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Abstract
Introduction  It is widely but erroneously believed that drugs get into cells by passing through the phospholipid bilayer 
portion of the plasma and other membranes. Much evidence shows, however, that this is not the case, and that drugs cross 
biomembranes by hitchhiking on transporters for other natural molecules to which these drugs are structurally similar. 
Untargeted metabolomics can provide a method for determining the differential uptake of such metabolites.
Objectives  Blood serum contains many thousands of molecules and provides a convenient source of biologically relevant 
metabolites. Our objective was to detect and identify metabolites present in serum, but to also establish a method capable 
of measure their uptake and secretion by different cell lines.
Methods  We develop an untargeted LC-MS/MS method to detect a broad range of compounds present in human serum. We 
apply this to the analysis of the time course of the uptake and secretion of metabolites in serum by several human cell lines, 
by analysing changes in the serum that represents the extracellular phase (the ‘exometabolome’ or metabolic footprint).
Results  Our method measures some 4000–5000 metabolic features in both positive and negative electrospray ionisation 
modes. We show that the metabolic footprints of different cell lines differ greatly from each other.
Conclusion  Our new, 15-min untargeted metabolome method allows for the robust and convenient measurement of differ-
ences in the uptake of serum compounds by cell lines following incubation in serum. This will enable future research to 
study these differences in multiple cell lines that will relate this to transporter expression, thereby advancing our knowledge 
of transporter substrates, both natural and xenobiotic compounds.

Keywords  Human serum · Untargeted metabolomics · Transporters · LC-MS/MS · Orbitrap · Cell culture

1  Introduction

One of the great unsolved problems of modern biology 
concerns the substrates of membrane transporters (Cesar-
Razquin et al. 2018; Cesar-Razquin et al. 2015; Girardi 
et al. 2020; Superti-Furga et al. 2020), many of which remain 
‘orphans’ (i.e. with unknown substrates), often despite the 
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passage of decades since their identification in systematic 
genome-sequencing programmes (Ghatak et al. 2019).

‘Untargeted metabolomics’ is a term nowadays com-
monly used to describe methods that seek the reproducible 
detection (and sometimes quantification) of small molecules 
in biological matrices (Cho et al. 2014; Dunn et al. 2013; 
Garg et al. 2015; Martin et al. 2015; Tautenhahn et al. 2012; 
Treutler et al. 2016). It is most commonly performed using 
chromatography coupled to mass spectrometry (e.g. (Dunn 
et al. 2011; Dunn et al. 2007; Dunn et al. 2012)). A variety 
of methods, summarised in Table 1, have been developed 
for measuring the human serum metabolome, with both 
low- and high-resolution mass spectrometry. The studies 
highlighted in Table 1 are those we found where annotation 
levels were specified, and similar LC was performed. An 
ideal method would be rapid, reliable, and provide data on 
many (1000s of) metabolites simultaneously.

In a ground-breaking study using low-resolution LC-MS, 
Gründemann and colleagues (Gründemann et al. 2005) rec-
ognised that incubation of cells containing different levels 
of a transporter of interest with plasma (as an reasonably 
unbiased source of candidate metabolites) might allow the 
discovery of transporter substrates by assessing their differ-
ential uptake into cells. They thereby discovered the trans-
porter for the important nutraceutical (Borodina et al. 2020) 
ergothioneine (Gründemann 2012; Gründemann et al. 2005).

The uptake and excretion of nutrients and natural prod-
ucts by cells is mediated by transporter proteins of two 
general types: solute carriers (or SLCs) and ATP-binding 
cassette (ABC), transporters. Around 500 known SLC trans-
porters are known which mediate the uptake of such com-
pounds whereas ABC transporters are involved in efflux of 
these(Hediger et al. 2004). Much evidence shows that drugs 
hitchhike on transporters for other natural molecules for 
which these drugs are structurally similar (Cesar-Razquin 
et al. 2018; Kell 2020; Kell and Oliver 2014; O’Hagan and 
Kell 2017; Superti-Furga et al. 2020). Moreover, recent work 
by Girardi et al. highlighted the key role of SLC transport-
ers in resistance to 60 cytotoxic compounds representative 
of the chemical space covered by approved drugs (Girardi 
et al. 2020) .

