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A B S T R A C T

Background and objectives: Public health officials faced with a large number of transmission clusters

require a rapid, scalable and unbiased way to prioritize distribution of limited resources to maximize

benefits. We hypothesize that transmission cluster prioritization based on phylogenetically derived

lineage-level diversification rates will perform as well as or better than commonly used growth-based

prioritization measures, without need for historical data or subjective interpretation.

Methodology: 9822 HIV pol sequences collected during routine drug resistance genotyping were used

alongside simulated sequence data to infer sets of phylogenetic transmission clusters via patristic dis-

tance threshold. Prioritized clusters inferred from empirical data were compared to those prioritized by

the current public health protocols. Prioritization of simulated clusters was evaluated based on correl-

ation of a given prioritization measure with future cluster growth, as well as the number of direct

downstream transmissions from cluster members.

Results: Empirical data suggest diversification rate-based measures perform comparably to growth-

based measures in recreating public heath prioritization choices. However, unbiased simulated data

reveals phylogenetic diversification rate-based measures perform better in predicting future cluster

growth relative to growth-based measures, particularly long-term growth. Diversification rate-based

measures also display advantages over growth-based measures in highlighting groups with greater fu-

ture transmission events compared to random groups of the same size. Furthermore, diversification

rate measures were notably more robust to effects of decreased sampling proportion.
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Conclusions and implications: Our findings indicate diversification rate-based measures frequently outperform growth-based measures

in predicting future cluster growth and offer several additional advantages beneficial to optimizing the public health prioritization

process.

Lay Summary: Public health officials faced with more transmitting groups than can be immediately addressed require an efficient way

to prioritize limited resources. We demonstrate that phylogenetic approximations of transmission derived from viral sequence data

offer advantages over other common methods of prioritizing clusters, while meeting and frequently exceeding existing performance

standards.

K E Y W O R D S : molecular epidemiology; HIV; transmission clusters; phylogenetics

BACKGROUND AND OBJECTIVES

Current methods of HIV-1 outbreak management in countries

with sufficient resources and government support to sustain

continuous monitoring are highly effective [1–4]. In the province

of British Columbia (BC), Canada, near real-time phylogenetic

monitoring of the local HIV-1 epidemic has been employed

since 2013 to detect and prioritize groups with the highest risk

of transmission for focused public health intervention [5]. These

focused interventions have allowed limited public health resour-

ces to be allocated with greater efficiency and 8 years of using

this method to track and respond to the epidemic have contrib-

uted to substantial decreases in new HIV diagnoses [6, 7].

Decreasing diagnoses are likely also driven in part by improved

access to antiretroviral therapy (ART), the expansion of harm re-

duction strategies [8], and increased uptake of pre-exposure

prophylaxis (PrEP) following the 2018 decision to provide PrEP

to eligible individuals at no cost [9]. Additionally, phylogenetic

monitoring has allowed fine-grained inferences about trends in

the BC epidemic, such as the number of new cases joining clus-

ters over time, a metric quantifying local transmission shown

by our dataset to have consistently declined over the past 8

years (Fig. 1A). The strategies employed in BC have not only

resulted in a more rapid decline in cases relative to other

Canadian provinces [10], but have also helped BC make excep-

tional progress towards the UNAIDS 95-95-95 targets [6, 11].

Although the methods used in BC are highly effective, networks

of transmission still exist and more comprehensive character-

ization and prioritization of transmission groups could improve

epidemic control through more focused action.

Phylogenetic monitoring of HIV-1 transmission is highly

amenable because viral populations are known to diverge fol-

lowing transmission due to the rapid rate of evolution of HIV

and host-specific selection [12, 13]. Viral genetic divergence can

be quantified using patristic distance, the sum of the branch

lengths linking two nodes in a phylogenetic tree. A pairwise pa-

tristic distance cutoff can delineate individuals into groups

based on the genetic similarity of the viruses they harbour, set

such that these ‘transmission clusters’ represent groups of

infections likely to be related by recent transmission events [5].

Furthermore, the sequence data required for these analyses are

often readily available as a byproduct of routine drug resistance

genotyping. Importantly, due to the uncertainty introduced by

incomplete sampling of the infected population, phylogenetic

methods can never be used to definitively infer transmission

directionality between two individuals or cluster members.

