

Joint HIV and hepatitis C virus phylogenetic analyses signal network overlap among women engaged in sex work and men who purchase sex

International Journal of STD & AIDS 2025, Vol. 36(7) 542–549
© The Author(s) 2024

Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/09564624241287259 journals.sagepub.com/home/std

Stephanie Melnychuk^{1,2}, Olga Balakireva^{3,4,**}, Daria Pavlova⁴, Anna Lopatenko⁵, Leigh M McClarty¹, Lisa Lazarus¹, Nicole Herpai¹, Michael Pickles⁶, Sharmistha Mishra^{7,8,9,10}, Marissa L Becker¹, Paul Sandstrom^{2,11,*}, François Cholette^{2,11,*} and on behalf of the *Dynamics* study team

Abstract

Background: Transmission of HIV and hepatitis C virus (HCV) are heavily influenced by complex interactions within sexual or injecting networks where risk behaviors occur. In Ukraine, women engaged in sex work (WSW) and men who purchase sex (MWPS) are disproportionately affected by both viruses. The aim of our study was to the investigate the influence of underlying networks on transmission of HIV and HCV.

Methods: A cross-sectional integrated bio-behavioural survey was implemented among 560 WSW and 370 MWPS representative of sex work hotspots in Dnipro, Ukraine (December 2017 to March 2018). A portion of the HIV reverse transcriptase gene (n = 13; 62% WSW, 38% MWPS) and HCV NS5B gene (n = 46; 70% WSW, 30% MWPS) were sequenced from dried blood spot specimens. Tip-to-tip distances on phylogenetic trees were used to infer phylogenetic clusters for identifying potential transmission clusters.

Results: Phylogenetic analyses identified two HIV clusters containing four sequences (50% WSW; 50% MWPS) and 11 HCV clusters containing 31 sequences – the majority comprising infections in WSW (83.9%). Nearly half (45.4%) of HCV clusters contained at least one WSW with a history of injecting drugs.

Conclusions: Joint analyses of HIV and HCV signal overlap in sex work and injecting networks in Ukraine, suggesting implications for the comprehensive coverage of prevention programs for WSW including harm reduction services.

Corresponding author:

François Cholette, National Sexually Transmitted and Blood-borne Infections Laboratory, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, 745 Logan Avenue, Winnipeg, MB R3E 3L5, Canada. Email: francois.cholette@phac-aspc.gc.ca

¹ Institute for Global Public Health, Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada

² National Sexually Transmitted and Blood Borne Infection Laboratory, National Microbiology Laboratory at the J.C. Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada

³ Institute for Economics and Forecasting, Ukrainian National Academy of Sciences, Kyiv, Ukraine

⁴Ukrainian Institute for Social Research After Oleksandr Yaremenko, Kyiv, Ukraine

⁵ Dnipropetrovsk Oblast Medical Centre of Socially Significant Diseases, Dnipro, Ukraine

⁶ Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK

⁷MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada

⁸ Department of Medicine, University of Toronto, Toronto, ON, Canada

⁹ Institute of Medical Sciences and Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada

¹⁰ ICES, Toronto, ON, Canada

¹¹Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada

^{*}These senior authors contributed equally to this work.

^{**}In memoriam

^{****} Membership of the *Dynamics* Study Team is provided in the Acknowledgments.

Conducting phylogenetic analyses with HCV may provide a more complete appraisal of underlying transmission networks than HIV alone, particularly in the context of high HIV treatment coverage yielding viral suppression.

Keywords

HIV, hepatitis C, sex workers, epidemiology, high-risk behavior

Date received: 16 May 2024; accepted: 9 September 2024

Introduction

Women engaged in sex work (WSW) have increased vulnerability to HIV and other sexually transmitted and bloodborne infections (STBBIs) due to structural factors, including violence, unsafe working conditions, stigma, and criminalization, which constrain accessibility and uptake of testing and prevention services. 1,2 Men who purchase sex (MWPS) experience vulnerability to HIV through multiple sexual partners, coinfection with other STBBIs, and a history of injection drug use (IDU)³ in some instances. Barriers to HIV testing, such as fear of stigma, gender norms of masculinity, strength, and control, a lack of HIV knowledge, and an overall shortage of interventions designed to reach this population can exacerbate this risk. ⁴ Transmission of HIV and hepatitis C virus (HCV) are influenced by complex interactions within sexual or injecting networks^{5,6} in which HIV risk behaviors occur among highly connected members⁶ and become normalized, including inconsistent condom use, multiple, concurrent sexual partners, a and needle and syringe sharing.