As part of a wide-ranging study into the nature of trans-
porter substrates (e.g. (Dobson and Kell 2008; Jindal et al. 
2019; Kell et al. 2013; Kell et al. 2011; Kell and Oliver 2014; 
Kell et al. 2018)), we recognised that the approach of Grün-
demann and colleagues (Gründemann et al. 2005) could be 
an ideal strategy for implementation using modern, high-res-
olution metabolomics methods. We have previously devel-
oped low-resolution methods for determining the human 
serum metabolome reliably (Broadhurst and Kell 2006) and 
over extended periods (Begley et al. 2009; Dunn et al. 2011; 
Kenny et al. 2010; Zelena et al. 2009), including the exten-
sive use of QA/QC samples. Our first requirement was thus 

to develop a new and robust method for untargeted serum 
metabolomics using modern, high-resolution instrumenta-
tion. The present paper describes this method, and an initial 
application to a series of human cell lines. 

2 � Methods

2.1 � Cell culture

A549, K562, SAOS2 and U2OS cell lines were cultured in 
RPMI-1640 (Sigma, Cat No. R7509) culture media supple-
mented with 10% fetal bovine serum (Sigma, Cat No. f4135) 
and 2 mM glutamine (Sigma, Cat No. G7513) without anti-
biotics. Cell cultures were maintained in T225 culture flasks 
(Star lab, CytoOne Cat No. CC7682-4225) kept in a 5% CO2 
incubator at 37 °C until 70–80% confluent. The A549 cell 
line was purchased from the European Collection of Authen-
ticated Cell Cultures (ECACC, Salisbury, UK), K562 cell 
line was a kind gift from Dr Philip J. Day (The Manchester 
Institute of Biotechnology, The University of Manchester), 
SAOS2 and U2OS cell lines were a kind gift from Prof. Peter 
Gardner (The Manchester Institute of Biotechnology, The 
University of Manchester).

2.2 � Serum incubation experiments

2.2.1 � Harvesting cells for serum incubation experiments

Cells from adherent cell lines were harvested by removing 
growth media and washing twice with 5 mL of pre-warmed 
Dulbecco’s Phosphate Buffered Saline (PBS) without cal-
cium or magnesium (Gibco, Cat No. 14190094), then incu-
bated in 3 mL of Gibco™ TrypLE™ Express Enzyme (1X), 
no phenol red (Gibco Cat No. 12604013) for 2–5 min at 
37 °C. At the end of incubation cells were resuspended in 
5–7 mL of respective media when cells appeared detached 
to dilute TrypLE treatment. The cell suspension was trans-
ferred to 50 mL centrifuge tubes and immediately centri-
fuged at 300 × g for 5 min. Suspended cell lines were cen-
trifuged directly from cultures in 50 mL centrifuge tubes 
and washed with PBS as above. The cell pellets were resus-
pended in 10–15 mL media and cell count and viability was 
determined using a Countess II FL Automated Cell Counter 
(ThermoFisher Scientific) set for Trypan Blue membrane 
exclusion method. Cells with > 95% viability were used for 
serum incubation experiments.

