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Abstract

Objective: Neonates’ physiological immaturity and complex dosing requirements heighten their susceptibility to medication
administration errors (MAEs), with the potential for severe harm and substantial economic impact on healthcare systems.
Developing an effective risk prediction model for MAEs is crucial to reduce and prevent harm.

Methods: This national-level, multicentre, prospective direct observational study was conducted in neonatal intensive care
units (NICUs) of five public hospitals in Malaysia. Randomly selected nurses were directly observed during medication prep-
aration and administration. Each observation was independently assessed for errors. Ten machine learning (ML) algorithms
were applied with features derived from systematic reviews, incident reports, and expert consensus. Model performance,
prioritising F1-score for MAEs, was evaluated using various measures. Feature importance was determined using the per-
mutation-feature importance for robust comparison across ML algorithms.

Results: A total of 1093 doses were administered to 170 neonates, with mean age and birth weight of 33.43 (SD± 5.13) weeks
and 1.94 (SD± 0.95) kg, respectively. F1-scores for the ten models ranged from 76.15% to 83.28%. Adaptive boosting
(AdaBoost) emerged as the best-performing model (F1-score: 83.28%, accuracy: 77.63%, area under the receiver operating
characteristic: 82.95%, precision: 84.72%, sensitivity: 81.88% and negative predictive value: 64.00%). The most influential
features in AdaBoost were the intravenous route of administration, working hours, and nursing experience.

Conclusions: This study developed and validated an ML-based model to predict the presence of MAEs among neonates in
NICUs. AdaBoost was identified as the best-performing algorithm. Utilising the model’s predictions, healthcare providers can
potentially reduce MAE occurrence through timely interventions.
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Introduction
Medication administration errors (MAEs) are errors com-
mitted at the last stage of the medication use process,
including prescribing, transcribing and documenting, dis-
pensing, administering, and monitoring.1 MAE has been
defined as ‘any dose of medication administered (or
omitted) that deviates from the patient’s medication
order’.2 The consequences of MAEs may be debilitating,
resulting in severe patient harm and a significant economic
burden on healthcare services.3,4

MAEs continue to be a significant concern among neo-
nates. The rate of MAEs among neonates (13.3%–
94.9%)5 was found to be higher in comparison to paediatric
(12.8%–73%), adult (14.6%–41%), and elderly (54.2%–
59%) populations.6 The reasons behind this prevalent
issue are likely related to the physiological immaturity of
the neonates, the constant changes in their body size, and
the numerous calculations and manipulations involved
during the preparation and administration of medications.6,7

In 2017, the World Health Organization initiated the
third Global Patient Safety Challenge which was aimed to
reduce severe medication-related preventable harm by
50% over 5 years, globally.8 In a systematic review con-
ducted by Nguyen et al. which aimed to assess the effective-
ness of interventions implemented in reducing all types of
medication errors among neonates, 26 studies were identi-
fied to have reported the effectiveness of interventions in
reducing MAEs specifically. Among these, eight studies
were conducted to reduce various types of MAEs across
all medications, while the remaining studies targeted
specific types of MAEs such as wrong dose or wrong
concentration.9 Examples of interventions implemented
in these studies were barcode medication administration
safety,10,11 computerised physician order entry,12 enhance-
ment of medication distribution and supply,13 education,7,14

and multifactorial interventions where different interven-
tions were combined.15,16 Only two studies utilised error
detection tools specifically developed to reduce wrong
dose and frequency errors.17,18

In the past years, there has been an increase in the
number of computational efforts, mainly around the adop-
tion of artificial intelligence such as machine learning
(ML) algorithms in the field of clinical pharmacy prac-
tice.19,20 Modern ML techniques have the potential to revo-
lutionise predictive tasks in these fields.19,20 The use of
artificial intelligence in pharmacy has been promoted by
professional societies, in health policy reports or editor-
ials.21–24 In systematic reviews that aimed to critically
appraise the available literature on the predictive algorithms
developed to detect inappropriate medication orders
mainly prescription errors, artificial intelligence models
have demonstrated great potential to optimise the clinical
pharmacy practice services by improving patient safety
and reducing medication errors.19,20 However, none of the

ML algorithms reported in these systematic reviews were
developed specifically to predict the presence of MAEs.

A ML-based model was recently developed by Yalcin
et al. to identify the presence of medication errors such as
prescription, preparation, administration, and monitoring
errors among neonates in the neonatal intensive care unit
(NICU).25 The model found ten predictor variables for the
identification of medication errors. However, the proposed
model was developed to identify the presence of any medi-
cation errors and not specifically MAEs. This in turn makes
it challenging for the users such as policymakers, stake-
holders, and healthcare professionals to identify and plan
where intervention should be implemented to prevent an
impending error, whether during prescribing, administra-
tion, and/or monitoring. Therefore, this study aimed to
develop and validate a ML-based model to predict the pres-
ence of MAEs specifically, among neonates in the NICU.
Developing and validating a model that incorporates an
extensive list of potential risk factors associated with
MAEs would enable policymakers, stakeholders, and
healthcare professionals such as nursing managers to
predict the presence of MAEs among neonates in the
NICU and implement a strategy to prevent the error from
reaching the neonates.