In Ukraine, individuals involved in sex work are disproportionately affected by HIV and HCV, with prevalence estimated to be 3% and 8% respectively among WSW in 2022¹⁰, and 5% and 13% respectively among MWPS in 2015.11 Research in Ukraine associates most new HIV and HCV infections with IDU. 12 However, an increase in heterosexual transmission of HIV has been observed since 2008¹³, particularly among sexual partners of people who inject drugs (PWID).¹⁴ Treatment and prevention of HIV and HCV remains challenging due to low awareness of nongovernmental organizations offering services, 15 discontinuity of programs and harm reduction initiatives due to unsustainable funding and healthcare reform, 16 and previous conflicts and wars – specifically the protracted conflict in the eastern Donbas region of Ukraine since 2014¹⁷ and Russia's full-scale war in Ukraine beginning in 2022. 18

Here, we characterize HIV and HCV transmission networks using viral phylogenies among WSW and MWPS in Dnipro, Ukraine. Most Ukrainian phylogenetic studies focus on HIV or HCV networks exclusively among PWID, ^{19–23} and to our knowledge, we are the first to infer HIV and HCV transmission networks among WSW and their clients. We conducted HIV and HCV next generation sequencing with the intent of constructing phylogenies to infer potential transmission clusters. Given shared risk behaviors and overlap in social and sexual networks for both viruses, conducting our

phylogenetic study with both viruses allows us to investigate the influence of underlying networks on viral transmission.

Methods

Study setting

Through the *Dynamics* Study, we implemented a cross-sectional bio-behavioral survey among WSW and MWPS in Dnipro, Ukraine from December 2017 to March 2018.²⁴ Following initial geographic mapping, a two-stage sampling design was used to recruit participants at sex work hotspots, as previously described elsewhere.²⁴ WSW aged 14 years or older who self-identified as currently engaged in sex work and MWPS aged 18 years or older who had ever purchased sex were eligible to participate.

Following informed consent, participants completed a questionnaire pertaining to sociodemographics, sex work practices and experiences, HIV and HCV risk behaviours, and utilization of prevention and care services. ²⁴ Participants then underwent rapid testing for HIV (SD Bioline HIV 1/2 3.0, Wantai Rapid Test for Antibody to HIV 1 + 2, and Profitest Rapid Anti-HIV 1/2 Test) and HCV (Wantai Rapid Test for Antibody to HCV), before providing a dried blood spot (DBS) specimen.

Serological testing

All DBS were shipped to the National Sexually Transmitted and Blood Borne Infection Laboratory (Public Health Agency of Canada, Winnipeg, Canada) for subsequent analysis, where serological testing using the AVIOQ HIV Microelisa System (Avioq Inc., Durham, NC) and ORTHO® HCV Version 3.0 ELISA Test System (Ortho-Clinical Diagnostics, Inc., Raritan, NJ, USA) was performed according to the manufacturer's instructions for the purpose of quality control and validating rapid testing results. We attempted viral genomic sequencing on all HIV- and HCV-reactive DBS.

Next generation sequencing and bioinformatic analysis

A portion of the HIV *pol* gene (position 2,074-3,334 on HXB2 accession no. K03455) was amplified in overlapping

protease (PR) and reverse transcriptase (RT) regions using an in-house HIV drug resistance genotyping assay described in supplementary materials. A portion of the HCV NS5B gene (position 8,182-8,610 on strain H77 accession no. AF009606) was amplified using an assay described elsewhere.²⁵

Sequencing libraries were prepared using the Nextera XT DNA library preparation kit (Illumina, San Diego, USA) and conducted using an epMotion 5075t liquid handling station (Eppendorf, Hamburg, Germany). Sequencing was performed on a MiSeq platform (Illumina) with the MiSeq Reagent Kit v2 (300 cycles; Illumina) according to the manufacturer's instructions. Bioinformatics analysis was performed in Geneious 2023.0.4 (https://www.geneious.com) as described in supplementary materials.

Subtyping and phylogenetic cluster analysis

Subtyping of HIV and HCV sequences was performed using IQ-TREE v2.2.0.3²⁶ with references and parameters outlined in supplementary materials.

