-CoV in feces and lung
tissue (http://www.egms.de/en/meetings/sars2004/04sars023.shtml), though not
overtly ill.

http://www.egms.de/en/meetings/sars2004/04sars023.shtml
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The virus

Taxonomy and phylogeny

SARS-CoV belongs to the family Coronaviridae, which are enveloped RNA viruses
in the order Nidovirales (Cavanagh, 1997). Coronaviruses are classified into three
serogroups. Viruses in groups 1 and 2 are mammalian viruses; group 3 contains
only avian viruses. Human coronaviruses (HCoV) are found in both group 1
(HCoV-229E and HCoV-NL63) and group 2 (HCoV-OC43 and CoV-HKU1) and
are responsible for 30% or more of generally mild upper respiratory tract illnesses.
To position SARS-CoV, Snijder et al. used a rooted phylogenetic tree that included
an outgroup, the equine torovirus (EToV) (Snijder et al., 2003). They concluded
that SARS-CoV is distantly related to established group 2 coronaviruses, agreeing
with Peiris’s phylogenetic analysis using the polymerase gene (Peiris et al., 2003b).
Most of the genome of SARS-CoV is closely related to group 2 coronaviruses
(Magiorkinis et al., 2004). Now SARS-CoV is placed in a new subgroup 2b, with
the other group 2 coronaviruses assigned to a new subgroup 2a (Stadler et al., 2003;
Gorbalenya et al., 2004). In addition, bat-SARS-CoV was assigned recently to
subgroup 2b (Lau et al., 2005).

Ultrastructure of SARS-CoV

SARS-CoV has the characteristic morphology of coronaviruses, with spike (S)
protein peplomers, club-shaped projections on the surface, giving the enveloped
viral particle a crown-like (hence ‘‘corona,’’ Latin for ‘‘crown’’) appearance under
the electron microscope (Fig. 1). Atomic force microscopy reveals that each virion
has at least 15 spherical spikes, each with a diameter of 7.29+/�0.73 nm (Lin et al.,
2005a). The center appears amorphous.

SARS-CoV genome, proteome, and replication cycle

Coronaviruses have the largest known non-segmented genome among RNA viruses
(27–31 kb). The genome mimics eukaryotic mRNA in being single-stranded pos-
itive-sense RNA, capped and methylated at the 50 end, and polyadenylated at the 30

end. Consequently, it is more stable than prokaryotic mRNA, and is optimized for
translation by eukaryotic translational machinery (i.e. optimized for infectivity). A
polymerase is not included in the particle.

The entire genome sequence of SARS-CoV was worked out in o2 months
(Leung, 2003; Marra et al., 2003; Rota et al., 2003). The SARS-CoV genome
(Fig. 3) begins and ends with untranslated regions (UTR), spanning 192 and 340
nucleotides, respectively. (In the Sabin strain of poliovirus, mutations in the UTR
were responsible for the attenuation that permitted vaccine production (Gutierrez
et al., 1997). The SARS-CoV genome has 14 predicted open reading frames (ORFs)
encoding 28 proteins (Marra et al., 2003; Rota et al., 2003; Snijder et al., 2003).
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Certain strains lack one ORF (Chinese, 2004), whereas others have 15 ORFs
(Groneberg et al., 2005). There are alternative nomenclatures related to this virus,
which in this chapter are enclosed within brackets.

A ‘‘SARS chip’’ was offered free to researchers beginning June 23, 2003, by the
National Institute of Allergy and Infectious Diseases, NIH (USA), based on the
success of the DeRisi ‘‘viral discovery microarray’’ (Wang et al., 2003). Microarray
gene expression studies on peripheral blood have been shown to discriminate
accurately SARS patients from non-SARS controls (Long et al., 2004; Lee et al.,
2005b).

In Shanghai, the proteome of SARS-CoV in Vero cells has been analyzed using
conventional proteomic tools and two-dimensional liquid chromatography elec-
trospray ionization tandem mass spectrometry (LC-ESI-MS/MS). In addition, iso-
tope-labeled affinity tag technology coupled with two-dimensional LC-MS/MS has
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been used to identify and quantify 186 differentially expressed proteins in infected
vs. non-infected Vero cells (Zeng et al., 2004b; Jiang et al., 2005b). In Beijing, Kang
et al. developed a mass spectrometry decision tree classification algorithm using
surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SE-
LDI-TOF MS) and protein array, predicting the virologic diagnosis based on sev-
eral serum proteomic markers (Kang et al., 2005). Using similar technology, Poon et
al. at Chinese University of Hong Kong (CUHK) performed serial analyses of
plasma proteomic signatures in pediatric patients with SARS, showing the potential
to predict clinical outcome based on its correlation with viral load (Poon et al.,
2004c).

Replicase

ORF1a and ORF1b, together spanning two-thirds of the viral genome, are located
at the 50 end and encode replicase polyproteins (pp) 1a and pp1ab. ORF1 is ex-
pressed immediately after infection. Translational products can be detected in cell
cultures as early as 6 h after infection (Prentice et al., 2004). Like other corona-
viruses and many other viruses, the strategy used for translation of pp1ab requires
a ‘‘slippery sequence’’ and a structural mRNA element known as a pseudoknot,
which causes a 1-ribosomal frameshift just 50 of the termination codon of ORF1a.
The ‘‘slippery sequence’’ is highly conserved and would not function if mutated
(Thiel et al., 2003). Another in cis element has been discovered, an attenuator 50 of
the slippery sequence that downregulates 1 frameshift efficiency (Su et al., 2005).
Transcription attenuation was thought to enable SARS-CoV to synthesize both
full-length and subgenomic-length antisense RNA intermediates (Yount et al.,
2005).

Sixteen non-structural proteins (nsp) are derived from proteolytic cleavage of
pp1a and pp1ab by two, rather than three, viral proteinases (see below) (Snijder
et al., 2003). Recently, 12 of the 16 predicted nsp have been identified by immuno-
blot and their subcellular localization studied by immunofluorescence confocal
microscopy (Prentice et al., 2004).

The predicted 20-kD nsp1 has been confirmed, along with immunologically
related products of different sizes, and are awaiting further characterization (Pren-
tice et al., 2004). Nsp2 is not essential for viral replication in Vero cells (Graham
et al., 2005), which are defective in interferon (IFN) production (Emeny and
Morgan, 1979). The two viral proteases, a very specific papain-like cysteine pro-
teinase (nsp3, PL2pro; SARS-CoV does not have PL1pro), and the main chymo-
trypsin-like protease (nsp5), also known as 3C-like cysteine proteinase (3CLpro),
with substrate specificity conserved among coronaviruses, are necessary for co- and
post-translational processing of the polyprotein. PL2pro cleaves nsp1, nsp2, and
nsp3 from the elongating polypeptide co-translationally, whereas 3CLpro is re-
sponsible for the other cleavage sites. The X-domain of nsp3 is homologous to
adenosine diphosphate-ribose 10-phosphatase (ADRP), which is involved in pre-
tRNA splicing (Snijder et al., 2003). Its phosphatase activity was recently
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demonstrated in in vitro assays (Saikatendu et al., 2005). Nsp4 is a hydrophobic
protein of 35 kDa on SDS-polyacrylamide gel but has a predicted mass of 55 kDa.
It is similar to MP1 of murine hepatitis virus (MHV) (Prentice et al., 2004). The use
of ‘‘artificial neural networks’’ and SPAAN, a bioinformatics software that has a
track record of discovering adhesins, has led to the finding of adhesin-like char-
acteristics in nsp6, a function also ascribed to spike, nsp2, nsp5, and nsp7
(Sachdeva et al., 2005). Nsp7 and nsp8 assemble into a cylindrical hexadecamer
with inner positive charges and an internal diameter of 30 Å, thought to confer
processivity to RNA-dependent RNA polymerase (RdRp) (Zhai et al., 2005).
Other scientists have cloned nsp9, expressed it in E. coli, crystallized it, and gen-
erated crystallographic data in an effort to facilitate drug design (Campanacci
et al., 2003). They further showed that it is a single-stranded RNA-binding protein
displaying an oligosaccharide/oligonucleotide fold unique to the world of RNA
viruses (Egloff et al., 2004). Nsp12 functions as SARS-CoV RNA-dependent RNA
polymerase (RdRp or POL). Nsp13 is a promiscuous helicase (unwinds RNA and
DNA) with ATPase activity belonging to the helicase superfamily 1 (Thiel et al.,
2003).