Methods

Study design and setting

A prospective direct observational study was conducted
between April 2022 and April 2023 in NICUs across five
public hospitals under the Ministry of Health, Malaysia.26

These hospitals, representing regions within the country,
namely Northern, Central, Southern, East Coast, and East
Malaysia were purposively chosen to reflect both major
specialist hospitals and state hospitals. The characteristics
of NICUs across five study sites varied in terms of
medication distribution systems, type of prescription,
availability of protocols for medication preparation and
administration, personnel conducting clinical rounds, time
of medication administration, personnel involved in medi-
cation preparation and administration, number of beds,
and nurse-to-patient ratio. Details of these characteristics
are available in Table 1.

Sample

The sample size for determining factors associated with
MAEs was calculated based on risk factor proportions
obtained from a previous study with a similar setting.7

The proportions of errors associated with the complexity
of preparation were utilised to calculate the required
sample size, resulting in a minimum of 1052 medication
administrations. This sample size would provide at least
80% power assuming a two-tailed test and a type-1 error
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rate of 5%. Samples were allocated proportionally to the
number of expected admissions in each study site.

Eligibility criteria

We only included medications prepared and administered
by nurses via all routes, excluding enteral feedings, paren-
teral nutrition, blood-derived products, rectal administra-
tions when neonatal-specific rectal dosage forms were
unavailable, medical gases, dietary supplements and omis-
sions of medication administration due to an absent patient
or other relevant clinical reasons.

Data collection

Two experienced clinical pharmacists each with at least a
decade of professional experience were tasked with carry-
ing out the observations. Prior to beginning their

observations, they received thorough training in the direct
observation method based on the approach outlined by
Barker and McConnell.27 This training combined theoret-
ical lessons with practical exercises. Additionally, they
were required to pass a written examination, featuring
video simulations of drug preparation and administration
scenarios, with a minimum score of 80% before they
could conduct observations on their own. The two obser-
vers were tasked with filling out the data collection form,
based on their observations from the videos. They were
evaluated based on the accuracy and completeness of
their data collection forms. The videos were prepared by
researchers well-versed in the direct observation method,
who also evaluated the observers’ responses to determine
their scores.

Pilot observations were conducted over three days to
familiarise the observers with ward procedures and reduce
the Hawthorne effect. All pilot observations were reviewed

Table 1. Characteristics of study sites.

Characteristics Study Site 1 Study Site 2 Study Site 3 Study Site 4 Study Site 5

Medication
distribution
system

Floor stock
distribution
system and
unit-of-use
packaging

Floor stock
distribution
system and
unit-of-use
packaging

Centralised
intravenous
admixture service
for most antibiotics,
floor stock
distribution system
and unit-of-use
packaging

Floor stock
distribution
system and
unit-of-use
packaging

Floor stock
distribution
system and
unit-of-use
packaging

Type of prescription Handwritten
prescriptions
used for
preparation and
administration of
medications

Handwritten
prescriptions
used for
preparation and
administration of
medications

Handwritten
prescriptions used
for preparation and
administration of
medications

Handwritten
prescriptions
used for
preparation and
administration of
medications

Handwritten
prescriptions
used for
preparation and
administration of
medications

Personnel involved
in preparation
and
administration of
medications

Preparation and
administration of
medications are
performed by the
respective nurse
in charge of each
patient

Preparation and
administration of
medications are
performed by the
respective nurse
in charge of each
patient

Preparation and
administration of
parenterals are
performed by the
medication nurse
for the entire ward
while preparation
and administration
of oral medications
are performed by
the respective nurse
in charge of each
patient

Preparation and
administration of
medications are
performed by the
respective nurse
in charge of each
patient

Preparation and
administration of
medications are
performed by the
respective nurse
in charge of each
patient

Number of beds 16 beds 14 beds 38 beds 24 beds 18 beds

Nurse-to-patient
ratio

1:1 or 1:2 Ranged from 1:2
and 1:9

Ranged from 1:4 to 1:7 Ranged from 1:1 to
1:3

Ranged from 1:2 to
1:4
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with the research team to confirm the observers’ under-
standing of the data collection procedures and ensure uni-
formity in the methods employed. However, data from
these pilot observations were not included in the final
analysis.

To further lessen the Hawthorne effect on the
observed nurses, certain measures were taken during
the data collection process. Nurses were informed that
the study aimed to improve medication systems rather
than evaluate individual practices.28 An information
sheet and an informed consent form were provided to
the nurses and written consent was obtained before
data collection. Before observing drug preparation
and administration, patient-related information (e.g.
age, gender, length of stay, current diagnosis) and medi-
cation-related details (e.g. name of medication pre-
scribed, dosage, and frequency) were collected using a
pre-designed data collection form, with written consent
obtained from participating nurses.

The NICUs in the study sites were divided into different
sections based on the ward layout and patient acuity levels.
A section at each site was randomly selected before each
round of observation using Excel’s random number gener-
ator to determine the nurse(s) who would be directly
observed. Randomly selected nurses who provided
written informed consent were then directly observed
during the preparation and administration of the medica-
tions. Observers closely followed the consenting nurses
throughout these processes. Direct observations were con-
ducted during peak medication administration hours
(07:00–22:00) on both weekdays and weekends, as identi-
fied during pilot observations. While four of the sites
adhered to fixed medication administration schedules, one
site followed prescription times, requiring extensive cover-
age across different times and days. To ensure data collec-
tion encompassed all administration times and days,
observers maintained a table during data collection to
track the distribution of drug observation rounds. During
the observations, detailed information was recorded regard-
ing medication preparation (e.g. reconstitution/dilution
details, preparation time, expiration, solvent and diluent),
administration (e.g. time, route, rate and compatibility),
and ancillary procedures (e.g. labelling, double-checking,
and interruptions).