For each subtype, MAFFT v7.490²⁷ was used to prepare alignments before visualizing in MEGAX v10.0.05.²⁸ Maximum-likelihood tree reconstruction was performed in IQ-TREE v2.2.0.3²⁶ using the automatic best-fitting substitution model and UFBoot²⁹ re-sampling with 100,000 replicates. Accession numbers for background sequences collected from the Los Alamos HIV (https://www.hiv.lanl.gov/) and HCV (https://www.hcv.lanl.gov/) databases, GenBank,³⁰ and BLASTn³¹ are provided as supplementary material (Table S2). Phylogenetic clusters were inferred by tip-to-tip (patristic) distance between sequences on phylogenetic trees. A distance threshold of <0.02 substitutions per site and >50% bootstrap support was used to infer transmission clusters.³² Clusters were visualized and annotated using Cytoscape.³³

Ethics

Ethical approvals were obtained from the Health Research Ethics Board at the University of Manitoba (HS20653 [H2017:097]), Canada; the Ethical Review Committee of the Sociological Association of Ukraine; and the Committee of Medical Ethics of the L. Gromashevsky Institute of Epidemiology and Infectious Diseases at the National Academy of Medical Sciences of Ukraine.

Results

Study population and sequence dataset

A total of 560 WSW (86.0%) and 370 MWPS (88.9%) consented to complete the questionnaire, with all participants except one (99.9%) consenting to provide a DBS sample

(Figure 1). Participant characteristics are presented as supplementary material (Table S1) and elsewhere. 4,15,24,34

Serology identified 25 (2.7%) participants living with HIV, consisting of 16 (64.0%) WSW and 9 (36.0%) MWPS, which was consistent with rapid test results. The HIV PR and RT genes were successfully sequenced from 10 (40.0%) and 13 (52.0%) HIV-reactive DBS specimens, respectively. To maintain largest sample size, RT sequences were used for subsequent analyses. All sequences except one (n = 12, 92.3%) classified as sub-subtype A6, being a singular A1/A2 recombinant omitted from cluster analysis.

Serology indicated 57 (6.1%) participants ever-having acquired HCV, of whom 33 (58.0%) were WSW and 24 (42.0%) were MWPS, consistent with rapid test results. The HCV NS5B gene was successfully sequenced from 46 (80.7%) HCV-reactive DBS specimens, comprising 32 (69.6%) WSW and 14 (30.4%) MWPS. Sequences classified as subtypes 3a (n = 27, 58.7%), 1b (n = 17, 37.0%), and 1a (n = 2, 4.3%). No recombinants were detected.

Sociodemographic characteristics and phylogenetic clusters

Of all *Dynamics* study participants, more WSW (n = 44, 7.9%) than MWPS (n = 14, 3.8%) reported a history of injecting drugs, of which clustering WSW (n = 6, 21.4%) and MWPS (n = 1, 14.3%) exhibit a higher proportion (Table S1).

Of the 13 HIV sequences, four sequences formed two clusters (Figure 2(a)), one comprising only sequences from WSW, and the other comprising only sequences from MWPS. All four (100%) participants reported no history of IDU (Table S1). Of the 46 HCV sequences, 31 formed 11 statistically significant clusters ranging in size from two to eight sequences (Figure 2(b)). Most (9/11, 81.8%) HCV phylogenetic clusters contained exclusively WSW or MWPS sequences, except for two dyad/pairs of HCV subtypes 1b and 1a, consisting of a WSW and MWPS sequence. Seven clusters consisting of 26 WSW sequences comprised the entirety of HCV subtype 3a clusters detected, including the largest eight-sequence cluster detected in our study. Of the 11 HCV clusters, five (45.5%) contained at least one participant who reported IDU in their lifetime.

Discussion

Using cross-sectional data, we have characterized phylogenetic clusters and identified HIV and HCV phylogenies among WSW and MWPS. We found *Dynamics* participants did not cluster based on HIV sequences, but formed phylogenetic linkages based on HCV sequences. Although low HIV prevalence and number of sequences might explain the lack of phylogenetic clusters, the recruitment of WSW and MWPS from similar hotspots would suggest any observed