Once a set of transmission clusters has been identified, they

can be prioritized such that limited public health resources can

be allocated most rapidly to clusters with the greatest potential

for future growth, in order to quickly quell the greatest number

of transmissions before shifting focus to less urgent clusters.

Prioritized clusters may receive different types of public health

attention depending on their characteristics. Linkage or re-linkage

to care can help begin or improve adherence to ART, optimize

ART regimen choices, and encourage consistent viral load sup-

pression. Contacts of cluster members at risk for transmission

can also be offered targeted PrEP and urged to seek diagnostic

testing. Both cluster members and their contacts can be encour-

aged to maintain safe practices regarding their risk behaviours,

such as use of condoms or safe injection materials. By employing

a combined approach tailored to cluster characteristics, public

health teams in BC have previously been able to notably reduce

transmission associated with prioritized clusters [14].

Recently, the use of non-phylogenetic measures, either in

combination with phylogenetic clustering [5, 15], non-

phylogenetic clustering [1, 2, 16] or without directly considering

clustering [17] have been proposed to enhance prioritization

processes. The addition of quantitative measures such as clus-

ter size, previous cluster growth or mean cluster viral load can

make the prioritization procedure less subjective. However,

there are no established cutoffs defining when such measures

reach a level warranting rapid intervention, nor are there estab-

lished methods for estimating the combined effects of multiple

measures. Consequently, cluster prioritization processes re-

main heavily reliant upon local expertise and subjective inter-

pretation and are thus limited in their ability to be consistent

and widely applicable. Furthermore, use of measures such as

previous cluster growth or average cluster viral load rely on data

collected in previous years or additional linked data, both of

which may not always be available.

In this study, we employ both empirical and simulated data

to evaluate the hypothesis that cluster prioritization measures
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based on phylogenetically derived lineage-level diversification

rates will perform at least equally as well as commonly used

non-phylogenetic growth-based prioritization measures in strat-

ifying clusters based on transmission activity, while operating

independently from supporting meta data and remaining free of

need for subjective or historical interpretation. We use BC em-

pirical data to compare phylogenetic diversification rate-based

measures to growth-based measures in their ability to separate

clusters labelled by BC public health protocol as ‘priority’ from

the remaining clusters. We further compare prioritization meas-

ure performance through a simulation study to reduce the

effects of biases that hinder empirical data, such as incomplete

sampling and differential cluster intervention. Thus, simulation

facilitates direct comparison of the relationship between each

prioritization measure and future cluster growth, as well as the

direct number of transmissions resulting from prioritized

clusters.

METHODOLOGY

Dataset

In BC, routine clinical care following every new HIV diagnosis

includes drug resistance genotype testing performed by the BC

Figure 1. Diversification rate distribution, phylogeny and clustering over time. (A) Change in total cases, total clustered cases, newly diagnosed cases and

newly clustered cases over time. Although total cases and total clustered cases are increasing over time, the yearly numbers of newly diagnosed cases and

cases joining clusters have been consistently declining since 2011. (B) 95% majority-rule consensus tree for 2018, with tips and pendant edges coloured by

lineage-level diversification rate. Warmer colours and thicker edges highlight high diversification rates, suggesting rapid transmission. (C) The distribution of

median lineage-level diversification rates across the 100-replicate tree distribution for all individuals. The right-tailed distribution indicates that stratifying by

diversification rate is likely to be effective in distinguishing a small top-priority population of individuals
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Centre for Excellence in HIV/AIDS (BC-CfE). Viral RNA

extracted from patient blood samples is used to determine

which antiretroviral drugs will be most effective for each individ-

ual based on observed viral surveillance drug resistance muta-

tions (SDRMs) [18]. After this information is reported back to

the primary care clinicians, the BC-CfE retains both the HIV se-

quence data and associated metadata. As this process has been

part of routine clinical care since 1996, it has led to the creation

of a comprehensive dataset representing > 75% of the preva-

lence of HIV in BC [11]. The study dataset was restricted to data

collected by the BC-CfE between May 1996 and December 2018

inclusive, totalling 35 752 partial pol HIV sequences derived

from viruses sampled from 9822 patients. All data were doubly

de-identified prior to analysis. The University of British

Columbia—Providence Health Care Research Ethics Board

granted ethical approval for this study (H07-02559).