2.2.2 � Incubation of cells in serum

The procedure for incubation of cells in serum is described 
pictorially in Fig. 1. More detailed information is provided 
in Supplementary Information file.
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2.3 � Internal standard solution mixture

An internal standard stock mixture was prepared using the 
following compounds and concentrations: citric acid-d4 
(Cambridge Isotope Laboratories, DLM-3487), 225 µM; 
L-lysine-d4 (Cambridge Isotope Laboratories, DLM-2640), 
112.5 µM; L-Tryptophan-(indole-d5) (Cambridge Isotope 
Laboratories, DLM-1092), 5.625 µM; stearic acid-d35 (Cam-
bridge Isotope Laboratories, DLM-379), 225 µM; succinic 
acid-d4 (Sigma 293,075), 112.5 µM; 13C6-carbamazepine 
(Sigma, C-136), 2.25 µM; Leucine-d10 (Sigma 492,949), 
22.5 µM and methionine-d4 (Cambridge Isotope Laborato-
ries, DLM-2933), 22.5 µM.

2.4 � Sample preparation for metabolomics analysis

Fresh or spent serum samples were thawed at room tempera-
ture and maintained on ice throughout the sample prepara-
tion process. Samples were prepared by addition of 100 µL 
sample to a 2 mL Eppendorf containing 330 µL Methanol 
(LC-MS grade) and 20 µL of internal standards mix (ISTDs). 
The mixture of methanol and ISTDs was previously cooled 
at − 80 °C and maintained on dry ice when adding serum. 
The mixture of serum, methanol and ISTD was vortexed 
vigorously followed by centrifugation at 13,300 rpm for 
15 min at 4 °C to pellet proteins. Multiple 75 µL aliquots 
(for extraction replicates) of the resulting supernatant dried 
in a vacuum centrifuge (ScanVac MaxiVac Beta Vacuum 
Concentrator system, LaboGene ApS, Denmark) with no 

temperature application and stored at − 80 °C until required 
for LC-MS/MS analysis.

Quality controls (QC) and conditioning QC samples were 
also prepared in this way using pooled human serum.

Extraction blanks were prepared in the same way as spent 
serum samples replacing serum and internal standard mix 
with 120 µL of water (LC-MS grade). Evaluation/system 
suitability samples were also prepared by replacing serum 
with water.

Prior to analysis, samples were resuspended in 40 µL 
water (LC-MS), centrifuged at 13,300 rpm for 15 min at 
4 °C to remove any particulates and transferred to glass sam-
ple vials.

2.5 � HPLC‑MS /MS analysis of spent serum samples

Untargeted HPLC-MS/MS data acquisition was performed 
following methodologies and guidelines in (Broadhurst 
et al. 2018; Broadhurst and Kell 2006; Brown et al. 2005 
; Dunn et  al.  2011 ; Mullard et  al.  2015 ). Data were 
acquired using a ThermoFisher Scientific Vanquish HPLC 
system coupled to a ThermoFisher Scientific Q-Exactive 
mass spectrometer (ThermoFisher Scientific, UK). A reso-
lution of 70,000 was used for MS and 17,500 for ddMS 
(further details provided in Supplementary Information). 
Chromatographic separation was performed on a Hypersil 
Gold aQ column (C18 2.1 mm × 100 mm, 1.9 µm, Ther-
moFisher Scientific) operating at a column temperature of 
50 °C. Elution was performed over 15 minutes at a flow 
rate of 0.4 mL/min using two solvents: 0.1% formic acid in 

Fig. 1   Incubation of cells in serum for metabolomics analysis to 
determine transporter substrates. Following incubation of cells in 
serum, spent serum is collected after centrifugation, followed by 
extraction using methanol. The remaining cell pellet is washed with 
PBS (at 37 °C), followed by quenching and extraction of intracellular 

metabolites using 80% methanol. The spent medium and intracellu-
lar extracts are subsequently lyophilised (with a mixture of internal 
standards spiked in prior to lyophilisation) and reconstituted in water 
ready for analysis by LC-HRMS/MS
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water (solvent A) and 0.1% formic acid in methanol (sol-
vent B). as described in Table 2 below. Column eluent was 
diverted to waste in the first 0.4 min and the last 0.1 min of 
the gradient. Sample vials were stored at 4 °C in the HPLC 
autosampler, with 5 µL injected for positive ionisation and 
15 µL for negative ionisation. MS acquisition settings are 
described in supplementary information 1.