The N-terminal domain of nsp14 may play a role in the stability of the SARS-
CoV genome. The N-terminal domain of nsp 14 is homologous to 30–50 exonulcease
(ExoN) and it has been speculated that it may perform functions such as RNA
proofreading, repair, and/or recombination (Snijder et al., 2003). That SARS-CoV
has this genome protection capability may explain the slow estimated mutation rate
(Chinese, 2004; Vega et al., 2004; Yeh et al., 2004), the sequence identity between a
laboratory-acquired case and a stable laboratory isolate (Vega et al., 2004), and the
observed but unexpected resistance to ribavirin, a drug that predisposes other RNA
viruses to go into ‘‘error catastrophe’’ (Eigen, 1987; Crotty et al., 2001; Pariente
et al., 2001). Nevertheless, preliminary observations suggest that quasispecies do
occur with SARS-CoV just as with other RNA viruses, although all patients stud-
ied for quasispecies existence had all received ribavirin (Xu et al., 2004a,b), a
confounding factor in the experiments.

The C-terminal part of nsp15 is homologous to poly(U)-specific endoribonuc-
lease (XendoU), involved in small nucleolar RNA processing and utilization
(Snijder et al., 2003). Nsp15 was further confirmed to have specificity for cleavage
at uridylate residues. Structural analysis shows that it is arranged as a dimer or
trimer with possible RNA-binding sites (Guarino et al., 2005). Nsp16 shows ho-
mology with 20-O-methyltransferase (20-O-MT) (von Grotthuss et al., 2003), and
could possibly be used to cap the viral mRNA, disguising it as a eukaryotic mRNA.
The cap is recognized by eukaryotic initiation factor eIF4F, which together with
other initiation factors, recruit the 43S ribosomal subunit initiation complex that
then scans the mRNA for the initiation codon AUG, whereupon the 60S ribosomal
subunit docks and begins peptide elongation (Wang et al., 1997). Co-localization
studies showed that these enzymes assemble into one or more vesicle membrane-
associated replication units (Prentice et al., 2004) and usurp cellular processes for
viral replication (without a DNA phase) and mRNA transcription.
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Expression of other SARS-CoV genes

Coronaviruses, including SARS-CoV and other viruses in the order Nidovirales,
produce a set of 30 co-terminal mRNA in host cells (Lai and Cavanagh, 1997). For
SARS-CoV, the 12 ORFs downstream of the replicase are translated from a nested
set of eight subgenomic mRNAs, identified experimentally in infected cells (Snijder
et al., 2003; Thiel et al., 2003). Also like other coronaviruses, all of the subgenomic
mRNAs can be lined-up with the genome at (are co-terminal with) the 30 end of the
virus. The 50 ends are also identical. A minimal consensus sequence at the 50 end,
50ACGAAC-30, is sufficient to direct the synthesis of the subgenomic mRNAs
(Thiel et al., 2003). This sequence, embedded in a stretch of nucleotides upstream of
the ORF(s) of each subgenomic mRNA, is the result of fusion of nucleotides 1–72
of the genome (‘‘leader’’ transcription regulatory sequence [TRS]) and a unique
‘‘body’’ TRS preceding each ORF. The joining of these two regions is probably
achieved in a discontinuous step during minus-strand synthesis (Stadler et al., 2003;
Thiel et al., 2003). The TRSs regulate viral transcription and translation.

Spike protein and receptor-based entry

ORF2 encodes a Class I viral membrane-fusion protein, the 1255-amino acid trans-
membrane S protein. The precursor, proS, is glycosylated at the Golgi apparatus
and proteolytically processed by furin (host membrane-bound proprotein convert-
ases), as shown by scientists at the Clinical Research Institute of Montreal (Bergeron
et al., 2005). The extracellular domain contains the S1 receptor-binding and the S2
entry-mediating ‘‘regions.’’ Breaching the cell membrane barrier is the single most
important step in infection (Giroglou et al., 2004; Li et al., 2004a). Neutralizing
antibodies against S, especially the receptor-binding region, prevents infection (He
et al., 2004b,c).

S binds the host cell membrane protein angiotensin I converting enzyme 2
(ACE2) (Dimitrov, 2003; Li et al., 2003; Kuba et al., 2005), which the newly
discovered HCoV-NL63 also employs as its receptor (Hofmann et al., 2005). Civet
ACE2 (cACE2) differs from human ACE2 (hACE2), to which human isolates of
SARS-CoV are not fully adapted, as shown by increased binding and infection by
introduction of residues 90–93 of cACE2 into the human receptor (Li et al., 2005e).
As expected, soluble ACE2 (sACE2) but not soluble ACE (sACE), blocks binding
of S with Vero E6 cells (Li et al., 2003; Hofmann et al., 2004). However, mutations
of the catalytic site of ACE2 have no effect on S-induced syncytia formation,
suggesting that existing ACE inhibitors will not block SARS-CoV infection (Dimi-
trov, 2003).

The receptor-binding region of S has been localized to amino acid residues
between 318 and 510 of the S1 ‘‘region’’ (Wong et al., 2004b), in the same neigh-
borhood as that of HCoV-229E (Breslin et al., 2003). The avidity of binding
(Li et al., 2005e), viral entry (Yi et al., 2005), and immunogenicity (Yi et al., 2005)
are affected by single amino acid substitutions within this region, as demonstrated
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at 2.9 Å resolution (Holmes, 2005; Li et al., 2005b). Binding is by way of confor-
mational and electrostatic interactions (Yi et al., 2005). The strength differs, de-
pending on the viral strain. Civet S binds cACE2 avidly but hACE2 poorly,
although S from human isolates of SARS-CoV binds strongly with both cACE2
and hACE2 (Li et al., 2005e). Two regions of the S-protein-binding site on ACE2,
and two residues (aa479 and aa487) in the receptor-binding region of S, largely
determine the difference. S from human isolates of SARS-CoV has a small neutral
residue (asparagine) at position 479, replacing a basic residue in civet S, and better
accommodates the lysine at position 31 of hACE2. At position 487, serine in civet S
is replaced by threonine, which has an extra methyl group, in the human isolates.
This residue was absolutely conserved in S evaluated in >100 isolates during the
epidemic (Li et al., 2005e). These findings suggest that adaptation of S to hACE2
was critical to viral adaptation to humans (Ruan et al., 2003).

After binding to ACE2, S undergoes conformational change mediated by its S2
‘‘region’’ (Liu et al., 2004; Tripet et al., 2004; Xu et al., 2004d), which presumably
exposes a cleavage site, followed by pH-dependent host endosomal cathepsin
L-mediated proteolysis (Yang et al., 2004a; Simmons et al., 2005). Extracellular
proteases, such as those excreted by neutrophils, facilitate this pathway to a signi-
ficant degree. Proteases also enable entry into the cell of SARS-CoV adsorbed on
the cell surface (Matsuyama et al., 2005). In a similar way, Ebola virus and Hendra
virus also utilize cathepsin L for the endocytic pathway of cell entry (Chandran
et al., 2005; Pager and Dutch, 2005).

The final step of membrane fusion before viral entry is dependent on the for-
mation of the six-helix bundle by heptad repeats (HR1 and HR2) in the S2 ‘‘re-
gion’’ (Liu et al., 2004), also predicted by others using in-silico techniques (Kliger
and Levanon, 2003). Oligomerization of S is required to form the six-helix bundle,
a structure similar to the fusogenic core of HIV-1 gp41 (Liu et al., 2004). The
putative fusion peptide has been located to the region immediately upstream of
HR1 (Bosch et al., 2004) and provided detailed modeling of the fusion core
(Supekar et al., 2004; Xu et al., 2004e; Guillen et al., 2005). This last step of viral
entry appears to be susceptible to inhibition by a component of innate immunity,
mannose-binding lectin (MBL) (Leikina et al., 2005).