Phylogenetic analyses

All 35 752 anonymized sequences were aligned with MAFFT

v7.310 [19]. Known SDRM codons were masked before inference

of a distribution of 100 phylogenetic tree replicates using

FastTree v2.1.10 [20]. In order to create trees reflective of the

data available in previous years, the full trees were pruned using

the ape R package [21] to create 10 subtrees containing the

sequences sampled by the end of each year in the 2009–2018

period. Each subtree was rooted using the residual-mean-

squared function in TempEst v1.5.3 [22] and pruned to contain

only the earliest sequence available for each individual, leaving

9822 sequences in the largest trees. Transmission clusters were

inferred from the full 2018 trees using a patristic distance thresh-

old of 0.02 nucleotide substitutions/site, as described by Poon

et al. [5]. Two individuals were considered linked if the phylogen-

etic patristic distance between their sequences was below the

0.02 substitution/site threshold in at least 50% of the 100-repli-

cate tree distribution. Cluster membership was determined by

considering these thresholds across all individuals, with the cav-

eat that a cluster must contain at least five individuals before

being defined as such in order to maintain confidentiality beyond

double anonymization of the data. Lineage-level diversification

rates were calculated for all tips in all trees and the median value

associated with each tip in each year was kept for use in down-

stream analyses. In order to quantify the distribution of diversifi-

cation rates for tips across the 100 trees, the median difference

in diversification rate between a tip in a given tree and the same

tip in all other trees was calculated. In general, the median differ-

ence in diversification rate across trees was very small, although

some outlier tips did show greater variation (Supplementary Fig.

S1). A 95% majority-rule consensus tree generated from the 2018

trees was generated in DendroPy v4.5.2 [23] and used to visualize

median diversification rates across the 100-replicate tree distribu-

tion for each tip (Fig. 1B).

The diversification rate-based measures assessed include mean

(MeanDR), median (MedianDR), maximum (MaxDR) and most

recent diversification rate (MostRecentDR), as well as the mean of

the top three (Top3MeanDR) and top five diversification rates

(Top5MeanDR) in a cluster. Growth-based measures assessed in-

clude previous year (PrevYrGrowth), 3-year (Prev3YrGrowth) and

5-year growth (PrevYrGrowth), as well as cluster size (ClustSize),

previous year cluster growth squared (ClustGrowthSq) and

whether or not more than five cases have joined a cluster in

the previous year (PrevYr5CasePlus). ClustGrowthSq and

PrevYr5CasePlus were included for the purpose of comparison to

previous studies [16, 24]. Cluster growth was calculated by sub-

tracting the number of sampled cluster members at the beginning

of a given growth period from the number of cluster members

sampled at the end of that growth period.

Lineage-level diversification rate

Lineage-level diversification rate is a phylogenetically derived

measure first described by Jetz et al. [25] that tracks the historic-

al branching rate of tips in the phylogeny. In an epidemiological

context, because a new lineage is formed following transmis-

sion to a new host, viral lineage-level diversification rate thus

serves as a proxy for transmission rate. Lineage-level diversifica-

tion rate accounts for both the number of branching events and

the branch lengths in a phylogenetic tree, and as a tip-weighted

measure, it emphasizes recent events. Tips sharing very recent

common ancestry with many other lineages will have higher di-

versification rates, providing evidence for rapid transmission.

The opposite is true for tips existing in areas of the tree where

fewer lineages stem from fewer recent branching events—these

tips will have lower diversification rates, suggesting slower

transmission rates, or possibly poorer sampling. All mentions

of ‘diversification rate’ used in this work specifically refer to

lineage-level diversification rate.

Evaluation of growth-based versus diversification

rate-based measures: BC data

The ability of growth-based measures and diversification rate-

based measures to stratify transmission clusters based on

transmission activity was evaluated based on the ability of each

measure to separate clusters marked as ‘priority’ by the BC

public health protocol in a given year from the remainder.