For ethical reasons, observers intervened non-
judgmentally when potentially harmful MAEs were
detected, such as the administration of expired or deterio-
rated drugs or a tenfold overdose.29,30 These errors were
recorded in the dataset under the assumption that they
would have reached the patient if not addressed. After
each observation round, demographic details of the
administering nurse (e.g. years of experience, and educa-
tion level) were recorded. To ensure validity, 10% of
preparations and administrations were independently
observed by the clinical pharmacist of the study site,

separate from the research team altogether, alongside
the primary observer. The findings had to be consistent
between the pharmacist and observer for the data to be
validated.31,32 After the entire data collection had been
completed, each observation was then independently
and individually assessed for errors by two clinical phar-
macists who were not involved in the observations. Any
disagreements were resolved through consensus with the
research team. The study flowchart is available in
Appendix 1 in the online supplemental materials.

Dataset description

The dataset from our direct observational study was used to
develop the risk prediction model reported in this paper.
The dataset had a total of 1093 observations. The target
variable or outcome in this study was a binary variable
which was the occurrence of MAEs in the NICU. MAE
was defined as any deviation observed during the prepar-
ation or administration of medications from the medication
order, the hospital policy, or the manufacturer’s instructions
in the product leaflet.7

Each sample in the dataset is described by 16 features.
These features were identified through a multi-faceted
approach: (a) a systematic review of the underlying
causes and risk factors of MAEs among neonates5; (b) inci-
dent reports voluntarily reported to the Medication
Error Reporting System (MERS) established by the
Pharmaceutical Services Programme, Ministry of Health
Malaysia; and (c) a consensus of an expert panel consisting
of a paediatrician, a clinical pharmacist and a senior nurse
who specialises in neonatology. These features were
chosen based on their demonstrated relevance in existing
literature and practical insights from healthcare profes-
sionals. The systematic review provided a comprehensive
understanding of the causes of MAEs in NICUs, ensuring
evidence-based features while the use of incident reports
offered real-world data reflecting the specific challenges
faced in Malaysian NICUs, allowing for the identification
of contextually relevant predictors. The expert panel’s con-
sensus further ensured that the selected features aligned
with clinical practices and expert opinions, enhancing the
model’s clinical applicability. The details of the features
are provided in Table 2.

Risk prediction model to predict the presence
of MAEs among neonates in NICUs

The risk prediction model was designed as a binary clas-
sification task. The target label for the model corre-
sponded to whether a MAE is present for the dose
observed. The development and validation of the risk
prediction model involved several steps such as data pre-
processing, model development, and model evaluation as
illustrated in Figure 1.
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Table 2. Description of dataset.

Predictors Definition Data type

Administration-related variables

Route of administration Route of administration for the medication administered to a patient (0= oral; 1=
intravenous)

Nominal

The complexity of the drug
preparation

Number of steps taken during the preparation of the observed drug
• 0=One-step, such as withdrawal of the required amount from already prepared

stock solution or from a ready-to-use preparation
• 1=More than one step, such as reconstitution of the stock solution followed by

withdrawal of the required amount or reconstitution of the stock solution followed
by withdrawal of required amount and then dilution

Nominal

Number of medications administered Number of medications prepared and administered by a nurse Count

Working environment-related variables

Number of patients Number of patients under the care of the nurse Count

Working hours Number of hours a nurse has worked up till the observation of the medications
prepared and administered

Count

Working shift The shift when a dose of the drug is administered (0=morning shift (07:00 to 14:00),
1= evening shift (14:00 to 22:00))

Nominal

Double-check The medication prepared for administration is independently counterchecked by
another individual (0= no, 1= yes)

Nominal

Availability of protocol Availability of a protocol related to the preparation and administration of medications
at the study site (0= no, 1= yes)

Nominal

Labelling Medication prepared and administered is labelled according to local policies (0= no,
1= yes)

Nominal

Interruption and/or distraction Interruption is defined as any stimuli causing the nurses to cease the preparation and
administration of the medication temporarily, while distraction is defined as any
stimuli that do not cause the nurse to cease the preparation and administration of
the medication but cause the nurses to respond to the stimuli while continuing the
drug preparation and administration (0= no, 1= yes)

Nominal

Patient-related variables

Ventilation Administration of ventilatory support, such as invasive or non-invasive ventilation (0
= room air, 1= non-invasive ventilation, 2= invasive ventilation)

Nominal

Birth weight Body weight of the neonate at birth Continuous

Gestational age Gestational age of the neonate at birth Continuous

Number of medications prescribed Number of medications prescribed due for administration Count

Individual-related variables

Nurses’ experience at the study site Total number of years at the NICU of the study site Continuous

Nurses’ educational status Level of education (0= diploma in nursing, 1= advanced diploma in neonatology) Ordinal

Note. NICU: neonatal intensive care unit.
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Data preprocessing. Data preprocessing is the initial step in
model development. It involves preparing and cleaning the
dataset to ensure the quality and efficiency of the final
model. Several data preprocessing steps were applied in
this study. There were no missing data in the dataset.
Hence, imputation was not performed. The strength of asso-
ciation for each feature with the target MAE class was
explored and the Spearman’s correlation coefficient
between gestational age and birth weight was found to be
0.82. Since both features were highly correlated, birth
weight was removed to reduce redundancies.