Several other cellular proteins are also utilized by S to facilitate entry into the
cell. They include the HIV-attachment factor dendritic cell-specific intercellular
adhesion molecule-grabbing non-integrin (DC-SIGN or CD209), a C-type lectin
expressed on dendritic cells, and CD209L (L-SIGN or DC-SIGNR) (Jeffers et al.,
2004; Marzi et al., 2004). In this way SARS-CoV joins HIV, dengue virus, and
CMV in exploiting dendritic cells as ‘‘vehicles’’ for cell-mediated dissemination
(Yang et al., 2004a). Another lectin (LSECtin) was recently shown to bind to S and
could assist viral entry into the liver and lymph nodes through its expression in
sinusoidal endothelial cells (Gramberg et al., 2005).

In a short period of time, SARS-CoV S has evolved from one that is inefficient
in entering human cells (civet strains) to one that has acquired ‘‘keys to both the
front and back doors.’’ This is no less remarkable than influenza virus strains that
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have acquired the ability to efficiently enter human cells through mutations of the
hemagglutinin cleavage site that became promiscuously cleaved by a wide range of
host proteases (Horimoto and Kawaoka, 2005).
Other structural proteins

ORF4 [5] encodes a small envelope (E) protein of 76 amino acids (Shen et al., 2003)
that binds to and inactivates the anti-apoptotic protein, Bcl-xL, causing in vitro and
in vivo lymphocytotoxicity (Yang et al., 2005b). E protein was detected in culture
supernatant (Hsieh et al., 2005) and could conceivably be taken up in vivo by
lymphocytes that are not infected by the virus.

ORF5 [6] encodes membrane (M) protein, the most abundant viral glycopro-
tein (221 amino acids). It is a 3-span transmembrane protein with a short N-
terminal ecto- and a long C-terminal interior domain. A 12-amino acid domain of
M has been shown to interact with the nucleocapsid, triggering viral encapsidation
(He et al., 2004a; Fang et al., 2005).

ORF9a [12] encodes the nucleocapsid (N) protein (422 amino acides). It is a
basic protein that binds to viral RNA via its N- and C-terminal regions (Chang
et al., 2005; Hsieh et al., 2005). It spontaneously assembles into virus-like particles
(VLP) in solution (Azizi et al., 2005). A role in apoptosis has been postulated (Surjit
et al., 2005).
Accessory proteins

The functions of the accessory proteins are still unknown (Cai et al., 2005). Sys-
tematic deletions of 5 of 8 group-specific ORFs, ORF3a, OF3b, ORF6, ORF7a,
and ORF7b, alone or in combinations, did not significantly impair viral viability in
cell culture and in mice (Yount et al., 2005). It is possible that they are involved in
the struggle between the virus and its natural host, the bat. Deletion of group-
specific ORFs from other coronaviruses often leads to attenuation in vivo (Yount
et al., 2005). Evidence is emerging that some of these deletions might be pathogenic
in man. ORF3a [3] and ORF3b [4] encode U274 (sars3a) and U154 (sars3b), re-
spectively, two novel proteins not found in other coronaviruses (Tan et al., 2004b;
Yu et al., 2004a; Ito et al., 2005). Both are implicated in triggering apoptosis (Law
et al., 2005b; Yuan et al., 2005). U274 (sars3a) co-localizes with S and M and is
packaged into virions (Ito et al., 2005). U122 (sars7a) encoded by ORF7a [8]
(Snijder et al., 2003) is also localized to the rough endoplasmic reticulum/Golgi
compartment. It has been reported to induce apoptosis by a caspase-dependent
mechanism (Tan et al., 2004a). It is tempting to associate these apoptosis-inducing
activities with lymphopenia, in a ‘‘Trojan horse’’ role. Infection of lymphocytes by
SARS-CoV might be needed for survival (Gu et al., 2005); by causing lymphocyte
apoptosis, virus with these deletions might permit survival of the virus in other cells
that would otherwise be destroyed by the lymphocytes.
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Viral assembly and exit

Assembly of viral particles is triggered by the association of membrane-bound M
proteins with N proteins that coat the helical viral nucleocapsid (He et al., 2004a).
Viral packaging is dependent on viral RNA-binding motifs at the N- and C-ter-
minals of N and a packaging signal in the hypervariable region of ORF1b near the
30 terminus, similar to that found in MHV and BCoV (Qin et al., 2003; Chang et al.,
2005; Hsieh et al., 2005). The virions assemble and bud into vesicles formed in the
compartment between the endoplasmic reticulum and the Golgi apparatus, picking
up carbohydrate moieties before being released by exocytosis. The entire process of
SARS-CoV replication takes from 9 to 24 h (Yount et al., 2003; Prentice et al.,
2004), compared with the 5–6 h for influenza virus, as reflected by the slow rise in
viral titers in SARS patients (Peiris et al., 2003a; Tsang et al., 2003b; Cheng et al.,
2004).

Viral countermeasures

Microarray studies of host gene expression have shown that SARS-CoV elicits
a non-specific innate inflammatory reaction rather than an antiviral response
(Reghunathan et al., 2005). SARS-CoV in a sense ‘‘edits’’ the responses of dendritic
cells and macrophages, resulting in induction of non-specific inflammatory
chemokines, a low-level pro-inflammatory cytokine production, and a muted
anti-viral cytokine response (including IFN and IL-12p40). Data have suggested
that in fact SARS-CoV avoids activating dendritic cells and macrophages (Ziegler
et al., 2005). A suppressed Th-2 response, which would otherwise orchestrate the
humoral immune response, could also result (Wong et al., 2004a).

In search of an explanation for the absent IFN-b response, it has been found
that SARS-CoV blocks a step after the early nuclear transport of IRF-3, a key
IFN-b gene transcription factor (Spiegel et al., 2005). Another cellular signaling
pathway affected is the activation of AP-1 by S and N (He et al., 2003; Chang et al.,
2004). N protein activates nuclear factor (NF)-kB in Vero E6 cells but not Vero
cells, HeLa cells, or lung epithelial and fibroblast cell lines (Chang et al., 2004; Liao
et al., 2005b). Other viruses that activate NF-kB include HIV-1, human T-cell
lymphotropic virus type 1, herpes viruses, hepatitis C virus, hepatitis B virus, and
influenza viruses, among others (Santoro et al., 2003). The protean roles of NF-kB
in inflammation, cell proliferation, cell survival, apoptosis, and as a central reg-
ulator of innate and adaptive immune responses, make it an ideal intracellular
target for the virus.

The most important aspect of SARS-CoV evasion of the immune response
occurs by abrogation of intracellular antiviral responses, aptly described as ‘‘in-
tracellular warfare’’ (Krug et al., 2003), which also occurs in most viral infections
(Samuel, 2001; Webby et al., 2004). Vero cells stably expressing MxA (Samuel,
2001), a broad-spectrum anti-RNA virus large GTPase protein induced by IFNs a
and b (but not g), continue to produce the virus, suggesting that SARS-CoV has
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countermeasures against this important defense mechanism (Spiegel et al., 2004).
The adaptive immune system is itself a viral target; direct viral infection of CD4+
and CD8+ lymphocytes (Gu et al., 2005), induction of lymphocyte apoptosis
(Chen et al., 2005a), and the multiple toxic viral molecules that can cause
apoptosis, namely E protein (Yang et al., 2005b), U274 (Law et al., 2005b), U154
(Yuan et al., 2005), U122 (Tan et al., 2004a), and S (Chow et al., 2005). Har-
nessing the power of computational biology, scientists at the Beijing Genomics
Institute are investigating viral virulence and evasion strategies by comparing
SARS-CoV protein motifs with those of known human proteins and other viral
proteins. Toxic motifs were found to be localized to various SARS-CoV proteins
potentially relevant for therapy and vaccine design (Li et al., 2004b). For example,
superantigen-like motifs in the S, E, N, and some accessory proteins are thought
to cause lymphocyte apoptosis by activation in the absence of appropriate co-
stimulatory signals. An enterotoxin motif in S could account for the diarrhea seen
in many SARS victims.