Prioritization decisions made by the BC protocol can be a result

of rapid cluster growth, rapid symptom onset seen in one or

more cluster members, or combinations of other factors recog-

nized by the public health team as concerning. Successful
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distinction between these two groups of transmission clusters

was assessed using Mann–Whitney U tests.

Epidemic simulation

The need for simulation of the BC epidemic is motivated by two

factors. First, intervention decreasing transmission would be

expected to reduce lineage-level diversification rate for a trans-

mission cluster, meaning that clusters known to be consistently

labelled as priority may display decelerating diversification rates

despite having high potential for transmission. Second, evaluat-

ing novel methods using the set of labels defined by the BC

public health protocol as a benchmark assumes that this

method accurately captures the true set of clusters with the

greatest potential for transmission, which may not necessarily

be the case. Simulated epidemics allow evaluation under cir-

cumstances where intervention is not applied differentially be-

tween clusters and the true clusters with the greatest potential

for propagating future transmissions are known.

Simulation was performed using the FAVITES framework [26]

to create a contact network, seed infected individuals, generate

transmission events and the viral evolution between them, and

subsequently sample viral sequences. Simulations were set to

run over a 10-year period beginning in 2009, with a base set of

parameters adapted from Moshiri et al. [26] and six variations

of this set designed to encapsulate a range of reasonable

matches to the characteristics of the BC epidemic while still

containing enough variation in epidemic parameters to retain

generalizability to epidemics in other locations. Full description

of parameter selection can be found in the Supplementary

Materials.

Evaluation of growth-based versus diversification

rate-based measures: simulated data

For each replicate of each of the seven parameter sets, simulated

sequences spanning the full 10-year simulation period were

aligned in MAFFT and phylogenies were inferred with FastTree.

After rooting on all branches via LSD2 [27], each phylogeny was

pruned to 10 subtrees, each representing the data collected by

the end of a given simulation year. Transmission clusters were

inferred for each subtree and lineage-level diversification rates

were calculated for all tips. Cluster-level prioritization measures

were calculated for each subtree such that the Spearman correl-

ation between a prioritization measure in a given year and the

amount of cluster growth in a given future year or period of years

could be determined and summarized across replicates. For

each year of prioritization measure calculation, cluster growth

was measured across two different growth periods: next-year

growth and total future growth. Next-year growth was defined as

the number of individuals who joined a cluster in the year

following prioritization measure calculation. Total future cluster

growth describes the number of individuals who joined a cluster

across the remaining years in the period of study after the year of

prioritization measure calculation. For example, for prioritization

measures determined in 2009, total future growth describes how

many individuals joined the cluster between 2010 and 2018.

Additionally, clusters were ranked by each prioritization measure

and individuals from the top clusters (up to inclusion of 100 indi-

viduals, or the size of the top cluster, if its size exceeded 100)

were used to determine the number of direct resulting transmis-

sions, for comparison to the number of transmissions produced

by a random sample of lower-ranked clusters containing the

same number of individuals.

RESULTS

BC HIV transmission clusters

The numbers of both clustered and non-clustered cases

decreased over time, as did the number of new cases (Fig. 1A).

In more recent years, a larger proportion of the new cases being

diagnosed were non-clustered, further suggesting that more

sensitive methods will be required to appropriately address all

cases going forward. However, clusters capture pockets of

closely related transmissions, and as comparison of diversifica-

tion rates from un-clustered versus clustered tips suggests

(Supplementary Fig. S2), the potential for rapid transmission is

significantly greater within clusters (Mann–Whitney P< 0.001),

thus rationalizing the focus on these groups as primary public

health targets. Even within clusters, hundreds of cases occur

each year that could be prevented if the accuracy and resolution

of prioritization was increased. The right-tailed log distribution

of diversification rates highlights the ability of this measure to

allow more focused prioritization, as there are very few diversifi-

cation rates that are very high relative to the majority of the

measurements (Fig. 1C).