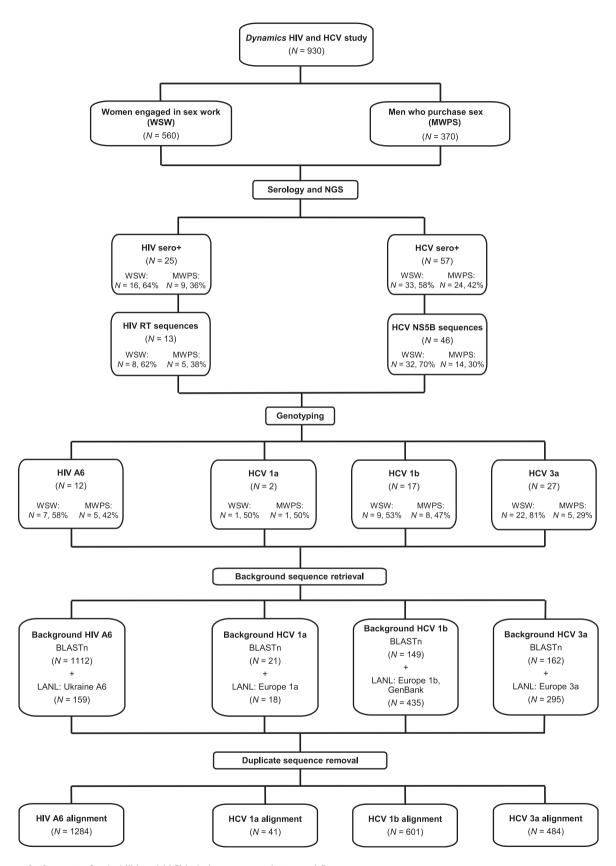
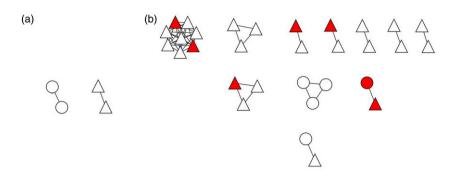



Figure 1. Dynamics Study HIV and HCV phylogenetic analysis workflow.

Figure 2. HIV subtype A6 and HCV subtypes 3a, 1b, and 1a phylogenetic transmission clusters derived from RT and NS5B genes. Phylogenetic clusters from principal maximum likelihood phylogenetic trees of (a) HIV subtype A6 and (b) HCV subtype 3a, 1b, and 1a clusters according to history of IDU. Nodes shapes indicate sequences derived from women engaged in sex work (triangles) or men who purchase sex (circles). Node color designates a history of IDU in lifetime (red) or no history of IDU (white).

linkages indicate closely related transmission events versus random sampling.

Observing few HIV clusters overall, none of which contained both a WSW and MWPS, might be attributable to phylogeny reconstruction issues. HIV's prolonged infectivity period and low transmission risk per contact can limit sexual contact-based clusters detection, compared to better detection of injection-based clusters due to the rapid growth of epidemics among PWID.³⁵ This might also be explained an overall decline in new HIV infections reported among young PWID and women in Ukraine,¹⁴ including among WSW.³⁶

We observed most (n = 8/11, 72.7%) HCV clusters to contain exclusively WSW sequences, suggesting nonsexual transmission events. Underlying injection networks might be present based on the five HCV phylogenetic clusters containing at least one WSW reporting IDU in their lifetime, in agreeance with reports of overlapping WSW and PWID populations.^{37–39} Research has shown high prevalence of HCV (31-63%) among Ukrainian WSW reporting IDU within the last 12 months. 14,40 We expect some underreporting of IDU among participants due to social desirability bias, which was shown in previous Ukrainian integrated bio-behavioral surveillance studies, 14 as HCV phylogenetic networks constructed from PWID have been shown to correlate well with their social injecting networks. 41 Dynamics participants may have underreported IDU due to criminalization, stigmatization, and negative reactions associated with breaching gender roles as women who inject drugs.⁴²

Through examining both HIV and HCV, we identify phylogenies indicative of overlapping sex work and injecting networks among WSW in Dnipro, Ukraine. These findings stress the importance of considering additional pathogens to assess the social networks in which STBBIs travel through, particularly while concurrent and synergistic HIV and HCV epidemics are an obstacle in Ukraine. Further, dual STBBI analyses such as ours present alternative ways to conduct molecular studies across contexts in

the era of highly effective antiretroviral therapy (ART), which effectively mitigates HIV transmission 46,47 and limits collection of HIV sequences for phylogenetic analyses. Previous reports suggest a well-established HIV treatment cascade among Ukrainian WSW, with 83% being aware of their HIV-positive status, 94% receiving ART, and 80% achieving an undetectable HIV viral load, 40 however, this may have shifted in response to conflict. Unfortunately, similar data is not available for MWPS. Numerous ongoing challenges to HCV elimination in Ukraine have been described, including an overall lack of awareness, 48 inadequate surveillance and infection estimates, 45,49 and barriers to accessing diagnostics and treatment. 43 Given transmission routes shared by HIV and HCV, clusters inferred from HCV sequences also reflect possible HIV transmission networks, providing valuable insight for STBBI prevention. If HCV sequences were omitted from our study, the vast majority of phylogenetic clusters would not have been observed and important linkages missed, such as HCV clusters among WSW.