More viral countermeasures may be identified in the future, perhaps including
anti-RNA interference (RNAi). Progress is being made in the application of RNAi-
based therapeutics against SARS-CoV (Zhang et al., 2003; Wang et al., 2004c; Li
et al., 2005a; Shi et al., 2005; Tao et al., 2005; Wu et al., 2005a), in particular the
recent advances in delivery of siRNAs, with the hope of specifically targeting the
scattered and relatively inaccessible lymphocytes and dendritic cells to ameliorate
the assault on the immune system by SARS-CoV (Song et al., 2005a).
Molecular evolution

Comparisons of the genomes of SARS-CoV and SARS-CoV-like animal corona-
viruses from palm civets and a raccoon dog (Guan et al., 2003) revealed that human
isolates of SARS-CoV all shared some deletions not seen in civet SARS-CoV.
Additional polymorphisms were also identified, showing that humanized SARS-
CoV had evolved from civet SARS-CoV (Chen et al., 2005b). These initial efforts
also cataloged important genomic data for comparison with newly discovered
SARS-CoV-like viruses, such as bat-SARS-CoV (Lau et al., 2005) and SL-CoV
Rp3 (Li et al., 2005c). Both of these bat-SARS-CoVs contained the sequences
deleted in humanized SARS-CoV, revealing their even closer kinship with civet
SARS-CoV.

The Chinese SARS Molecular Epidemiology Consortium collected spatially
and temporally diverse specimens from humans and animals to study SARS-CoV
evolution (Chinese, 2004). Several major SARS-CoV genotypes and 299 single-
nucleotide variations (SNVs) were discovered among 63 sequences studied. Certain
SNVs, for example, the second and third nucleotides of codon 479 of S (22927 and
22928) created the so-called multiple substitution codons, which have a chance
occurrence of zero, pointing toward their development by natural selection.
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Another observation was the phenomenon of G+C enrichment (Song et al.,
2005b), thought to be metabolically expensive for intracellular pathogens (Rocha
and Danchin, 2002), but which also could be due to pressure from host sabotage
akin to G-T editing by host APOBEC3 family proteins, again suggesting adaptive
pressure rather than random mutations. Genotyping based on SNVs in 5 loci
(17564, 21721, 22222, 23823, and 27827) defined civet SARS-CoV (GACGC), an
early GACTC motif in human isolates of SARS-CoV, GGCTC, or GATTC motifs
in the middle of the epidemic, and a late TGTTT motif that has corresponding non-
synonymous changes in ORF1b, S and the non-coding X3 (ORF6 or ORF7)
regions (Liu, 2005). Similar changes occurred in the evolution of the three most
significantly variable proteins S, sars3a (U274), and nsp3 (PL2pro), as the virus
adapted to humans (Kan et al., 2005; Song et al., 2005b). Sequence deletions were
observed in the dominant human strain, including entire ORFs specifying group-
specific accessory proteins, such as a 29-nucleotide deletion in the ORF8 of civet
SARS-CoV, creating ORF8a and ORF8b. An uncommon strain with limited range
isolated early in the epidemic had an 82-nucleotide deletion in ORF8a, similar to
animal SARS-CoV isolated in farmed civets in Hubei province, China (Chinese,
2004). Yet another strain isolated late in the epidemic in Hong Kong in May 2003
lacked a 415-nucleotide sequence corresponding to the entire ORF8a and ORF8b
(Poon et al., 2004a).

These and other data indicate that there was a rapid viral genomic adjustment
to the human host early in the epidemic, particularly at specific mutational hotspots
in the receptor-binding region. This slowed in the middle of the epidemic, with late
changes producing strong purifying selection (Chinese, 2004; Yeh et al., 2004; Kan
et al., 2005). These investigations also revealed that critical viral adaptations to
humans went down the same evolutionary path in Beijing as earlier in Guangzhou,
with a switch from the GGCTC to the TGTTT motif in patients belonging to the
same cluster (Liu, 2005). Some of these molecular events occurred again in the late
2003 to early 2004 outbreak in Guangzhou (Kan et al., 2005; Song et al., 2005b).
Throughout this period, civet SARS-CoV had been evolving and adapting to civet
cats, producing a higher viral load, confirming that the civet is not its normal
reservoir (Song et al., 2005b). However, given the opportunity, it appeared that
SARS-CoV could establish a reservoir in farmed civets. These findings and the
elucidation of the adaptation of S to hACE2 sharpen our perception of molecular
emergence.

Because the human isolates of SARS-CoV are much more virulent and con-
tagious than the animal strains, it is important for public health officials to quickly
find out which strain(s) they are dealing with in the event of an outbreak. As such,
the genotyping of SARS-CoV has acquired public health significance. Scientists at
the Chinese University of Hong Kong have developed an allelic discrimination
genotyping assay using 50 nuclease probes that has been validated for discriminat-
ing between human and animal strains of SARS-CoV, by comparison with direct
sequencing (Chung et al., 2005).
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Human disease

Transmission

It is thought that SARS-CoV spreads from person to person through mucosal
surfaces with virus-laden body fluids, primarily respiratory secretions (Anon.,
2003a). Tears (Loon et al., 2004; Tong and Lai, 2005) and sweat (Ding et al., 2004)
have also been found to contain SARS-CoV RNA, although their role in disease
transmission is unknown. Coughing as a means of airborne dissemination was
difficult to prove (Seto et al., 2003; Tong, 2003), but was demonstrated exper-
imentally (Booth et al., 2005). Large droplets emitted by coughing and sneezing and
having a projection range of 1m are believed to have contributed to airborne
transmission (Fowler et al., 2004; Yu et al., 2004b, 2005; Booth et al., 2005; Li
et al., 2005f,g; Tong, 2005a), possibly by superspreaders (Edwards et al., 2004);
inadvertent aerosolization of other infected body materials or feces is also thought
to be a possible means of transmission (Yu and Sung, 2004; Yu et al., 2004b).
Fecal-to-oral transmission has not been documented, although viral nucleic acid
has been found in sewage (Wang et al., 2005a). Nuclei acid testing by RT-PCR, if
instituted, theoretically could prevent transfusion-associated transmission during
future epidemics if SARS-Cov is shown to be present in blood from asymptomatic
persons (Schmidt et al., 2004).

Clinical features of SARS

The clinical course has been divided into three phases (Peiris et al., 2003a). Phase 1
correlates with upper respiratory viral replication and viremia. Phases 2 and 3
correlate with lower respiratory tract viral replication, with phase 3 characterized
by functionally critical pulmonary injury, due either to virus alone (Mazzulli et al.,
2004) or in conjunction with immunological damage (Lin et al., 2005b; Matsuyama
et al., 2005).

The incubation period of SARS ranges from 2 to 11 days after exposure, with a
mean of 4.6 days (Leung et al., 2004), and occasionally was as long as 16 days
(Booth et al., 2003; Lee et al., 2003b; Tsang et al., 2003a). The prodrome consists of
flu-like symptoms such as malaise, myalgia, headache, fever, and rigors. Cough as
an initial symptom is present in greater than half of the patients. Coryza and sore
throat are present in a minority of cases. By day 5 (range, 3–7 days), up to 76% of
patients develop exertional dyspnea; chest X-rays reveal opacities in the lungs of
almost all patients, consistent with alveolar and interstitial exudation (Zhong et al.,
2003b). This phase lasts for up to a week. Watery diarrhea developed in 20.4% of
patients admitted to Princess Margaret Hospital, Hong Kong (Kwan et al., 2005a).
A higher incidence of diarrhea was found in the cohort of patients from the Amoy
Gardens (74%) and correlated with higher viral load in stool (Hung et al., 2004).

More than 20% of patients require intensive care, and 13% require ventilatory
support (Tsui et al., 2003).
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Asymptomatic cases were extremely rare during the epidemic (Lai et al., 2005b),
being the rule in the early phase of the epidemic in China, before SARS-CoV had
adapted to the human host (Guan et al., 2003; Lee et al., 2003a). Some elderly
patients were not febrile (Christian et al., 2004); in some cases, the incubation
period and convalescence was protracted. Up to 5.8% of 138 patients in Prince of
Wales Hospital presented with diarrhea and fever without respiratory symptoms
(Leung et al., 2003b).