Growth-based versus diversification rate-based measures:

BC data

Some growth-based measures and some diversification rate-

based measures were effective in distinguishing priority from

non-priority clusters, as labelled by the current BC public health

protocol. Using the year 2018 as a representative example, all

six of the diversification rate-based measures tested showed a

significant difference between priority and non-priority clusters

(Mann–Whitney P¼ 0.0033, 0.0016, 0.00086, 0.0019, 0.0011,

0.0016). All tested measures except for the MostRecentDR cre-

ated two clearly distinct peaks between the two groups of clus-

ters, with the most obvious visual distinction between
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populations occurring for MeanDR, MaxDR, Top3MeanDR and

Top5MeanDR (Fig. 2A).

In 2018, four of the six growth-based measures tested

(Prev3YrGrowth, Prev5YrGrowth, ClustSize and PrevYr5CasePlus)

showed a significant difference between priority and non-priority

clusters (Mann–Whitney P¼ 0.024, 0.076, 0.0073, 0.017), although

none of these four demonstrated clearly defined separation be-

tween the two populations of clusters (Fig. 2B).

Figure 2. Comparison of prioritization measures between priority and non-priority groups, using empirical data. Density plots showing the difference in (A) di-

versification rate-based measures (DR-based) in 2018 or (B) growth-based measures in 2018 between clusters defined as ‘priority’ by the current public health

protocol for immediate intervention and the remainder of the clusters to next be addressed, marked here for the purpose of comparison as ‘lower priority’.

Only clusters that had newly diagnoses cases added in the previous year are shown. Infinite values created by the log10 transformation were forced to 0 for

visualization purposes. DR-based measures frequently create clearer visual distinction between priority and lower priority populations. (C) Heatmaps of sig-

nificance (as per Mann–Whitney U tests) of the separation between priority and lower priority groups, as produced by the measures we examined. P-values of

0.05 or higher are shown in purple. Rows represent different measures, and columns represent years. Diversification rate-based measures show similar

consistency to growth-based measures in their ability to reveal a statistically significant difference between top priority and lower priority clusters across the

10-year period investigated
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Using these four measures consistently generates low values

for low priority clusters, but values for the high priority clusters

frequently form a wide distribution, making the two populations

of clusters difficult to distinguish (Fig. 2B).

Assessing the tested measures over a 10-year period illumi-

nated differences in consistency between measures and high-

lighted need for longitudinal testing of novel prioritization

measures. Although many of the measures were relatively con-

sistent over time, none achieved statistical separation in all 10

years (Fig. 2C) and visual separation between the populations

varied (not shown). The most consistently effective growth-

based measure, PrevYr5CasePlus, creates statistical separation

in 9 years, but never creates two clearly visually distinct popula-

tion peaks, possibly due to its binary nature (Supplementary

Fig. S3). The next most consistent growth-based measure,

Prev3YrGrowth, creates statistical separation in 8 years and pro-

vided somewhat clearer separation between the populations,

particularly in 2016 (Supplementary Fig. S3H), suggesting that

this may be the best growth-based candidate. However, some

diversification rate measures (MeanDR, MaxDR, Top3MeanDR,

Top5MeanDR) offer clearer visual separation between the popu-

lations in 2011–17, while still achieving statistical separation in

8 years. The separation between the two populations created by

Top3MeanDR and Top5MeanDR weakens slightly in 2012–14

(Supplementary Fig. S3D–F), but these measures still create

more obvious distinction than the growth-based measures dur-

ing this period. Overall, we find diversification rate-based meas-

ures to be at least similarly effective to growth-based measures

in differentiating the two populations, while potentially offering

clearer boundaries.

Growth-based versus diversification rate-based measures

using simulated data

Phylogenies inferred from simulated data further demonstrated

the strength of the relationship between phylogenetic diversifi-

cation rate-based prioritization measures and future cluster

growth, while also revealing differences in this relationship be-

tween the two groups of prioritization measures as the cluster

growth period is extended.