Samples were analysed following guidelines set out in 
(Dunn et al. 2011) and (Broadhurst et al. 2018). Briefly, 
blank extraction samples were injected at the beginning 
and end of each batch to assess carry over and lack of 
contamination. Isotopically labelled internal standards 
were added to analytical and QC samples to assess system 
stability throughout the batch. QC samples, prepared with 
a standard reference material, pooled human serum, were 
also applied to condition the analytical platform, enable 
reproducibility measurements and to correct for systematic 
errors.

2.6 � LC‑MS/MS data preprocessing and analysis

Raw instrument data (.RAW) were exported to Compound 
Discoverer 3.1 (CD3.1) for deconvolution, alignment, and 
annotation (full workflow and settings are provided in sup-
plementary information 2). Peak areas from CD3.1 were 
subsequently exported as a .csv file and QC-based LOESS 
signal correction performed in R (version 4.0.2) as dis-
cussed in (Dunn et al. 2011) using the loess.as function of 
the fANCOVA package. Strict QA criteria (minimum QC 
coverage of 80% and maximum QC CV 30%) was applied 
to the resulting data.

For analysis of data for serum compound uptake and 
excretion by cell lines, normalised peak areas were exported 
as an excel file into a KNIME workflow developed in-house 
for data analysis and visualisation (available on request). 
Within this workflow, Principal Components Analysis was 
used to visualise trends. Subsequently, simple univariate sta-
tistical analyses were carried out on log2 transformed data 
using a paired t-test. Volcano plots were created using these 
data, with a threshold of P < 0.05 and absolute log2 fold 

change > 0.5 set for defining a notable change in compound 
abundance between time points compared. UpSet plots 
(Lex et al. 2014) (Supplementary Fig. 3) were then used to 
find unique and shared consumed or secreted compounds 
between cell lines.

For all data acquired, annotation and identification crite-
ria were according to (Schymanski et al. 2014).

3 � Results

3.1 � A RP‑LC‑ESI‑MS/MS method capable 
of detecting a broad range of serum 
compounds

The optimisation of chromatographic (O’Hagan et al. 2005) 
and mass spectrometric (Vaidyanathan et al. 2003) methods 
typically requires trade-offs between multiple objectives. 
During the development of the LC-MS/MS method used 
here our aim was both to maximise the number of serum 
compounds detected but also to acquire sufficient frag-
mentation data for more confident identification, with both 
achieved within a reasonably short period. Table 3 shows 
a summary of the results obtained from CD3.1 using the 
data acquired using the LC-MS/MS method described in 
both ESI+ and ESI− modes after running a set of serum 
QC samples. The method we have developed enables the 
detection of a large number of metabolic features, of which 
around 70% can be attributed to sample-related compounds 
(after background subtraction and exclusion, removal of 
compounds not found in > 80% of QC samples, and exclu-
sion of compounds with a QC CV > 30%, see supplementary 
information 2). A molecular formula could be attributed to 
around 80% of these metabolic features. Over 80% of these 
sample compounds had a QC CV < 15% demonstrating a 
good level of reproducibility across injections. As can be 
seen in Supplementary Fig. 2, peak areas of detected spiked 
internal standards displayed high reproducibility (< 10% 
RSD) and excellent mass accuracy (< 1 ppm) across QC 
injections throughout the run.

To improve confidence in metabolite annotation we also 
performed data dependent MS/MS across a range of masses 
in a similar way to (Mullard et al. 2015). As can be seen in 
Table 3 around 70% of sample compounds had associated 
MS/MS spectra with a large proportion of MS2 spectra cor-
responding to a preferred adduct ion ([M+ H]+).