Children were also infected, although their symptoms and clinical course were
typically mild (Hon et al., 2003; Leung et al., 2003a; Kwan et al., 2004). Pregnancy
did not alter the course of SARS in the mother and perinatal infection has not been
reported (Shek et al., 2003). Children have also presented solely with diarrhea
(Kwan et al., 2005b).

Recovery, if it will occur, begins between 14 and 18 days after disease onset
(Christian et al., 2004). Convalescent patients no longer excrete the virus in stools
(Wang et al., 2005b). In some patients, apparent recovery is followed by exacer-
bation (Peiris et al., 2003a), with arterial oxygen desaturation, and variable degrees
of respiratory impairment or failure. At one year post-infection, one-third of pa-
tients continue to have pulmonary function impairment (Hui et al., 2005; Ong
et al., 2005). Osteonecrosis occurs in a significant proportion of patients who re-
ceive systemic steroids; children can also experience this complication (Chan et al.,
2004a; Griffith et al., 2005).

Clinical laboratory findings

Lymphopenia (Peiris et al., 2003b; He et al., 2005b) and thrombocytopenia are
commonly present (Choi et al., 2003). Decrease of both CD4+ and CD8+
T-lymphocytes occurs early and adversely affects the prognosis (Wong et al.,
2003a). Serum chemistry often reveals elevated lactate dehydrogenase (LDH),
aminotransferase levels, and creatine phosphokinase levels, with LDH being an
independent predictor of mortality (Choi et al., 2003). Initially elevated C-reactive
protein levels were reported to be correlated with poor outcome (Wang et al.,
2004a).

Pathology of SARS-CoV pneumonia

In humans, ACE2 is expressed in the lungs, intestines, testes, kidneys, endothelium,
and heart, and in large part determined the tissue tropism (Donoghue et al., 2000;
Tipnis et al., 2000; Harmer et al., 2002; Leung et al., 2003b; Hamming et al., 2004;
Xu et al., 2005). In respiratory epithelium, ACE2 is expressed only in differentiated
cells (Jia et al., 2005), in particular, ciliated cells (Sims et al., 2005), implying that
bronchioalveolar stem cells (Kim et al., 2005) are poorly infected.

Abundant evidence points to viral infection of pneumocytes as the mechanism of
lung injury (Nicholls et al., 2003; To et al., 2004; Chan et al., 2005b; Shieh et al.,
2005). However, induction of an immune response by viral proteins is also
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implicated in the pathogenesis. For example, the N-terminal aa324–488 and the C-
terminal aa609–688 of S activate AP-1 and MAPKs independent of NF-kB in lung
epithelial cells, monocytes, and fibroblasts in vitro leading to induction of IL-8
(Chang et al., 2004), consistent with observations that IL-8 and IL-2 levels are
elevated in patients with SARS (Lee et al., 2004). In turn, IL-8 recruits neutrophils to
the lungs, thereby facilitating SARS-CoV entry into pneumocytes by elaboration of
proteases (Chang et al., 2004; Wong et al., 2004a; Matsuyama et al., 2005; Tang
et al., 2005).

Host factors appear also to contribute to diffuse alveolar damage. The peptide
hormone angiotensin II, positively and negatively regulated by ACE (product of
ACE1 gene) and ACE2, respectively, has been shown to participate in spike-in-
duced diffuse alveolar damage in mice (Imai et al., 2005; Kuba et al., 2005; Nicholls
and Peiris, 2005). This explains why SARS patients carrying the D allele (deletion
involving intron 16) polymorphism of the ACE1 gene, which is associated with
higher level of sACE, are more prone to hypoxemia (Itoyama et al., 2004). The D
allele, by increasing sACE, results in higher angiotensin II levels and hence sus-
ceptibility to injury by SARS-CoV S. ACE2 is protective by inactivating angio-
tensin II (Imai et al., 2005; Nicholls and Peiris, 2005). Interrupting the
renin–angiotensin system protected mice from exacerbation of lung injury aggra-
vated by injection of S (Kuba et al., 2005). These studies showed how viral proteins
can tip the balance in normal physiology and cause disease. The therapeutic im-
plications for acute respiratory distress syndrome (ARDS), beyond the respiratory
damage caused by SARS-CoV, was noted, but an explanation is needed for the
generally mild infections of HCoV-NL63, which also utilizes ACE2 (Nicholls and
Peiris, 2005). Perhaps the similarity is limited between human and murine patho-
physiology in this infection.

These viral and host factors cannot account for cases showing apparent im-
provement followed later by deterioration (Peiris et al., 2003a). One school of
thought incriminates the innate immune system. Peiris et al. investigated the alveolar
macrophages, sentinels of the lower respiratory tract (Cheung et al., 2005). They
found that cultured macrophages were infected (as evidenced by translated N pro-
tein) but not supportive of SARS-CoV replication. In addition, whereas macrophages
infected by HCoV-229E and influenza A (H1N1) produce IFN-b, there is no evidence
of induction of IFN-b in SARS-CoV-infected macrophages. Instead, there is elab-
oration of chemokines CXCL10/IFN-inducible protein 10 (IP-10) and CCL2/mon-
ocyte chemotactic protein 1 (MCP-1), possibly explaining aspects of the pathogenesis.

An autoimmune explanation akin to influenza virus-induced Goodpasture
syndrome, and dengue hemorrhagic fever and dengue shock syndrome, has been
suggested (Lin et al., 2003a). Anti-S2 antibodies were discovered in convalescent
sera that cross-reacted with lung epithelial cells. These antibodies were reported to
be cytotoxic to type-2 pneumocytes and were not found in non-SARS pneumonia
patients (Lin et al., 2005b). Translating this into therapeutic terms, these studies
suggest that steroids and plasmapheresis might be tried to correct these pathoge-
netic mechanisms.
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Histologically, the lungs have evidence of patchy ‘‘diffuse’’ alveolar damage
with a mixed inflammatory infiltrate, edema, microthrombi (Lang et al., 2003) and
hyaline membrane formation (Ding et al., 2003; Franks et al., 2003; Ksiazek et al.,
2003; Nicholls et al., 2003). SARS-CoV has been identified within fibrin, ma-
crophages, and type-1 and type-2 pneumocytes by immunohistochemistry (Chan
et al., 2005b), in situ hybridization (To et al., 2004; Chan et al., 2005b; Xu et al.,
2005), and electron microscopy (Nicholls et al., 2003; Shieh et al., 2005). Desqua-
mation of type-1 pneumocytes with proliferation of type-2 pneumocytes were con-
sistently present (Franks et al., 2003; Griffiths et al., 2005). Multinucleated type-2
pneumocytes and macrophages similar to those observed in cell cultures were
sometimes found (Franks et al., 2003).

SARS-CoV-infected cells displaying S on the surface fuse with adjacent cells
expressing hACE2 (Petit et al., 2005), resulting in a little-appreciated route by
which adjacent cells appear to become infected by accretion, even before the release
of mature progeny virus. The nuclei may be enlarged and nucleoli prominent, but
intranuclear inclusions have not been observed (Ksiazek et al., 2003), consistent
with the fact that SARS-CoV replicates in the cytoplasm. When healing begins, it is
accompanied by squamous metaplasia (Franks et al., 2003) and fibrosis in some
patients. Pneumomediastinum has been reported in 10% of patients, unrelated to
intubation or positive pressure ventilation (Peiris et al., 2003a; Chu et al., 2004b).

Extrapulmonary pathology

Although enteric infections by SARS-CoV were common in SARS patients and
viral replication in the g.i. tract was documented, morphological changes there were
minimal (Leung et al., 2003b; Chan et al., 2005b). In patients with lymphopenia,
lymphoid depletion was observed in the splenic white pulp and in mucosa-associated
lymphoid tissue of the g.i. tract (Ding et al., 2003; Zhong et al., 2003a; Tse
et al., 2004; Gu et al., 2005). Striking hepatic mitotic activity was reported in two
patients (Chau et al., 2004). Proof of SARS-CoV infection of the liver, however, has
remained elusive (Chan et al., 2005b). Evidence of systemic vasculitis was reported in
patients who died in a Chinese hospital (Ding et al., 2003). Recently, immune-
mediated orchitis was described in men who died from SARS. Unlike mumps
orchitis, which is usually (but not always) unilateral, the involvement was bilateral
and appeared to target the germ cells, with the possibility of reduced fertility in men
who recovered from the infection (Xu et al., 2005).