Our data suggests implications for comprehensive coverage of intervention efforts, as STBBI prevention efforts in Ukraine for WSW traditionally aim to circumvent heterosexual transmission, such as male condom and lubricant provisions, HIV/STBBI testing, and counselling and support services, ^{17,50,51} leaving out broad-based harm reduction prioritized among PWID - namely needle and syringe programs.⁵¹ Moreover, our results agree with suggestions to enhance programming for Ukrainian MWPS. Recent studies highlight the elevated HIV and STBBI risk facing MWPS, 3,52 compounded by the rarity of STBBI prevention programs designed for men across global contexts. 4,52-54 Innovative programming is needed to reach men who do not identify into key population groups, such as PWID, which requires addressing masculinity and other barriers to accessing prevention and testing services.⁴ Monitoring of Ukrainian epidemics remains important, albeit difficult, while the ongoing war destabilizes public health infrastructure and displaces millions of people, ^{24,44}

with severely affected conflict areas experiencing disruptions to healthcare services, ⁴³ ART delivery, ^{55,56} harm reduction and HIV testing services. ⁵⁷ Post-conflict, it will be critical to prioritize STBBI programming for Ukrainians due to the restructuring of social, sexual, and injecting networks in response to conflict, which may heighten HIV and HCV vulnerability. ^{4,44}

In this paper we report, using viral sequences, that HCV phylogenies highlight overlap between sex work and injecting networks in Ukraine. Ukrainian WSW might benefit from more comprehensive STBBI prevention programming, including harm reduction and broader sexual and reproduction health services that expand on current programs. Efforts must continue to reach Ukrainian MWPS not in key population groups with innovative prevention and testing programming which address socio-structural barriers to engagement. In the era of highly effective ART which achieves HIV viral suppression, conducting our phylogenetic analysis with HCV provides a better appraisal of transmission networks which may have been overlooked by relying on HIV sequences alone.

Acknowledgements

We acknowledge the *Dynamics* Study Team including the authors of this manuscript, as well as Sevgi Aral, James Blanchard, Tetiana Bondar, Eve Cheuk, Christina Daniuk, Evelyn Forget, Shajy Isac, Emma Lee, Robert Lorway, Huiting Ma, Lyle McKinnon, Stephen Moses, Maureen Murney, Nam-Mykhailo Nguien, Ani Shakarishvili, and Tatiana Tarasova for their work on the study. We would also like to thank the field research team and Road to Life and DEF Group (Dnipro) for their support. The work described here was conducted in partnership with the NGO Ukrainian Institute for Social Research after Oleksandr Yaremenko, the Alliance for Public Health in Ukraine, the Dnipro Oblast AIDS Centre and the Center for Public Health, the Ministry of Health in Ukraine.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Canadian Institutes for Health Research (PJT-148876). Sharmistha Mishra is supported by a Tier 2 Canada Research Chair in Mathematical Modeling and Program Science (grant number 950-232643). The funders had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Ethical statement

Ethical approval

Ethical approvals were obtained from the Health Research Ethics Board at the University of Manitoba (HS20653 [H2017:097]), Canada; the Ethical Review Committee of the Sociological Association of Ukraine; and the Committee of Medical Ethics of the L. Gromashevsky Institute of Epidemiology and Infectious Diseases at the National Academy of Medical Sciences of Ukraine.

Informed consent

Eligible participants provided written informed consent.

ORCID iDs

Stephanie Melnychuk https://orcid.org/0009-0007-8509-6310 Marissa L Becker https://orcid.org/0000-0002-9235-0547 François Cholette https://orcid.org/0000-0001-8706-8128

Data availability statement

Due to the sensitive nature of molecular surveillance among marginalized communities, sequences from our study have not been deposited in public repositories (ex: GenBank). However, requests to access the data can be made by contacting the principal investigators (Sharmistha Mishra and Marissa L. Becker).

Supplemental Material

Supplemental material for this article is available online.