As is commonly the case in untargeted metabolomics, the 
level of annotation and identification confidence was quite 
varied. In our analyses, annotation and identification ranged 
from identification levels 5-2 (Schymanski et  al. 2014) 
(Table 3). We do find a small number of level 1 identifica-
tions in our study; however, our in-house mass and spec-
tral libraries are small and still under development. For this 

Table 2   HPLC gradient elution program applied for HPLC-MS/MS 
analysis for ESI+ and ESI− modes

Time (min-
utes)

Flow rate (mL/
min)

Solvent A (%) Solvent B (%)

0 0.4 99.0 1.0
2 0.4 99.0 1.0
10 0.4 1.0 99.0
12 0.4 1.0 99.0
13 0.4 99.0 1.0
15 0.4 99.0 1.0
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reason, level 1 identifications will not be discussed. Results 
in terms of annotation and identification at various levels 
from both ESI+ and ESI− were comparable (Table 2); we 
will describe these for ESI+.

In ESI+ 3016 sample compounds had a full match to 
a proposed molecular formula (level 4). Of these, 1156 
matched mass libraries in ChemSpider (level 3) on our 

searches against BioCyc, HMDB, KEGG, MassBank and 
NIST. In addition, around 700 compounds were matched 
against mass libraries provided by CD3.1 software along 
with our own imported ones (including the serum metabo-
lome database (Psychogios et al. 2011) and the COCONUT 
Natural Products database (Sorokina and Steinbeck 2020)). 
Of the 2612 metabolic features with MS/MS spectra, 391 

Table 3   Summary of LC-MS/MS results of serum QC samples obtained following preprocessing using CD3.1

ESI + ESI-

Number Percentage Number Percentage

Features 54,177 53,935

Compounds 5,342 6,941

Background 
compounds 480 9.0

% of total 
compounds

338 4.9
% of total 

compoundsOther excluded 
compounds 1,067 20.0 1,912 27.5

Sample 
compounds

Total 3,795 71.0 4,691 8.7

Total with % QC CV 
< 15 3,213 84.7

% total sample 
compounds

3,874 82.6

% total sample 
compoundsNo MS2 spectra 1,183 31.2 1,491 31.8

MS2 2,612 68.8 3,200 68.2

MS2 for preferred 
ion 2,330 89.2

% of MS2

3,031 94.7

% of MS2
MS2 for other ion 282 10.8 169 5.3

Annota�on 
and 

Iden�fica�on

Full match to 
Proposed Molecular 

Formula (level 4)
3,016 79.5

% total sample 
compounds

3,922 83.6

% total sample 
compoundsNo match to 

Proposed Molecular 
Formula

522 13.8
710 15.1

Full match to 
ChemSpider 1,296 34.2 % total sample 

compounds
1,476 31.5 % total sample 

compounds
Full match Proposed 
Molecular Formula 

and ChemSpider 
(level 3)

1,156 30.5 % total sample 
compounds

1,239 26.4
% total sample 

compounds

Full match to Mass 
List 858 22.6 % total sample 

compounds
995 21.2 % total sample 

compounds
Full match Proposed 
Molecular Formula 

and Mass Lists (level 
3)

724 84.4 % Mass List 
Matches

793 79.7
% Mass List 

Matches

mzCloud Best Match 
≥70% score 391 10.3 % total sample 

compounds
245 5.2 % total sample 

compounds
Full match Proposed 

Molecular and 
mzCloud Best Match 
≥70% score (level 2)

211 54.0
% mzCloud 

Match ≥70% 
score

199 81.2 % mzCloud 
Match ≥70% 

score

Note features here correspond to detected ions, compounds here correspond to what is commonly referred to as metabolic features (m/z and RT)
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were matched with reasonable confidence (≥ 70%) to the 
mzCloud spectral library. Of these, 211 were fully matched 
against a proposed molecular formula by CD3.1 providing 
level 2 identification confidence. These are provided in Sup-
plementary Information 3. These compounds represented 
diverse metabolite classes such as amino acids, peptides 
and analogues, lipids, and lipid-like molecules (including 
fatty acyls and steroids), as well as carboxylic acids and 
derivatives.