In general, across parameter sets, the correlation between a

prioritization measure and cluster growth in the next year was

slightly stronger for diversification rate-based measures than for

growth-based measures (median Spearman r¼ 0.34 vs 0.29;

Supplementary Fig. S4). The difference between the two groups

of prioritization measures becomes more striking when consid-

ering total future growth of a cluster across the remainder of

the simulation period, with the diversification rate-based meas-

ures clearly showing stronger correlations across all parameter

sets (median Spearman r¼ 0.39 vs 0.17; Fig. 3). Downsampled

datasets revealed that as sampling proportion decreases to

75%, 50% and 25%, the positive relationship between diversifi-

cation rate-based measures and growth in the next year weak-

ens and, in some cases, becomes almost non-existent (median

Spearman r¼ 0.15, 0.08, 0.04), suggesting that these measures

are limited in the benefit they can confer in heavily under-

sampled epidemics (Supplementary Fig. S5). However, the cor-

relation between growth-based measures and next year growth

not only experiences weakening in response to downsampling,

but also reversal (median Spearman r¼ –0.15, –0.21, –0.35;

Supplementary Fig. S5), meaning that without careful interpret-

ation, growth-based measures have the potential to become ac-

tively misleading in a poorly sampled epidemic.

The relationships with total future growth in the remainder of

the simulation period as sampling proportion decreases are more

robust for both groups of measures (Supplementary Fig. S6).

Diversification rate-based measures demonstrate very little change

in correlation with future growth as sampling proportion is

decreased (median Spearman r¼ 0.41, 0.40, 0.33), and although

some growth-based measures such as PrevYrGrowth again show

inverted correlations, other measures such as ClustSize and

ClustGrowthSq retain a relatively similar effect size, particularly

when the time to start ART or the number of contacts is increased

from the base parameter set (Supplementary Fig. S6).

Considering a longer time period of cluster growth also

reveals opposing temporal trends in the two groups of meas-

ures. Comparing the correlations between prioritization meas-

ures and next year growth versus total future growth revealed

that effect sizes for diversification rate-based measures

strengthened as the length of the cluster growth period was

extended, but the opposite trend was seen for growth-based

measures (Supplementary Fig. S7), suggesting that diversifica-

tion rate-based measures may have a stronger relationship with

long-term cluster growth. Furthermore, as the starting year for

the cluster growth period becomes closer to the present, the

strength of correlation for diversification rate measures remains

relatively stable, but the strength of correlation for growth-

based measures weakens slightly (Supplementary Fig. S7).

Downsampled analyses showed that as sampling proportion

decreases, the overall relationship between future growth and

diversification rate-based measures weakens, but the increasing

trend in effect size as the cluster growth period is extended is

maintained (Supplementary Fig. S8). The weakening of this rela-

tionship is notably smaller for the total cluster growth periods

than for those including only the next year after prioritization.

The relationship between growth-based measures and future

growth also weakens as sampling proportion decreases, but

with the greatest decrease occurring for the next-year periods,

such that the previous trend of weakening correlations as the

growth period extends is reversed. As observed with diversifica-

tion rate measures, the relationship between future growth and

growth-based measures was also most robust to decreasing
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sampling proportion when considering total future growth

(Supplementary Fig. S8).

Differences in the relationship between prioritization meas-

ures and future growth also exist across parameter sets.

Regardless of growth period, both diversification rate and

growth-based measures show much weaker correlations with

cluster growth when the time to start ART is reduced to

0.5 years (Fig. 3; Supplementary Fig. S9). Conversely, as the

time to start ART is increased to 2 years, correlations strength-

en, even relative to the base parameter set. This trend continues

even further when the average level of connectedness of individ-

uals within the contact network increases. Additionally, when

the time to start ART is increased or the expected degree of con-

nectivity is increased, correlations with total future growth are

more robust to downsampling. Together, these results suggest

that prioritization measures as a whole may be at their most

useful in epidemics with longer delays in connection to care,

more connected at-risk populations and more barriers to treat-

ment and prevention.

Analysis of the difference between the number of transmis-

sions resulting from top-ranking prioritized clusters and a ran-

dom sample of lower-ranking clusters containing the same

number of individuals demonstrated additional benefits of using

diversification rate-based measures. Without adjusting for cluster

size, the difference in direct transmissions stemming from priori-

tized versus not prioritized clusters was higher for all growth-

based measures (except PrevYrCasePlus), unless time to start

ART was 0.5 years (median 4.1 vs 7.1, Mann–Whitney P< 0.001).