References

- Decker MR, Crago AL, Chu SKH, et al. Human rights violations against sex workers: burden and effect on HIV. *Lancet* 2015; 385: 186–199. DOI: 10.1016/S0140-6736(14)60800-X.
- Strathdee SA, West BS, Reed E, et al. Substance use and HIV among female sex workers and female prisoners: risk environments and implications for prevention, treatment, and policies. *J Acquir Immune Defic Syndr* 1988; 69: S110–S117. DOI: 10.1097/QAI.0000000000000624.
- Wulandari LPL, Guy R and Kaldor J. The burden of HIV infection among men who purchase sex in low- and middle-income countries a systematic review and meta-analysis. *PLoS One* 2020; 15: e0238639. DOI: 10.1371/journal.pone.0238639.
- Lazarus L, Herpai N, Pavlova D, et al. A cross-sectional survey exploring HIV and HCV prevalence among men who purchase sex in Dnipro, Ukraine. BMC Publ Health 2023; 23: 2054.
- Fujimoto K, Paraskevis D, Kuo JC, et al. Integrated molecular and affiliation network analysis: core-periphery social clustering is associated with HIV transmission patterns. Soc Networks 2021; 68: 107–117. DOI: 10.1016/j.socnet.2021.05.003.
- Shushtari ZJ, Hosseini SA, Sajjadi H, et al. Social network and HIV risk behaviors in female sex workers: a systematic review. BMC Publ Health 2018; 18: 1020. DOI: 10.1186/s12889-018-5944-1.
- Barrington C, Latkin C, Sweat MD, et al. Talking the talk, walking the walk: social network norms, communication patterns, and condom use among the male partners of female sex workers in La Romana, Dominican Republic 2009. Soc Sci Med; 68: 2037–2044. DOI: 10.1016/j.socscimed.2009.03.009.
- Mulawa M, Yamanis TJ, Hill LM, et al. Evidence of social network influence on multiple HIV risk behaviors and normative beliefs among young Tanzanian men. Soc Sci Med 2016; 153: 35–43. DOI: 10.1016/j.socscimed.2016.02.002.

- De P, Cox J, Boivin JF, et al. The importance of social networks in their association to drug equipment sharing among injection drug users: a review 2007. *Addiction*; 102: 1730–1739. DOI: 10.1111/j.1360-0443.2007.01936.x.
- Kotvun O, Kulchynska R and Sazonova Y. Integrated biological and behavioural surveillance among sex workers in Ukraine, 2021: report on the findings from the study. https://aph.org.ua/wpcontent/uploads/2023/06/SW-IBBS_Report_EN_25.05.2023_ New Red.pdf (2023, accessed 10 March 2024).
- Volosevych T, Konoplytska T and Sazonova Y. Monitoring the behavior and spread of HIV infection among clients of women who provide sexual services for remuneration, as a component of second-generation HIV epidemiologic surveillance. https:// aph.org.ua/wp-content/uploads/2016/08/FSWclients2014ukr. pdf (2015, accessed 25 May 2023).
- Dumchev K, Kornilova M, Kulchynska R, et al. Improved ascertainment of modes of HIV transmission in Ukraine indicates importance of drug injecting and homosexual risk. BMC Publ Health 2020; 20: 1288. DOI: 10.1186/s12889-020-09373-2.
- Tokar A, Osborne J, Slobodianiuk K, et al. Virus Carriers' and HIV testing: navigating Ukraine's HIV policies and programming for female sex workers. *Health Res Pol Syst* 2019; 17: 23.
- Vitek CR, Čakalo JI, Kruglov YV, et al. Slowing of the HIV epidemic in Ukraine: evidence from case reporting and key population surveys, 2005-2012. *PLoS One* 2014; 9: e103657. DOI: 10.1371/journal.pone.0103657.
- Derksen J, Pavlova D, McClarty LM, et al. Awareness and utilization of HIV testing and prevention services among female sex workers in Dnipro, Ukraine: implications for prevention program strengthening from the dynamics study. *Front Reprod Health* 2022; 4: 879191. DOI: 10.3389/frph. 2022,879191.
- 16. Sazonova Y, Kulchynska R, Sereda Y, et al. HIV treatment cascade among people who inject drugs in Ukraine. *PLoS One* 2022; 15: e0244572. DOI: 10.1371/journal.pone.0244572.
- 17. Blumer N, Pfadenhauer LM and Burns J. Access to HIV-prevention in female sex workers in Ukraine between 2009 and 2017: coverage, barriers and facilitators. *PLoS One* 2021; 16: e0250024. DOI: 10.1371/journal.pone.0250024.
- Holt E. Russia's invasion of Ukraine threatens HIV response.
 Lancet HIV 2022; 9: e230. DOI: 10.1016/S2352-3018(22) 00064-9.
- 19. Vasylyeva T, Liulchuk M, Du Plessis L, et al. The changing epidemiological profile of HIV-1 subtype B epidemic in Ukraine. *AIDS Res Hum Retrovir* 2019; 35: 155–163. DOI: 10. 1089/AID.2018.0167.
- Sivay MV, Grabowski MK, Zhang Y, et al. Phylogenetic analysis of human immunodeficiency virus from people who inject drugs in Indonesia, Ukraine, and vietnam: hptn 074. Clin Infect Dis 2020; 71: 1836–1846. DOI: 10.1093/cid/ ciz1081.
- Novitsky VA, Montano MA and Essex M. Molecular epidemiology of an HIV-1 subtype A subcluster among injection drug users in the Southern Ukraine. *AIDS Res Hum Retrovir* 1998; 14: 1079–1085. DOI: 10.1089/aid.1998.14.1079.
- 22. Aibekova L, Bexeitova A, Aldabergenova A, et al. Transmission of HIV and HCV within former soviet union