Of the remaining 165 compounds with ≥ 70% match to 
the mzCloud spectral library but without full match to a pro-
posed molecular formula, a large proportion are not marked 
as having a full match to proposed molecular formulae for 
several reasons. This may include better spectral matching 
with other compounds sharing similar substructures, but 
with this providing a mass error > 3 ppm. In some cases, 
closer manual inspection is required whereas in others, the 
spectral matching provides clues as to the possible underly-
ing substructure of the molecule in question. There is some 
level of duplication in annotation and putative identifica-
tions, either through close matches to mass or spectral librar-
ies, or due to the same precursor mass appearing at more 
than one retention time (yet with different peak areas and 
intensities). Some of these can be seen in Supplementary 
Information 3, where 57 of 211 annotated compounds were 
duplicated in this way. As an example, we found Arachi-
donic acid eluting at 4 different retention times yet spectral 
matching of all these with mzCloud was > 90% in confi-
dence. Another such example was Ecgonine, eluting at two 
different retention times yet both having excellent spectral 

matching to mzCloud (> 90% match). Further investigation 
may reveal this to be due to (positional) isomers and/or some 
compounds simply binding to the column and eluting over 
different times. This is of lesser importance for present pur-
poses where we aim to find unique markers of transporter 
substrates.

Taking into account that these results are illustrative 
of a QC run, results in Table 3 suggests our LC-MS/MS 
method is a clear improvement on those shown in Table 1. 
The number of metabolic features after correction and 
exclusion in our study are lower than those in Ganna et al. 
(Ganna et al. 2015), however, the number of level 2 iden-
tified compounds (whether using (Sumner et al. 2007) or 
(Schymanski et al. 2014)) is nearly double. Whilst this 
is not the case when we compare against the number of 
level 2 identified compounds in (Dunn et al. 2015), we 
expect this will increase in our methodology as number 
of compounds and spectra in mzCloud grow, we match 
to spectral libraries outside of Compound Discoverer and 
we continue to increase our in-house library. Furthermore, 
our elution gradient is shorter (15 min in both ESI+ and 
ESI− vs. 22 min ES+ and 24 min ESI-) which will provide 
great time and cost savings.

3.2 � Application of our method to determine 
the consumption and excretion of serum 
compounds by mammalian cell lines

One of the main purposes for developing the above untar-
geted LC-MS/MS methodology is to apply this to measure 
the uptake and excretion of serum compounds by mamma-
lian cell lines. As a proof of principle, we assessed this by 
analysis in ESI+ of spent serum samples from 4 cell lines 
(A549, K562, SAOS2 and U2OS) incubated in serum at two 
different densities (2 and 4 million) at two timepoints (0 and 
20 minutes incubation).

A summary table of the number of compounds detected 
and identified with various levels of confidence can be found 
in Supplementary Table S1. The results obtained are compa-
rable to those shown in Table 1, demonstrating good repro-
ducibility of our method.

PCA reveals differences in samples (Fig. 2): the different 
cell lines fell into distinct groups separated in both PC1 and 
PC2. Furthermore, separations between time 0 and 20 min 
of incubation suggested differences in metabolic profile of 
spent serum influenced by time.

To confirm that the separation of cell lines as well as 
the effect of incubation time and cell density are the result 
of differences in the uptake and excretion of serum com-
ponents, we performed simple univariate analyses. The 
volcano plots in Fig. 3 confirm this is the case; cell lines 
consumed and excreted serum components however, the 
number of compounds consumed or excreted was not 

Fig. 2   PCA scores plots of spent serum extracts following incuba-
tion for 0 or 20 minutes with 4 different cell lines and two densities. 
Colour: Cell line and density, shape: incubation time (Color figure 
online)
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always proportional to increasing density, indicating that 
a rich set of metabolic activities were taking place during 
this period.