The dataset encompasses a mix of continuous and cat-
egorical features. However, most ML algorithms are not
optimised for categorical features. Hence, it is necessary
to convert all categorical features into numerical values
before their utilisation in ML algorithms. One effective
method is One Hot Encoding, which involves the trans-
formation of categorical variables into binary parameters.
Specifically, it creates additional features – one for each cat-
egory present in the original feature, assigning a binary
value (0 or 1) to indicate the presence or absence of each
category in a given observation.33 This approach prevents
the ML algorithms from misinterpreting the categories as
having ordinal relationships.

The two-way holdout method was then employed as the
validation technique where the dataset was randomly strati-
fied into training and testing sets with a ratio of 8:2. Due to a
class imbalance of MAEs and non-MAEs instances in the
dataset, where there were 743 instances of MAEs and 359
instances of non-MAEs, the accurate identification of

MAEs and non-MAEs instances could be compromised.
To address this imbalance, the synthetic minority oversam-
pling technique (SMOTE) was applied to the training set.
The SMOTE, introduced by Chawla et al.,34 offers a
novel approach to addressing imbalanced datasets. Unlike
conventional oversampling methods, the SMOTE doesn’t
merely duplicate existing samples in the minority class.
Instead, it generates synthetic samples, effectively aug-
menting the minority class which is the non-MAEs
instance. The instances in this class were oversampled
until both classes were uniformly distributed, after which
the dataset became balanced. This unique strategy helps
mitigate overfitting issues and enhances the classifier’s
ability to generalise well on unseen data. The training set
was utilised to develop the risk prediction model while
the test set was used to estimate the prediction performance
of the developed model.

Model selection. Ten prediction algorithms were con-
structed in this study and they include both the logistic
regression method and various ML classification algo-
rithms. The selection of these algorithms was based on
their widespread use in predictive modelling tasks, span-
ning from traditional statistical approaches like logistic
regression to more advanced techniques like k-nearest
neighbours, support vector machine, Gaussian Naïve
Bayes, decision tree, random forest, gradient boosting,
extreme gradient boosting, adaptive boosting (AdaBoost),
and categorical boosting.35 Each algorithm offers unique
strengths and capabilities, allowing us to explore a

Figure 1. Pipeline of the proposed machine learning-based approach.

6 DIGITAL HEALTH



diverse range of modelling techniques and assess their per-
formance in predicting MAEs. All of the ML models were
trained using the same random seed (value of 1234) to
ensure reproducibility; though there could still be some
slight variation in performance due to the non-deterministic
nature of some ML algorithms.

Hyperparameters for each algorithm were optimised
using grid search. The search range is based on the values
proposed by the algorithm creators, or in accordance with
standard state-of-the-art practices. Cross-validation is per-
formed during this grid search process as the training data
is used to validate the hyperparameter permutations.
Hyperparameters that produced a model with the highest
F1-score for each algorithm in the training set were then
evaluated using the unseen (for the model) test set for com-
parisons between algorithms.

The ten algorithms were implemented using Python
(version 3.10.12) and ran on Google Colab as the imple-
mentation platform. This cloud-based service is based on
the Jupyter Notebook and provides users access to a
Python environment that includes preinstalled popularly
used data science libraries such as Scikit-learn. The predic-
tion algorithms from the Scikit-learn application program-
ming interface were used.36 OneHotEncoder from the
Scikit-learn application programming interface was used
to convert nominal features to one-hot numeric arrays.
The default Imbalanced-learn (imblearn) application pro-
gramming interface version of the SMOTE was used to
address the imbalanced dataset.37 During the optimisation
of the hyperparameters, GridSearchCV from the
Scikit-learn application programming interface was used.
The codes utilised in this study are available in Appendix
2 in the online supplemental materials.

Evaluation measures. After the hyperparameters were fixed
and applied to the testing set, a two-by-two contingency
confusion matrix table was created. This table represented
both the observed (ground truth) and predicted (classified)
risk classification. The performance of the models was
measured by calculating sensitivity (recall), specificity, pre-
cision or positive predictive value, F1-score, accuracy,
negative predictive value, and area under the receiver oper-
ating characteristic curve.

• Sensitivity. This is the model’s sensitivity in identifying
the presence of MAEs and is computed as the ratio of
true positives to the sum of true positives and false nega-
tives.

Sensitivity = TP

TP+ FN
(1)

• Specificity. This measures the proportion of doses
without MAEs which were correctly identified as not
having MAEs. It is computed as the ratio of true

negatives to the sum of true negatives and false
positives.

Specificity = TN

TN + FP
(2)

• Precision. Also known as positive predictive value. This
is the proportion of doses with MAEs, the positive
instances, which were correctly identified as having
MAEs out of all the doses with MAEs. This is computed
as the ratio of true positives to the sum of true positives
and false positives.

Precision = TP

TP+ FP
(3)

• F1-score. This is the harmonic mean of precision and
sensitivity.