Immune response

The innate immune response to SARS-CoV infection included elaboration of
acute-phase proteins, chemokines, inflammatory cytokines, and C-type lectins such
as MBL. Ip et al. showed that MBL prevents SARS-CoV infection of FRhK-4 cells
in vitro, in accordance with the non-specific role of this lectin that functions before
the antibody response (Ip et al., 2005). They further investigated 569 SARS patients
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and demonstrated significantly lower serum levels of MBL and a significant prev-
alence of low-secretor genetic polymorphism than in 1188 controls. Similar con-
clusions were drawn in a genetic association study in northern China involving 352
SARS patients and 392 control subjects. Reduced expression of functional MBL
was attributed to the codon 54 variant (Zhang et al., 2005b). Leikins et al. showed
that the y-defensin retrocyclin 2 inhibits influenza virus entry into cells by cross-
linking surface glycoprotein and that the related MBL and human b-defensin 3
similarly inhibited the step that precedes viral entry (Leikina et al., 2005).

Evidence suggests that adaptive immunity in convalescent patients confers not
only lasting protection against SARS-CoV, but also determines the outcome of
infection (Zhang et al., 2005c). Convalescent patients develop IgG-class neutral-
izing antibodies against S protein (Traggiai et al., 2004; Lau and Peiris, 2005;
Temperton et al., 2005). These antibodies prevent infection of permissive cell lines
in vitro. At 7–8 months post-infection, the titer of neutralizing antibody to SARS-
CoV remains stable (Traggiai et al., 2004; Chan et al., 2005a), suggesting the
potential for lasting immunity and the possibility that developing an effective vac-
cine might be feasible.

Virologic diagnosis

The identification of SARS-CoV played a crucial role in the development of re-
liable diagnostic tests. These diagnostic tests were important because viral culture
was only available in a few BSL3 laboratories. RT-PCR was developed as soon as
SARS-CoV was identified (Drosten et al., 2003a; Ksiazek et al., 2003; Peiris et al.,
2003b). At the same time, real-time quantitative reverse transcriptase-PCR (qRT-
PCR) assays using intercalating dye, or in conjunction with single or, later, dual
TaqMan probes, resulted in a significant increase in sensitivity and throughput
compared to conventional RT-PCR (Drosten et al., 2003a; Poon et al., 2003; Jiang
et al., 2004; Poon et al., 2004b; Yip et al., 2005). WHO network laboratories made
available various primers and protocols for these tests (http://www.who.int/csr/
sars/primers/en/index.html). Specimens from the upper respiratory tract, sputum,
blood, stool, and urine have all yielded viral nucleic acid at various stages of the
illness (Grant et al., 2003; Ng et al., 2003; Tong et al., 2003; Chan et al., 2004d;
Hung et al., 2004; Ng et al., 2004). Viral load data generated from qRT-PCR were
later shown to correlate with outcome (Chu et al., 2004c; Hung et al., 2004). For
laboratories with fewer resources and those concerned about the shelf life of di-
agnostic kits, a highly sensitive gel-based RT-PCR protocol targeting the protein-
ase gene has been useful (Inoue et al., 2005).

Tests for antibodies to SARS-CoV, however, were plagued by concerns about
sensitivity (only 60% positivity) (Chan et al., 2004b) and specificity. Peiris, Ksiazek,
and Drosten used indirect fluorescence antibody (IFA) and cell culture extract-
based ELISA assays to demonstrate seroconversion and a progressive increase in
antibody titers in SARS (Drosten et al., 2003a; Ksiazek et al., 2003; Peiris et al.,
2003b). IFA is specific (Chan et al., 2004c), but labor intensive and has an

http://www.who.int/csr/sars/primers/en/index.html
http://www.who.int/csr/sars/primers/en/index.html
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additional theoretical risk because virus-infected cells are used on the microscopic
slides. ELISA assays using Vero cell extracts may yield false-positive results be-
cause of autoantibodies in patients with autoimmune disorders as well as in some
normal subjects (Wang et al., 2004b). Recombinant N-based ELISA tests (Woo
et al., 2004b) have cross-reacted with other HCoV. Protein immunoblotting against
N and S could be used in conjunction with these other assays by identifying the
false-positive results (Woo et al., 2004a). Recently, Chan et al. showed that SARS-
CoV induces an anamnestic response to HCoV OC43, 229E, and NL63, demanding
care in the interpretation of serological findings (Chan et al., 2005a).

Employing Pepscan analyses against convalescent patient sera and vaccine-
induced laboratory animal antisera, He et al. identified regions in the M protein
(M1-31 and M132-161) unique to SARS-CoV. Recombinant peptides from those
regions have been exploited to overcome cross-reactivity in a recently developed
ELISA test that correctly discriminated 40 SARS convalescent sera from 30 control
sera (He et al., 2005a). Other advances led to the use of pseudotyped virus for the
neutralization assay in lieu of SARS-CoV (Giroglou et al., 2004; Han et al., 2004;
Yang et al., 2004b; Temperton et al., 2005).

Because of low sensitivity, none of the ‘‘rapid tests’’ can exclude SARS in a
suspected case, and the testing of different types of specimens collected at different
times is now recommended (Peiris et al., 2003c; Bermingham et al., 2004). The
prolonged infectivity of respiratory and stool specimens demand careful handling
of specimens (Lai et al., 2005a). Microarray and investigational plasma proteomic
approaches to diagnosis [17, 82, 88] are under development. Issues in molecular
diagnosis have been reviewed elsewhere (Poon et al., 2004a; Mahony and Ri-
chardson, 2005).

Drug therapy

The number of pharmacological agents with a significant selectivity index (CC50

divided by EC50) against SARS-CoV has increased as knowledge of SARS-CoV
biology has increased (Holmes, 2003). Thomas Lai has reviewed the therapeutic
experience during the SARS epidemic (Lai, 2005).

Ribavirin

Ribavirin is a purine nucleoside analog that interacts with viral RNA polymerases
as well as having other poorly characterized activities against viruses (Parker,
2005). In therapy of the hepatitis C virus, ribavirin is thought to act by inhibition of
GTP synthesis by an effect on inosine monophosphate dehydrogenase, thereby
limiting viral RNA synthesis, and by enhancement of Th1 responses, which may
assist viral clearance (Thomas et al., 1999). For SARS-CoV, however, its in vitro

activity is inconsistent (Morgenstern et al., 2005), and it has had no demonstrable
clinical benefit in uncontrolled series of patients (Avendano et al., 2003; van
Vonderen et al., 2003). In addition to the fact that it is a teratogen, it can cause a
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dose-dependent but reversible hemolytic anemia (Knowles et al., 2003). Its con-
tinued empirical use in SARS is not recommended (Knowles et al., 2003; van
Vonderen et al., 2003).
Other antiviral therapies

Glycyrrhizin (Cinatl et al., 2003) and its derivatives (Wu et al., 2004; Hoever et al.,
2005) have shown promising selective activity (selective activity index >33) against
SARS-CoV. Its antiviral activities may be related to its effects on cellular signaling
pathways, transcription factors (AP-1, NF-kB), and its upregulation of inducible
nitrous oxide synthase (Cinatl et al., 2003). Moreover, its effect on lowering plasma
membrane fluidity and hence impeding viral entry, is consistent with its observed
broad antiviral activity (Harada, 2005).

Chloroquine, discovered by the German chemist Hans Andersag in 1934 and
used for the treatment of malaria, amebiasis, HIV, and autoimmune diseases, was
recognized to have activity against SARS-CoV in vitro, with a selectivity index of
30 against SARS-CoV in Vero E6 cell culture (Savarino et al., 2003; Keyaerts et al.,
2004; Vincent et al., 2005). Chloroquine elevates endosomal pH and interferes with
terminal glycosylation of ACE2 (Vincent et al., 2005), thus having both non-spe-
cific and specific anti-SARS-CoV activities.
Drugs that target viral proteases

Inhibiting SARS-CoV 3CLpro prevents the assembly of a functional replication
complex (Bacha et al., 2004; Lee et al., 2005a; Martina et al., 2005). Conservation
among coronaviruses suggests that a wide-spectrum inhibitor against the main
protease is feasible (Yang et al., 2005a), which may be useful against the several
related strains of SARS-CoV-like viruses (Lau et al., 2005; Li et al., 2005c). Ho-
mology modeling has revealed remarkable conservation of substrate-binding sites
among SARS-CoV, HCoV-229E, and PEDV (Anand et al., 2003). However, one
such inhibitor of viral proteases, AG7088, did not show in vitro activity at the
concentration of 10 mM (Wu et al., 2004).