Fuller results will be reported elsewhere for a much 
larger panel of cell lines; however, we provide examples of 
a compound exclusively consumed by one cell line (SAOS2, 
Fig. 4a), another exclusively secreted by another cell line 
(A549, Fig. 4b) and finally one where a mix of consumption 
and secretion was observed (Fig. 4c).

In SAOS2 cells, an unknown compound with mass of 
471.26882 matching the molecular formula C21H37N507 
was consumed exclusively by this cell lines, with consump-
tion increasing in relation to higher cell density (Fig. 4a, 
log2 fold change − 0.84, P = 0.0004 at 2 million density and 
log2 fold change − 1.83, P = 0.0002 at 4 million density). 
Fragmentation data matching against mzCloud suggest some 
possible substructures of this compound match fragments for 
an environmental compound on the NORMAN suspect list 
(Mistrik et al. 2019) as shown in Supplementary Fig. 3A.

As can be seen in Fig.  4b, A549 cells secreted γ-L-
Glutamyl-L-glutamic acid whilst the other 3 cell lines did 
not. The increase in levels of this metabolite was nearly dou-
ble when cell density was doubled (log2 fold change 0.60, 
P = 0.0004 at 2 million density and log2 fold change 0.93, 
P = 0.0002 at 4 million density) whereas in other cell lines 
the changes were below our threshold (log2 fold change > 0.5 
and P < 0.05). The identification of this compound is at a 

reasonable level 2, with 90.2% match to this compound in 
mzCloud, and low mass error (− 0.00029 Da or − 1.06 ppm) 
as can be seen in Supplementary Fig. 3B.

Nicotinamide (level 2 identification as shown in Supple-
mentary Fig. 3C) was found to be secreted by SAOS2 cell 
lines in a density dependent manner (log2 fold change 0.55, 
P = 0.0010 at 2 million density and log2 fold change 0.98, 
P = 0.002 at 4 million density) yet consumed by K562 (log2 
fold change − 0.89, P = 0.0050) and U2OS (log2 fold change 
− 1.26, P = 0.0004) cell lines at 4 million density and A549 
cells at 2 million density only (log2 fold change of − 1.01, 
P = 0.0002).

While the biological significance of the consumed or 
secreted compounds in Figs. 3 and 4 will be discussed else-
where in due course, the main message from this study is 
that the methodology employed here is robust and repro-
ducible, (ii) capable of measuring the transport behaviour 
of serum compounds in an entirely unbiased way, (iii) and 
shows the massive differences between individual cell lines 
(O’Hagan et al. 2018; Wright Muelas et al. 2019).

4 � Discussion

We have here described an untargeted LC-MS/MS method 
developed to maximise the number and diversity of com-
pounds detected in human serum whilst also acquiring suffi-
cient fragmentation data for improved metabolite annotation 
confidence, all within a reasonable period of 15 minutes. 

Fig. 3   Volcano plots showing differences in number and magni-
tude of serum compound consumption and excretion by different 
cell lines and densities over 2 min. Threshold for significant change: 

P-value < 0.05 and log2 Fold Change < − 0.5 or > 0.5. Left panel: 
2 million cell density; right side 4 million
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The method enables detection of around 4000–5000 sam-
ple-related metabolic features in both ESI+ and ESI−, with 
excellent reproducibility and mass accuracy; across QC 
injections, ≥ 80% of sample compounds QC CVs were 
≤ 15% (Table 3), and spiked internal standard QC CVs were 
< 10% (Supplementary Figure S2) with excellent mass accu-
racy (< 1 ppm).