F1− score = 2 ∗ (Precision ∗ Sensitivity)
(Precision+ Sensitivity)

(4)

• Accuracy. Accuracy reflects the overall ability of the
model to correctly identify both the doses with MAEs
(positive) and without MAEs (negative) instances. The
formula for the calculation is as follows:

Accuracy = TN + TP

TN + TP+ FN + FP
(5)

• Negative predictive value. This is a proportion of doses
without MAEs (the negative instances) which were cor-
rectly identified as not having MAEs, out of all the doses
without MAEs which were predicted to be negative. The
formula for the calculation is as follows:

NPV = TN

TN + FN
(6)

The discriminatory ability of the model was assessed using
the area under the receiver operating characteristic curve.
This was also used to compare the overall model perform-
ance. The area under the receiver operating characteristic
curve, typically ranging between 0.5 and 1.0, reflects algo-
rithm performance, where 0.5 signifies a performance akin
to random guessing. The area under the receiver operating
characteristic curve value of 1 indicates that the model
can perfectly discriminate doses with MAEs and doses
without while 0.5 indicates that the model is unable to dis-
criminate these two groups of doses.

Feature importance. We employed a model-agnostic
permutation feature importance measurement initially pro-
posed by Breiman et al.38 to evaluate the significance of
features in the trained models; given the wide range of
algorithms explored. Permutation importance quantifies
the average decrease in accuracy of the trained model
when each feature is permuted and randomly reshuffled.

Henry Basil et al. 7
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Permutation-based importance methods are not biased
towards continuous or high-cardinality categorical vari-
ables, making them a reliable approach for assessing
feature importance across different algorithms.39

The scores for permutation feature importance were
computed independently for each feature. A score of zero
indicates that the feature has a negligible impact on the
model’s predictive ability. On the other hand, positive
scores indicate that the feature positively contributes to
the model’s predictive ability while a negative score sug-
gests the feature’s lack of contribution to the model’s pre-
dictive ability.

Statistical analysis

Categorical variables were described using frequency counts
and percentages, while continuous variables were repre-
sented by means with standard deviations (SD) or medians
with interquartile ranges. Group comparisons were made
using the independent t-test or Mann–Whitney U-test for
continuous variables and the χ2 or Fisher’s exact test for cat-
egorical variables. Statistical analyses were conducted using
SPSS 29.0 software, with significance set at p< .05.

An algorithm predicting the majority of instances to
belong to the negative class (indicating no MAEs) in an
imbalanced dataset may yield a high accuracy score but
proves ineffective in predicting the desired positive class
(MAEs). Conversely, a highly sensitive algorithm may
predict most instances as belonging to the positive class,
but it lacks the ability to distinguish between the positive
and negative instances. To overcome the issue, we have
chosen the F1-score as the main metric for assessing the
performance of the ML algorithms instead of the area
under the receiver operating characteristic curve because
of its robustness to class imbalance, by assigning equal
importance to both precision and sensitivity.40

In the context of MAE prediction, the F1-score is par-
ticularly valuable because it accounts for the trade-off
between precision and sensitivity. By using the F1-score
as the primary metric, we ensure that the model maintains
a balance between identifying true MAE cases (sensitivity)
and minimising false positives (precision). This balance is
critical in a healthcare setting where both missed detections
and false alarms can have serious consequences. While the
F1-score offers a balanced view, it is important to acknow-
ledge the trade-offs involved in optimising for different
metrics. For instance, a model with high sensitivity but
lower precision might be suitable in situations where
missing an MAE is unacceptable, and additional follow-up
actions can be taken to confirm predictions. On the other
hand, a model with high precision but lower sensitivity
might be preferred in settings where false positives are
costly or disruptive.

In our study, the choice of the F1-score reflects the need
to maintain a balance between these competing priorities.

The potential life-threatening consequences of MAEs
demand a model that not only captures as many true posi-
tive cases as possible but also minimises unnecessary
alarms. By focusing on the F1-score, we ensure that our
model is both effective and practical for real-world applica-
tion in NICUs, where both precision and sensitivity are crit-
ical for patient safety.

Ethical approval and informed consent

This study was approved by the Medical Research and
Ethics Committee (MREC), Ministry of Health Malaysia
(NMRR-21-1484-59494 [IIR]) and the Medical Ethics
Committee, Universiti Kebangsaan Malaysia (JEP-2022-
038). A written informed consent was obtained from the
observed nurses prior data collection.

To ensure data privacy, all collected data were
de-identified to preserve the privacy of participants.
Identifiers were removed, and the data were anonymised
before analysis. The de-identified data were securely
stored within the institution’s cloud infrastructure. Access
to this data was restricted to authorised personnel only,
ensuring that the data remains confidential and secure
throughout the study.

Results

Baseline characteristics

An overview of the descriptive analysis of the dataset is in
Table 3 and several differences between doses with MAEs
and without MAEs were found. The total observed doses
administered were 1093 doses among 170 neonates, with
a mean age and birth weight of 33.43 (SD± 5.13) weeks
and 1.94 (SD± 0.95) kg, respectively. Doses with MAEs
had a slightly lower mean gestational age compared to
those without MAEs (33.23 vs. 33.85 weeks, p= .019).
There was a statistically significant difference in the distri-
bution of sex between the two groups (p < .001), with a pre-
dominance of male gender observed. Among these doses,
743 (68%) were associated with MAEs while 350 (32%)
were administered without any errors.