- countries. *Chin J Gastroenterol Hepatol* 2020; 2020: 1–10. DOI: 10.1155/2020/9701920.
- Yakovleva A, Kovalenko G, Redlinger M, et al. Hepatitis C Virus in people with experience of injection drug use following their displacement to Southern Ukraine before 2020.
 BMC Infect Dis 2023; 23: 446. DOI: 10.1186/s12879-023-08423-5.
- 24. Becker M, Balakireva O, Pavlova D, et al. Assessing the influence of conflict on the dynamics of sex work and the HIV and HCV epidemics in Ukraine: protocol for an observational, ethnographic, and mathematical modeling study. *BMC Int Health Hum Right* 2019; 19: 16. DOI: 10.1186/s12914-019-0201-y.
- Pham DA, Leuangwutiwong P, Jittmittraphap A, et al. High prevalence of hepatitis C virus genotype 6 in Vietnam. *Asian Pac J Allergy Immunol* 2009; 27: 153–160.
- Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. *Mol Biol Evol* 2020; 37: 1530–1534. DOI: 10. 1093/molbev/msaa015.
- Katoh K and Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol Biol Evol* 2013; 30: 772–780. DOI: 10. 1093/molbev/mst010.
- Kumar S, Stecher G, Li M, et al. Mega X: molecular evolutionary genetics analysis across computing platforms. *Mol Biol Evol* 2018; 35: 1547–1549. DOI: 10.1093/molbev/msy096.
- Minh BQ, Nguyen MAT and von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. *Mol Biol Evol* 2013;
 1188–1195.
- Benson DA, Cavanaugh M, Clark K, et al. GenBank. *Nucleic Acids Res* 2013; 41: D36–42. DOI: 10.1093/nar/gks1195.
- Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. *J Mol Biol* 1990; 215: 403–410. DOI: 10.1016/ S0022-2836(05)80360-2.
- Poon AFY, Joy JB, Woods CK, et al. The impact of clinical, demographic and risk factors on rates of HIV transmission: a population-based phylogenetic analysis in British Columbia, Canada. *J Infect Dis* 2015; 211: 926–935. DOI: 10.1093/infdis/jiu560.
- Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software Environment for integrated models of biomolecular interaction networks. *Genome Res* 2003; 13: 2498–2504. DOI: 10.1101/gr.1239303.
- Herpai N, Lazarus L, Forget E, et al. Exploring the dynamics of workplace typologies for sex workers in Eastern Ukraine. Global Publ Health 2022; 17: 2034–2053. DOI: 10.1080/ 17441692.2021.1965180.
- Lewis F, Hughes GJ, Rambaut A, et al. Episodic sexual transmission of HIV revealed by molecular phylodynamics. *PLoS Med* 2008;
 5: e50. DOI: 10.1371/journal.pmed.0050050.
- Dumchev K, Sazonova Y, Salyuk T, et al. Trends in HIV prevalence among people injecting drugs, men having sex with men, and female sex workers in Ukraine. *Int J STD AIDS* 2018; 29: 1337–1344. DOI: 10.1177/0956462418784096.
- Shafran SD. Hepatitis C and the sex trade. *Chin J Gastro-enterol Hepatol* 2015; 29: 405–406. DOI: 10.1155/2015/904832.
- 38. Taylor A, Hutchinson S, Gilchrist G, et al. Prevalence and determinants of hepatitis C virus infection among female drug

injecting sex workers in Glasgow. *Harm Reduct J* 2008; 5: 11. DOI: 10.1186/1477-7517-5-11.