During the epidemic in Guangzhou, clinicians observed that HIV-positive pa-
tients on highly active anti-retroviral therapy (HAART) appear to be protected
against SARS (Chen et al., 2003; Chen and Cao, 2004). In Hong Kong, the utility
of lopinavir–ritonavir combination therapy was investigated in a multicenter ret-
rospective matched cohort study as initial and rescue therapy for SARS (Chan
et al., 2003). Patients who received this therapy as initial treatment for SARS had
better outcome (reduced death and intubation rate) compared with an uncontrolled
group, with a lower rate of use of methylprednisolone at a lower mean dose. The
results were similar in a subset of those patients reported separately (Chu et al.,
2004a). These clinical trials are in agreement with structural studies that predicted
the utility of lopinavir, ritonavir, niclosamide, and promazine against 3CL pro
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(Zhang and Yap, 2004), with lopinavir and nelfinavir also showing in vitro activity
(Chen et al., 2004a; Chu et al., 2004a; Yamamoto et al., 2004).
Therapy by blocking viral entry

The interactions between SARS-CoV and host cell involve binding, conformational
change of S2, and membrane fusion, all of which are possible targets for therapy.
Novel chimeric immunoglobulins such as CD4-IgG (Arthos et al., 2002), have
shown benefit in treating HIV-1, and similarly, multivalent sACE2-immuno-
globulin might be efficacious against SARS-CoV (Dimitrov, 2003), which can be
improved by using residues 90–93 of civet ACE2 (Li et al., 2005e).

Because of the similar mechanism by which SARS-CoV S2 and HIV-1 gp41
mediate viral entry, S protein HR-derived peptides have been predicted to inhibit
(Kliger and Levanon, 2003) and later shown to inhibit (Bosch et al., 2004) SARS-
CoV infection of Vero cells. Recombinant proteins containing HR1 and HR2 were
further shown to have potent inhibitory activities on entry of the HIV/SARS
pseudoviruses into cells (Ni et al., 2005). These proteins are cheaper to produce
than synthetic peptides and are more stable. Cathepsin L inhibitors could also be
studied as entry inhibitors (Simmons et al., 2005).
Monoclonal antibody therapy

Monoclonal antibody with viral neutralizing activity has therapeutic potential
against SARS and other viruses (Zhang et al., 2005d) and has been shown to be
capable of preventing neonatal respiratory syncytial virus infection (Johnson et al.,
1997). Monoclonal antibodies can protect ferrets against SARS-CoV infection (ter
Meulen et al., 2004). Convalescent serum has been used in SARS patients, though
its efficacy is unknown, and in experimentally infected mice, with possible activity
against SARS-CoV infection in the latter (Wong et al., 2003b; Traggiai et al., 2004;
Yeh et al., 2005).

An improved B-cell immortalization technique employing a CpG oligonucleo-
tide (CpG 2006) as a polyclonal B-cell activator, was used with Epstein–Barr virus
and irradiated allogeneic mononuclear cells to study the B-cell memory of a con-
valescent SARS patient. Neutralizing antibodies from one stable B-cell clone (S3.1)
were found to protect mouse lungs from SARS-CoV challenge (Traggiai et al.,
2004). Thirty-five neutralizing monoclonal antibodies were isolated in this study.

Eight recombinant human single-chain variable region fragments (scFvs)
against the receptor-binding region of S protein were identified (Sui et al., 2004,
2005). One of these engineered monoclonal antibodies (80R IgG1) showed potent
neutralization of SARS-CoV in in vitro and animal studies.
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Interferons

The IFN signaling pathway is one of the targets of SARS-CoV (Cheung et al., 2005;
Law et al., 2005a; Spiegel et al., 2005), suggesting that it may play an important role
in host defense against SARS-CoV. Not unexpectedly, type-I IFN (a/b) but not
type-II INF (g) have shown potent inhibition of SARS-CoV infection and repli-
cation (Zheng et al., 2004a). Swedish scientists found that natural IFN-a and IFN-b
have more potent in vitro activity than recombinant IFN-a (Chen et al., 2004b). A
CpG oligodeoxynucleotide (BW001) strongly stimulated IFN-a secretion by den-
dritic cells and peripheral blood mononuclear cells; the supernatant fluid from these
cells protected Vero cells from SARS-CoV infection (Bao et al., 2005). Macaques
were protected by prophylactic use of pegylated IFN-a (Haagmans et al., 2004).
Post-exposure prophylaxis of SARS by IFN yielded intermediate results. Uncon-
trolled clinical experience with IFN in the treatment of SARS has been reported.
However, no randomized double-blind controlled trial has yet been conducted.

Vaccines

No effective vaccine has been developed so far. However, there is some evidence to
suggest that successful vaccination may be possible. Molecular emergence studies
have shown that SARS-CoV adapts to human ACE2, which presumably is not sub-
ject to much evolutionary pressure, and therefore it is likely that SARS-CoV making
subsequent jumps to humans from animals will be covered by a vaccine developed
against the 2003 human isolate (Lau et al., 2005; Li et al., 2005c; Zhi et al., 2005).

NIAID researchers engineered attenuated bovine-human parainfluenza virus
(BHPIV3) to express various SARS-CoV structural proteins (Buchholz et al.,
2004). They found that S, but not the other structural proteins (M, E, N), elicited
neutralizing antibodies that protected the lungs of hamsters against SARS-CoV
(Roberts et al., 2005). When a similar vaccine was given by the nasal route to
African green monkeys (Cercopithecus aethiops), they shed no virus from the upper
respiratory tract after challenge with SARS-CoV (Bukreyev et al., 2004).

Although the receptor-binding region of SARS-CoV is the most important
target for neutralizing antibodies, the S2 ‘‘region’’ (Leu 803 to Ala 828), conserved
across 45 viral isolates and containing a neutralizing antigenic determinant, was
able to elicit neutralizing antibodies that protected some but not all small labo-
ratory mammals against infection with SARS-CoV pseudovirus (Zhang et al.,
2004). Over 100 potential cytotoxic T-lymphocyte (CTL) vaccine candidates that
cover >99% of all individuals of all major human populations were identified
within 6 months of the publication of the virus sequence (Sylvester-Hvid et al.,
2004).

Antibody-enhanced viral pathogenicity is generally a concern with coronavi-
ruses (Zhang et al., 2005a). With SARS-CoV infection, ferrets get a more severe
hepatitis when first given a vaccinia-based recombinant SARS vaccine (Czub et al.,
2005). More recently, NIAID scientists revealed that a pseudovirus expressing a



Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 69
partially humanized strain S (GD03T13) (GZ-03-01, Fig. 1 of Ref. (Song et al.,
2005b) is markedly resistant to neutralization by immune IgG purified from mice
vaccinated against S from strains derived from human isolates (Urbani strain)
(Yang et al., 2005c). Antibodies raised against the human strain mediated enhanced
entry of a lentiviral vector expressing civet S, but resistance to IgG enhancement of
civet S is not limited to vaccinated mice; human monoclonal antibodies (S3.1, S111,
S117) created from the immune repertoire of a convalescent patient (Traggiai et al.,
2004) also exhibited these phenomena. Thus, a vaccine against humanized SARS-
CoV might enhance the pathogenicity of a normally low-pathogenic animal SARS-
CoV-like virus.