In terms of administration-related characteristics, the
route of administration differed significantly between
doses with and without MAEs (p < .001), with a higher pro-
portion of intravenous administrations associated with
errors (66.1%) compared to oral administrations (33.9%).
Complexity of preparation (p < .001) and number of medi-
cations administered (p < .001), were also significantly dif-
ferent between the two groups. Additionally, nurses’
experience at the study site displayed a statistically signifi-
cant difference (p < .001), with doses administered by
nurses with more experience (M= 8.23 years) showing a
higher likelihood of MAEs compared to those with less
experience (M= 5.91 years). Educational status also
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Table 3. Baseline characteristics of doses with and without MAEs.

Characteristics Total (n= 1093) With MAEs (n= 743) Without MAEs (n= 350) p

Patient-related characteristics

Birth weight (kg), mean (SD) 1.94 (0.95) 1.94 (0.94) 1.95 (0.97) .188a

Gestational age (weeks), mean (SD) 33.43 (5.13) 33.23 (5.05) 33.85 (5.28) .019a

Sex, n (%) <.001b

Male 724 (66.2) 459 (61.8) 265 (75.7)

Female 369 (33.8) 284 (38.2) 85 (24.3)

Ventilation, n (%) <.001b

Room air 147 (13.4) 95 (12.8) 52 (14.9)

Noninvasive ventilation 546 (50.0) 324 (43.6) 222 (63.4)

Invasive ventilation 400 (36.6) 324 (43.6) 76 (21.7)

Number of medications prescribed, median (IQR) 2.00 (2.00–4.00) 3.00 (2.00–4.00) 2.00 (1.00–3.00) <.001d

Administration-related characteristics

Route of administration, n (%) <.001b

Oral 559 (51.1) 252 (33.9) 307 (87.7)

Intravenous 534 (48.9) 491 (66.1) 43 (12.3)

Complexity of preparation, n (%) <.001b

One step 692 (63.3) 411 (55.3) 281 (80.3)

More than one step 401 (36.7) 332 (44.7) 69 (19.7)

Number of medications administered, median (IQR) 6.00 (3.00–8.00) 7.00 (4.00–8.00) 5.00 (3.00–7.00) <.001d

Working environment-related characteristics

Number of patients, median (IQR) 3.00 (2.00–4.00) 3.00 (2.00–4.00) 4.00 (3.00–5.00) <.001d

Working hours, median (IQR) 5.00 (4.15–5.40) 4.56 (3.56–5.43) 5.05 (4.30–5.33) .023d

Working shift, n (%) .118b

Morning shift 794 (72.6) 529 (71.2) 265 (75.7)

Evening shift 299 (27.4) 214 (28.8) 85 (24.3)

Double-check, n (%) .392c

Yes 6 (0.5) 3 (0.40) 3 (0.90)

(continued)
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revealed a statistically significant association (p < .001),
with a higher proportion of MAEs observed among
nurses holding a Diploma in Nursing (61.4%) compared
to those with an Advanced Diploma in Neonatology
(38.6%). The availability of protocols (p= .006), type of
ventilation (p < .001), number of medications prescribed
(p < .001), number of patients (p < .001), and working
hours (p= .023) were significantly associated with error
occurrence, while factors such as double-checking (p=
.392), labelling (p= .682), and interruption/distraction
during medication administration (p= .095) did not show
statistically significant differences between the two groups.

Performance evaluation of ML algorithms

The performances of the ML algorithms are summarised in
Table 4. Each algorithm’s F1-score, accuracy, sensitivity,
specificity, precision, negative predictive value, and the

corresponding true positive, false positive, false negative,
and true negative values are presented here while the
receiver operating characteristic curves and its correspond-
ing area under the receiver operating characteristic curve
values are displayed in Figure 2. The hyperparameter opti-
misation for each of the ML algorithms can be found in
Appendix 3 of the electronic Supplementary Material.
The area under the receiver operating characteristic curve
values for k-nearest neighbours, Gaussian Naïve Bayes,
and logistic regression were the lowest with the area
under the receiver operating characteristic curve values
below 80%, and these models also had the lowest accuracy
among the ML algorithms.

Among the algorithms assessed, AdaBoost demonstrated
the highest F1-score (83.28%) and accuracy (77.63%),
accompanied by good area under the receiver operating
characteristic curve (82.95%), precision (84.72%), sensitiv-
ity (81.88%) and negative predictive value (64.00%).

Table 3. Continued.

Characteristics Total (n= 1093) With MAEs (n= 743) Without MAEs (n= 350) p

No 1087 (99.5) 740 (99.6) 347 (99.1)

Availability of protocol, n (%) .006b

Yes 309 (28.3) 229 (30.8) 80 (22.9)

No 784 (71.7) 514 (69.2) 270 (77.1)

Labelling, n (%) .682b

Yes 337 (30.8) 232 (31.2) 105 (30.0)

No 756 (69.2) 511 (68.8) 245 (70.0)

Interruption and/or distraction, n (%) .095b

Yes 129 (11.8) 96 (12.9) 33 (9.4)

No 964 (88.2) 647 (87.1) 317 (90.6)

Individual-related characteristics

Nurses’ experience at the study site (years), mean (SD) 7.48 (5.28) 8.23 (5.59) 5.91 (4.15) <.001a

Nurses’ educational status, n (%) <.001b

Diploma in nursing 716 (65.5) 456 (61.4) 260 (74.3)