However, when the number of direct transmissions was adjusted

for current cluster size, the difference in direct transmissions pri-

oritized by diversification rate measures was significantly larger

(median 0.032 vs –0.023, Mann–Whitney P< 0.001) in the major-

ity of parameter sets, with a notably larger disparity for parameter

sets with increased time to start ART or contact network connec-

tions (Fig. 4). The shift in outcome after adjusting for cluster size

perhaps suggests that diversification rate-based measures are

more likely to prioritize smaller transmission clusters, capturing

individuals with potential for rapid transmission that may other-

wise go undetected until the cluster undergoes an amount of

growth large enough to result in growth-based prioritization.

Indeed, median cluster sizes were significantly smaller (Mann–

Whitney P< 0.001) for clusters prioritized by diversification rate

measures (median size¼ 41) than for clusters prioritized by

growth-based measures (median size¼ 99; Supplementary Fig.

S9), with the exception of PrevYr5CasePlus, which is biased by

the fact that cluster initiation begins with a jump in size from

zero to five. Diversification rate measures also showed greater

consistency across parameter sets, indicating their ability to

Figure 3. Comparison of correlation between prioritization measures and total future growth, using simulated data. Each box represents the median and IQR

of the Spearman correlation between a given prioritization measure and parameter set combination and total future cluster growth from each simulation year

to the end of the simulation period, across all growth periods from 2009 to 2018. The tested parameter sets include variations from the base set that differ in

number of seed individuals, time between infection and the initiation of ART (startART) and the expected degree (Ed) of connectedness within the contact

network. All other abbreviations are as defined in Fig. 2. In general, diversification rate-based measures showed stronger correlations with total future cluster

growth than growth-based measures
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retain relevance in a wider range of scenarios. Downsampling

demonstrated a similar trend to that of previous analyses, show-

ing that decreases in sampling proportion generally result in

maintenance of difference in transmissions for diversification

rate measures (with the exception of one parameter set at 25%

sampling) while the growth-based measures undergo a decline

(median difference in transmissions¼ 0.16, 0.16, 0.13 vs 0.13,

0.12, 0.08; Supplementary Fig. S10).

CONCLUSIONS AND IMPLICATIONS

This study revealed differences in the effectiveness of multiple

lineage-level diversification rate-based and growth-based priori-

tization measures in identifying potential for future transmis-

sion, via both empirical and simulated data approaches.

Phylogenetic clustering of viral sequences provides a platform

for prioritization of groups that aims to maximize the benefits

of limited public health resources while still maintaining patient

confidentiality. However, existing methods of prioritization are

limited by their subjectivity and reliance on historical or linked

data. Previous studies have demonstrated the advantages of

prioritizing transmission clusters based on growth-based meas-

ures such as the square of cluster growth [16] and phylogenetic

measures such as the terminal branch length [28]. In concord-

ance with Moshiri et al. [28], we find phylogenetically derived

measures, specifically those derived from lineage-level diversifi-

cation rates, confer several advantages.

In the empirical BC dataset, measures based on phylogenet-

ically derived lineage-level diversification rates demonstrated

relatively similar ability to delineate prioritized clusters from

less urgent clusters relative to growth-based measures overall.

Simulated data further supported this, revealing a stronger rela-

tionship between the large majority of diversification rate-based

measures and future cluster growth than seen for growth-based

measures. The disparity in the strength of this relationship be-

tween diversification rate and growth-based measures became

greater when the growth period under study was extended from

only the next year to all future years remaining in the simulation

period, suggesting that diversification rate-based measures are

more closely associated with long-term growth. This confers an

additional advantage to diversification rate-based measures, as

a strong relationship with long-term growth could further maxi-

mize the downstream benefit of the public health resources dis-

tributed following prioritization.