Annotation and identification of metabolites is by far the 
greatest bottleneck encountered in untargeted metabolomics 
(Djoumbou Feunang et al. 2016; Dunn et al. 2013; Misra 
and van der Hooft 2016). Despite an increasing availabil-
ity of mass spectral libraries (Vinaixa et al. 2016), only a 
small proportion of small molecules in these are derived 
from experimental data using pure standards and, even then, 
these seem to cover only around 40% of compounds within 
human genome scale metabolic network reconstructions 
(Frainay et al. 2018). Note that most serum metabolites have 
an exogenous source(O’Hagan and Kell 2017). Only a lim-
ited number of untargeted metabolomics studies of human 
serum using LC-MS/MS have sufficient details with which 
to compare our results (Table 1). Our method enables anno-
tation of a significant number of metabolites at levels 4-2 
(Table 3). From these, we found 226 metabolites with level 2 
identification confidence in ESI+, representing diverse (and 
relevant) metabolite classes. The number of level 2 identified 
compounds using our method is also improved in compari-
son to results reported by Ganna et al. (Ganna et al. 2015). 
This is not the case when we compared (Dunn et al. 2015), 
however, the elution gradient in our method is shorter 
(15 min in both ESI+ and ESI− vs. 22 min ES+ and 24 min 
ESI−) which will provide great time and cost savings. The 
annotation and identification of metabolites to level 2 in our 
study is likely also limited using spectral libraries available 
through Compound Discoverer, namely mzCloud and local 
spectral libraries provided as standard with this software 
within mzVault. Another limitation within our reported 
data is the small number of level 1 metabolite identifica-
tions in our study; our in-house mass and spectral libraries 
are small and still under development.

In addition to maximising metabolite detection and iden-
tification, we have demonstrated the applicability of the 
LC-MS/MS method described to measure differences in 
the uptake and secretion of compounds by cell lines fol-
lowing incubation in human serum. This takes inspiration 
from work by Gründemann and colleagues (Gründemann 
et al. 2005) taking advantage of the complex mixture of can-
didate transporter substrates in human serum. The results 
reveal both the reproducibility of the analyses and distinct 
metabolic footprints(Allen et al. 2003) of different cell lines 
in terms of both uptake and secretion (Figs. 2 and 3).

As shown in Fig. 4, some compounds were consumed 
exclusively by certain cell lines and not others, whilst oth-
ers were consumed by some but secreted by others. These 
differences are undoubtedly related to the transporter expres-
sion profiles of these cell lines. We have recently shown 
transporter expression to vary widely between cells and tis-
sues which can be explained by the requirements of differ-
ent tissues and cell lines for different amounts of specific 
substrates (O’Hagan et al. 2018). Fuller and more extensive 
results using a larger panel of different cell lines and time 

Fig. 4   Cell- line specific consumed or secreted compounds a  Uni-
dentified compound with assigned molecular formula C21H37N5O7 
consumed by SAOS2 cell lines only, b γ-L-Glutamyl-L-glutamic acid 
secreted exclusively by A549 cell lines. c Nicotinamide secreted by 
SAOS2 cell lines but consumed by others. X-axis labels: A549_2, 
A549 cells at 2 million density; A549_4, A549 cells at 4 million den-
sity; K562_2, K562 cells at 2 million density; A549_4, K562 cells at 
4 million density; QC_QC, Quality Control; SAOS2_2, SAOS2 cells 
at 2  million density; SAOS2_4, SAOS2 cells at 4  million density; 
U2OS _2, U2OS cells at 2 million density; U2OS_4, U2OS cells at 
4 million density. Horizontal dashed line added at the median level in 
QC sample to aid visualisation
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points will be reported elsewhere, and use of transcriptomic 
and proteomic transporter expression profiles to relate these 
to the potential substrates of transporter proteins.

5 � Conclusions

We have developed a new, 15-min untargeted metabolomics 
method using LC-MS/MS that allows for the robust and con-
venient measurement of a large number of metabolites in 
human serum. The method additionally acquires fragmenta-
tion data to enable improved annotation and identification 
of compounds. We also describe a protocol for investigating 
the natural substrates of transporters by way of incubating 
human cell lines in serum and using the above LC-MS/MS 
method to measure reproducible and unbiased differences in 
the uptake of serum compounds.
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