Advanced diploma in neonatology 377 (34.5) 287 (38.6) 90 (25.7)

Note. IQR: interquartile range; MAE: medication administration error; SD: standard deviation.
aIndependent t-test.
bChi-squared test.
cFisher’s exact test.
dMann–Whitney U-test.
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Extreme gradient boosting was found to have the highest
sensitivity (84.56%) with the least false negative cases.
Logistic regression achieved the highest specificity
(82.86%) and precision (89.19%) but the lowest sensitivity
(66.44%), while k-nearest neighbours produced the lowest
result for precision (80.14%). Although logistic regression
displayed a precision of 89.19%, slightly higher than the
boosting algorithms such as AdaBoost and extreme gradient
boosting, the F1-score, reflecting both precision and recall,
highlighted that logistic regression’s F1-score at 76.15%
was only higher than Gaussian Naïve Bayes, indicating
the superiority of any other algorithm over logistic regres-
sion in predicting the presence of MAEs. Gaussian Naïve
Bayes displayed the lowest F1-score (75.91%), area under
the receiver operating characteristic curve (74.49%), and
accuracy (69.86%), indicating its inferior performance com-
pared to other algorithms.

Feature importance

The results of the permutation feature importance analyses
are detailed in Table 5 and Appendix 4 of the electronic
Supplementary Material, providing insights into the level
of contribution of each feature for each algorithm. The
intravenous route of administration was among the top
three most important features across different algorithms
except for k-nearest neighbours and Gaussian Naïve
Bayes. Nurses’ working hours were also among the top
three most important features across different algorithms
except for logistic regression and support vector machine.

As for AdaBoost, the top-performing model, nine features
were above zero, indicating that these features impacted
the model’s predictive ability. The most influential
features in AdaBoost were the intravenous route of admin-
istration, followed by working hours and experience at the
study site.

Surrogate decision tree

Understanding a black-box classification ML model such as
AdaBoost may be challenging due to its complexity.
Therefore, a ‘surrogate’ decision tree that simulates the
behaviour of the complex model was created to provide a
more interpretable representation of AdaBoost. A decision
tree was chosen as the surrogate model because of its sim-
plicity in outlining a step-by-step process of classification
and its visual representation resembling a tree.41

A simple decision tree model with a maximum depth of
five for classifying doses administered into with or without
MAEs is provided in Figure 3. A deeper tree could produce
a more accurate proxy for the model that it is surrogating,
however, it would make the tree more complex for inter-
pretation, especially in visualising the tree. The decision
tree model indicated that the route of administration is the
most important feature of the dataset, consistent with that
of the feature importance study. The model indicates that
an intravenous route of administration is prone to MAEs
when compared to the oral route of administration.
Similarly, working hours, gestational age, and number of
patients are all features that were associated with MAEs.

Table 4. Performance evaluation of machine learning algorithms.

Algorithm F1-score Accuracy Sensitivity Specificity Precision NPV TP/FP/FN/TN

LR 0.7615 0.7169 0.6644 0.8286 0.8919 0.5370 99/12/50/58

kNN 0.7793 0.7078 0.7584 0.6000 0.8014 0.5385 113/28/36/42

SVM 0.8143 0.7626 0.7651 0.7571 0.8702 0.6023 114/17/35/53

Gaussian NB 0.7591 0.6986 0.6980 0.7000 0.8320 0.5213 104/21/45/49

DT 0.7877 0.7169 0.7718 0.6000 0.8042 0.5526 115/28/34/42

RF 0.8125 0.7534 0.7852 0.6857 0.8417 0.6000 117/22/32/48

GB 0.8188 0.7534 0.8188 0.6143 0.8188 0.6143 122/27/27/43

XGBoost 0.8289 0.7626 0.8456 0.5857 0.8129 0.6406 126/29/23/41

AdaBoost 0.8328 0.7763 0.8188 0.6857 0.8472 0.6400 122/22/27/48

CatBoost 0.8151 0.7534 0.7987 0.6571 0.8322 0.6053 119/24/30/46

Note. AdaBoost: adaptive boosting; CatBoost: categorical boosting; DT: decision tree; FN: false negative; FP: false positive; GB: gradient boosting; kNN:
k-nearest neighbours; LR: logistic regression; NB: Naïve Bayes; NPV: negative predictive value; RF: random forest; SVM: support vector machine; TN: true
negative; TP: true positive; XGBoost: extreme gradient boosting. The best performing measures are highlighted in bold.

Henry Basil et al. 11

https://journals.sagepub.com/doi/suppl/10.1177/20552076241286434
https://journals.sagepub.com/doi/suppl/10.1177/20552076241286434


Discussion
The performance of ten ML algorithms was compared and
we found that the best predictive performance was achieved
by AdaBoost. AdaBoost, based on 14 key parameters (route
of administration, complexity of drug preparation, number
of medications administered, number of patients, working
hours, working shift, availability of protocol, ventilation,
gestational age, number of medications prescribed,
nursing experience, nurses’ educational status, labelling
and interruption and/or distraction) achieved the highest
F1-score of 83.28% and a discriminatory ability of
82.95%. It also had the best accuracy and good precision,
sensitivity, and negative predictive value.