Analyses of decreased sampling proportion revealed further

advantages of diversification rate-based measures, which were

more consistently robust to the effects of missing data than

growth-based measures. The practical implications of this find-

ing are important, as even the most well-sampled epidemics

rarely come close to 100% sampling, so in order to be widely

Figure 4. Difference in downstream transmissions across all prioritization measure and parameter set combinations. Each box represents the median and

IQR of the difference in mean direct transmissions per cluster member between the top prioritized clusters, up to inclusion of 100 individuals (or the size of

the top cluster, if its size exceeds 100), according to a given prioritization measure and a random sample of lower-ranking clusters containing the same num-

ber of individuals, across all clusters. The difference in mean direct transmissions was, in general, slightly higher for diversification rate-based measures than

for growth-based measures, with the exception of previous year cluster growth in some parameter sets. Abbreviations are as defined in Figs 2 and 3
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applicable, a prioritization measure needs to be robust to the

effects of missing data in a wide range of epidemic circumstan-

ces. However, it should be noted that random downsampling

will not provide an exact recapitulation of natural sampling

bias, and the true effects of lower sampling proportion may dif-

fer from our findings. Moshiri et al. [28] similarly found the use

of terminal branch lengths to be relatively robust to downsam-

pling, which taken together with our findings perhaps suggests

that phylogenetically derived measures, and in particular those

weighted towards the present, are more robust to the effects of

missing data overall. Another potential advantage of diversifica-

tion rate measures is that in the case of larger clusters, they

could be used to reveal subpopulations within a cluster in need

of rapid intervention, even in cases where the cluster as a whole

may not be prioritized.

An important limitation of lineage-level diversification rate is

its sensitivity to sampling rate. Because diversification rate

highlights lineages with increased recent branching, it is pos-

sible that lineages in well-sampled areas of the tree may demon-

strate higher diversification rates than lineages in poorly

sampled areas of the tree, regardless of the true transmission

rate associated with each. Thus, the use of diversification rates

in prioritization may demonstrate bias towards highlighting

clusters of rapid detection rather than clusters of rapid trans-

mission. Finally, although non-phylogenetic methods of both

cluster inference and cluster prioritization have the advantage

of being much less computationally demanding, we argue that

the disadvantages of non-phylogenetic cluster inference [29–31]

and non-phylogenetic growth-based prioritization outweigh this

benefit, especially as increasing computational power [32]

extends the feasibility of phylogenetic approaches.

Both empirical and simulated data revealed similar trends in

the overall abilities of individual measures. Measures based on

the most recent diversification rate(s) consistently performed

considerably worse relative to other measures, further demon-

strating the limited abilities of measures failing to capture long-

term trends. In contrast, MaxDR, MeanDR, Top3MeanDR and

Top5MeanDR offered the most consistency, achieving statistic-

ally significant separation between the urgent priority and

remaining population of clusters in eight of the years studied.

Although two growth-based measures (PrevYr5CasePlus and

Prev3YrGrowth) meet this standard, they rely entirely on the ex-

istence of historical data, a shortcoming that could be elimi-

nated by use of diversification rate-based measures. One such

measure, Top5MeanDR, not only achieves statistically signifi-

cant separation in 8 of the 10 years studied in the BC dataset,

but also shows the strongest relationship with cluster growth

across all simulated growth periods and parameter sets studied

of all tested prioritization measures. This is in concordance

with analyses conducted by McLaughlin et al. in 2019 [33],

which found the mean of the top five log diversification rates in

a geographic area to be a significant predictor of new HIV cases

in BC. However, several other measures displayed consistent

ability to delineate clusters based on priority status in addition

to showing relatively strong relationships with future cluster

growth, and as suggested by McLaughlin et al., it is likely that

prioritization could be further optimized beyond the reaches of

a single measure via a model combining multiple factors [33,

34]. Furthermore, as mentioned by Moshiri et al. [28], even a

combined measure is unlikely to capture the full context of the

epidemic, and measures that aim to improve the prioritization

process should still be considered in the context of other sup-

porting knowledge.

Overall, we find that diversification rate-based measures not

only frequently outperform growth-based measures in their abil-

ity to identify groups with the highest potential for future

growth, particularly long-term future growth, but are also less

likely to be perturbed by missing data and remain free of need

for historical data and subjective interpretation. In contrast, al-

though growth-based measures can sometimes be equally ef-

fective as measures based on phylogenetic diversification rates,

they have the potential to become misleading in cases of lower

sampling proportion. In combination with phylogenetic cluster-

ing, phylogenetically derived lineage-level diversification rates

can provide a simple, widely applicable and robust solution to

focus prioritization of transmission clusters contributing the

most to an ongoing epidemic.
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