Another study showed that for SARS-CoV, which epitope not to employ in a
vaccine is important. Interaction of antibody with conformational epitopes in the
receptor-binding region was shown to be responsible for antibody-enhanced viral
pathogenicity (Yang et al., 2005c). By deleting portions of S (truncated at aa1153),
it was seen that the antibodies it induced did not promote enhancement. One
monoclonal antibody (S110) was also found that did not mediate enhancement.
This is consistent with other studies that have shown cross-reactivity between anti-
S2 (aa927–937 and aa942–951) and lung cell antigens (Jiang et al., 2005a; Lin et al.,
2005b).

Inactivated SARS-CoV can elicit neutralizing antibody (Takasuka et al., 2004;
Tang et al., 2004) and cellular immunity. Mice vaccinated with inactivated SARS-
CoV have been protected against challenge with intranasal SARS-CoV (Spruth
et al., 2005).

Safety concerns about inactivated SARS-CoV vaccines are those of any inac-
tivated vaccines, and they include the possibility that viral nucleic acid might re-
main infectious, as in the early days of the inactivated poliovirus vaccine (Katz,
2004; Offit, 2005). Another concern is the autoantibodies induced when Vero cells
were used to cultivate SARS-CoV for experimental vaccines; the SARS-CoV neu-
tralizing antibodies cross-reacted with an abundant human serum glycoprotein
asialo-orosomucoid (ASOR) (Wang and Lu, 2004). An inactivated SARS-CoV
vaccine using alum adjuvant has entered into a clinical trial in China, but the results
are not yet available (Enserink, 2004).

The most attenuated SARS-CoV would be a genetically engineered version that
could express proteins but that would not be transmissible from cell to cell (Holmes,
2003). Cross-reacting epitopes and toxic viral proteins (Chang et al., 2004; Imai et al.,
2005; Kuba et al., 2005) would need to be excised or edited through genetic engineering
techniques such as the construction and manipulation of full-length SARS-CoV
cDNA (Yount et al., 2002, 2003).

Vectors for such an engineered vaccine could include a weakened version of the
human parainfluenza virus 3, called BHPIV3. It is non-invasive (limited to the
mucosa) and not known to recombine, unlike the coronaviruses. It replicates ef-
ficiently in children and with some engineering, might also replicate in non-naı̈ve
adults (Buchholz et al., 2004; Bukreyev et al., 2004), potentially yielding a vaccine
with broad applications.
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Other possible vectors such as adenovirus have been used to express SARS-CoV
genes, and have been used to vaccinate macaque monkeys, eliciting neutralizing an-
tibody and N-specific T-cell response (Gao et al., 2003). A highly attenuated vaccinia
virus Ankara modified to express full-length S was given intranasally or intramus-
cularly to mice; it elicited cross-transferable (to other mice) humoral immunity that
protected the upper as well as lower respiratory tracts against SARS-CoV (Bisht et al.,
2004). Virus-like particles with no viral nucleic acid but containing S, M, and E
proteins have been produced in Taiwan and the UK using insect cells infected by
recombinant baculoviruses (Ho et al., 2004; Mortola and Roy, 2004), and might be
suitable for study as vaccines.

DNA vaccines have been used to elicit protective humoral and cellular immu-
nity against SARS-CoV in a mouse model (Yang et al., 2004b). A gene-based
vaccine has also been tested, boosted by inactivated virus to broaden the immune
response (Kong et al., 2005; Talaat and Stemke-Hale, 2005). A combination of
nucleocapsid DNA vaccine against SARS-CoV with N protein has been shown to
be required to generate antibody and a CD8+ response, and the presence of
adjuvant determined whether humoral or cellular immunity is elicited (Azizi et al.,
2005). Immunization with plasmid DNA carrying various S fragments have been
shown by scientists at Hong Kong University to elicit antibodies in some mice, with
the S1 fragment promoting a Th1-mediated antibody isotype switching. Both anti-
S1 and anti-S2 antibodies were required for virus neutralization (Zeng et al.,
2004a). One study of an experimental DNA vaccine against SARS-CoV showed
that N alone was sufficient to induce antibody and CTL responses in mice (Zhu
et al., 2004). In another study, N sequences linked to those specifying calreticulin
(enhances antigen presentation to CD8+ T-cells) was efficacious in inducing
N-specific humoral and cellular immune responses and in reducing the viral titer in
mice challenged with N-expressing vaccinia virus (Kim et al., 2004). In mice im-
munized with plasmids, S, N, and M DNA vaccines were all able to elicit immune
responses, with S and M eliciting more potent humoral and cellular immune
responses, respectively (Wang et al., 2005c).

Most experience with DNA vaccines in other human viral diseases have been
limited to various animal models (Gurunathan et al., 2000), although human
studies have begun recently. With careful design, safety could be assured because
integration into the genome appears to happen much less often than spontaneous
mutations. Targeted delivery of nucleic acids will enable wider application of DNA
vaccines (Song et al., 2005a). The ability of DNA vaccines to elicit both cellular and
humoral immune responses, and their stability, simplicity, and versatility makes
them attractive for immunization against intracellular pathogens such as SARS-
CoV. Recent advances in this area have been reviewed (Taylor, 2005).

Implications for the future

A significant public health question is whether SARS-CoV will return. Many in-
fectious diseases have reemerged in recent history (Fauci, 2005). SARS-CoV made
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a fleeting reemergence in the winter of 2003–2004 (Liang et al., 2004; Normile,
2004; Song et al., 2005b). With the discovery that the bat is the natural reservoir, it
appears likely that SARS-CoV will eventually reemerge. However, the prospect of
another large outbreak is low because an animal strain would have to adapt to
humans before becoming epidemic, although it is not impossible that human isolate
of SARS-CoV could have escaped back to the wild. Human strains of SARS-CoV
bind efficiently to civet ACE2 (Li et al., 2005e). It might also bind bat ACE2 with
avidity. The ease of species jumping as humans move into areas with SARS-CoV is
suggested by the finding of SARS-CoV in rats, and the identification of serolog-
ically positive civets raised for the pet market in a farm in Shanwei, Guangdong. In
the latter case, seed animals for that farm were bought at various markets in the
province (Tu et al., 2004). Bats, civets, rodents, and other small mammals will need
to be included in the surveillance for the presence of SARS-CoV.

Molecular emergence studies showed that most of the adaptations required for
humanization of SARS-CoV took place within a short span early in the epidemic.
This indicates a narrow window of opportunity for prevention of reemergence of
SARS or the emergence of other viral infections. We missed the opportunity to
prevent the emergence of SARS but managed to limit the damage. The conditions
that can lead to reemergence are over-development and habitat destruction, ex-
cessive civet consumption, poor hygiene in markets and farms, etc.

Because poor market hygiene and management were major factors in the recent
epidemic, major effort should be made to rectify the situation. Culinary culture
needs to be modified in the interest of public health. Civets have been removed
from the menu in Guandong and should remain so. Animals raised for food must
be provided care and veterinary service, and wild animals should be left alone.
Anthropocentric modification of the natural environment can lead to serious con-
sequences (Dobson, 2005).

The careful design of hospitals (Li et al., 2005g), housing projects, and public
places, with the unseen microbe in mind and with a view of providing clean
breathing air will bring about the next quantum leap in public health (Tong and
Liang, 2004; Tong, 2005a). Within health care facilities, awareness of infection
control should be regularly refreshed so as to convert health care workers from
‘‘vectors’’ to infection controllers (Lloyd-Smith et al., 2003).

Amidst the exciting progress in vaccine development and drug discovery, we
should be mindful that vaccines seldom achieve perfect immunity, and drug re-
sistance is to be expected. However, the best time to face up to an emerging
infectious disease is ‘‘now’’—even before the outbreaks occur (Zhong et al., 2003b;
Kuiken et al., 2005). Vaccines and drugs would be in the second line of defense,
with public health measures being the first. Prevention of viral adaptation to the
human receptor as a strategy against emerging viral diseases is the single most
important translation from molecular emergence studies to public health man-
agement.

Last but not least, physicians must serve as sentinels for danger from this virus
(Reilley et al., 2003). The lessons learned from this epidemic reinforced the need to
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strengthen surveillance and international cooperation, to maintain/upgrade time-
honored infectious disease control practices, and to invest in rapid response ca-
pabilities such as the WHO. A paradigm shift to a better balance between defense
(treatment) and preempting (prevention) is in order.
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