- Hope VD, Eramova I, Capurro D, et al. Prevalence and estimation of hepatitis B and C infections in the WHO European Region: a review of data focusing on the countries outside the European Union and the European Free Trade Association. *Epidemiol Infect* 2014; 142: 270–286. DOI: 10.1017/S0950268813000940.
- Sacks-Davis R, Daraganova G, Aitken C, et al. Hepatitis C virus phylogenetic clustering is associated with the social-injecting network in a cohort of people who inject drugs. *PLoS One* 2012; 7: e47335. DOI: 10.1371/journal.pone.0047335.
- Owczarzak J, Phillips SD and Cho W. Pure' drug users, commercial sex workers and 'ordinary girls': gendered narratives of HIV risk and prevention in post-Soviet Ukraine. *Cult Health Sex* 2018; 20: 1171–1184. DOI: 10.1080/13691058. 2017.1421708.
- 43. Fursa O, Reekie J, Kuzin I, et al. Cross-sectional HIV and HCV cascades of care across the regions of Ukraine between 2019 and 2020: findings from the CARE cohort. *J Int AIDS* Soc 2023; 26: e26166. DOI: 10.1002/jia2.26166.
- 44. Friedman SR, Smyrnov P and Vasylyeva TI. Will the Russian war in Ukraine unleash larger epidemics of HIV, TB and associated conditions and diseases in Ukraine? Harm Reduct J 2023; 20: 119. DOI: 10.1186/s12954-023-00855-1.
- 45. Zelenev A, Shea P, Mazhnaya A, et al. Estimating HIV and HCV prevalence among people who inject drugs in 5 Ukrainian cities using stratification-based respondent driven and random sampling. *Int J Drug Pol* 2019; 67: 91–101. DOI: 10.1016/j.drugpo.2018.09.010.
- Günthard HF, Aberg JA, Eron JJ, et al. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the international antiviral society-USA panel. *JAMA* 2014; 312: 410. DOI: 10.1001/jama.2014.8722.

- Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral therapy 2011. *NEJM*; 365: 493–505. DOI: 10.1056/nejmoa1105243.
- Colombo MG, Musabaev EI, Ismailov UY, et al. Consensus on management of hepatitis C virus infection in resource-limited Ukraine and Commonwealth of Independent States regions. World J Gastroenterol 2019; 25: 3897–3919. DOI: 10.3748/ wjg.v25.i29.3897.
- Devi S. Ukrainian health authorities adopt hepatitis C project.
 Lancet 2020; 396: 228. DOI: 10.1016/S0140-6736(20)31639-1.
- Iakunchykova OP and Burlaka V. Correlates of HIV and inconsistent condom use among female sex workers in Ukraine. AIDS Behav 2017; 21: 2306–2315.
- Alliance for Public Health Statistics. Kyiv: alliance for public health. https://aph.org.ua/en/resources/statistics/ (2021, accessed 21 January 2024).
- 52. McLaughlin MM, Chow EPF, Wang C, et al. Sexually transmitted infections among heterosexual male clients of female sex workers in China: a systematic review and meta-analysis. *PLoS One* 2013; 8: e71394. DOI: 10.1371/journal.pone.0071394.
- Carrasco MA, Rosen JG and Phelps R. Left behind? male clients of female sex workers in Zambia. *AIDS Care* 2020; 32: 1498–1505. DOI: 10.1080/09540121.2020.1718589.
- 54. Wulandari LPL, Guy R and Kaldor J. Systematic review of interventions to reduce HIV risk among men who purchase sex in low- and middle-income countries: outcomes, lessons learned, and opportunities for future interventions. AIDS Behav 2020; 24: 3414–3435. DOI: 10.1007/s10461-020-02915-0.
- 55. Holt E. Conflict in Ukraine and a ticking bomb of HIV. *Lancet HIV* 2018; 5: e273. DOI: 10.1016/S2352-3018(18)30106-1.
- Vasylyeva T, Liulchuk M, Friedman SR, et al. Molecular epidemiology reveals the role of war in the spread of HIV in Ukraine. *Proc Natl Acad Sci U S A* 2018; 115: 1051–1056. DOI: 10.1073/pnas.1701447115.
- Filippovych S. Impact of armed conflicts and warfare on opioid substitution treatment in Ukraine: responding to emergency needs. *Int J Drug Pol* 2015; 26: 3–5. DOI: 10. 1016/j.drugpo.2014.11.005.