Comparison with existing literature

Although our study specifically focuses on predicting
MAEs in NICUs, it is important to situate our findings
within the broader context of existing models for predicting
medication errors in NICUs. In the existing literature, two
key models have been developed to predict medication
errors more generally in NICUs, though not specifically
on MAEs.

The first study by Yalcin et al. developed a supervised
learning model to identify various types of medication

errors, including prescription, preparation, administration,
and monitoring errors among neonates in NICUs.25 This
model utilised supervised learning algorithms such as
random forest, elastic net, artificial neural network, and
support vector machine. Another study by Hogue et al.42

applied unsupervised learning algorithms, including
isolation forest models, neural network autoencoders, and
GANomaly-based models, to detect atypical medication
orders, which include medication errors, in NICUs. While
this approach offers valuable insights into atypical patterns
in medication orders, the model’s performance in detecting
MEs, including MAEs, was poorer compared to the super-
vised learning approach by Yalcin et al.’s study. However,
both models were designed to identify all types of medication
errors rather than focusing on MAEs alone. This can be a
limitation for stakeholders who need targeted insights to
implement interventions at specific stages of medication
management, such as during administration.

In contrast to these studies, our study aimed to address
this gap by developing and validating a model specifically
for predicting MAEs among neonates. By focusing on
an extensive list of potential risk factors associated
with MAEs, our model provides more actionable insights
for healthcare professionals. The specificity of our
model allows for more precise interventions at the point
of care, thus enhancing its practical utility in NICU settings.

Figure 2. Area under the receiver operating characteristic curve for different methods.
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Table 5. Permutation feature importance of the evaluated algorithms.

Feature LR kNN SVM
Gaussian
NB DT RF GB XGBoost AdaBoost CatBoost

Administration-related variables

Intravenous route of
administration

0.0785 −0.0064 0.0639 0.0037 0.1479 0.1096 0.0429 0.0283 0.1269 0.0356

Oral route of
administration

0.0155 −0.0064 0.0374 0.0037 0.0000 0.0018 0.0210 −0.0055 −0.0091 0.0301

Simple drug
preparation

0.0000 −0.0064 0.0192 −0.0073 0.0000 −0.0037 −0.0082 0.0037 0.0000 0.0091

Complex drug
preparation

0.0000 −0.0064 0.0082 −0.0073 0.0037 −0.0027 −0.0037 0.0018 0.0000 0.0082

Number of
medications
administered

−0.0037 −0.0091 0.0457 0.0000 0.0027 −0.0037 −0.0164 0.0073 −0.0027 0.0164

Working environment-related variables

Number of patients −0.0073 0.0064 0.0347 0.0037 0.0064 0.0027 0.0018 0.0201 0.0027 0.0237

Working hours −0.0018 0.0082 0.0365 0.0119 0.0265 0.0685 0.0932 0.0502 0.0712 0.0603

Morning shift 0.0000 −0.0119 0.0155 0.0009 0.0000 −0.0009 0.0000 0.0110 0.0018 0.0027

Evening shift 0.0018 −0.0119 0.0009 0.0009 0.0009 −0.0009 −0.0091 −0.0018 0.0018 0.0073

Availability of protocol 0.0000 −0.0027 −0.0009 −0.0027 −0.0018 −0.0018 0.0009 0.0064 0.0000 0.0055

Unavailability of
protocol

0.0082 −0.0027 0.0146 −0.0027 0.0000 −0.0027 0.0055 0.0128 −0.0009 0.0009

Presence of labelling 0.0000 −0.0009 0.0018 0.0009 0.0073 0.0018 0.0082 0.0119 0.0000 0.0009

Absence of labelling 0.0000 −0.0009 0.0009 0.0009 0.0000 0.0027 0.0027 0.0091 0.0000 0.0027

Presence of
Interruption and/or
distraction

−0.0037 −0.0018 0.0009 −0.0027 0.0009 −0.0037 −0.0027 −0.0009 0.0000 −0.0064

Absence of
Interruption and/or
distraction

0.0000 −0.0018 0.0009 −0.0027 0.0000 −0.0018 −0.0018 0.0000 0.0009 0.0027

Patient-related variables

Room air ventilation −0.0137 −0.0046 −0.0082 0.0000 0.0000 −0.0009 0.0000 0.0046 −0.0046 0.0055

Noninvasive ventilation 0.0000 −0.0091 0.0037 −0.0018 0.0000 −0.0037 −0.0183 −0.0055 0.0000 0.0027

Invasive ventilation 0.0000 −0.0064 0.0064 −0.0018 0.0027 −0.0018 −0.0082 −0.0064 0.0000 0.0009

(continued)
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Table 5. Continued.

Feature LR kNN SVM
Gaussian
NB DT RF GB XGBoost AdaBoost CatBoost

Gestational age 0.0064 0.0274 0.0347 0.0000 0.0119 −0.0091 0.0164 0.0100 0.0219 0.0119

Number of
medications
prescribed

0.0064 −0.0073 0.0283 0.0091 −0.0046 0.0110 0.0110 0.0055 0.0009 0.0055

Individual-related variables

Nurses’ experience at
the study site

−0.0027 0.0210 0.0402 0.0027 0.0174 0.0384 0.0027 0.0174 0.0283 0.0146

Diploma in nursing 0.0000 −0.0046 0.0247 0.0082 0.0027 0.0046 −0.0091 0.0137 −0.0055 0.0027

Advanced diploma in
neonatology

0.0100 −0.0046 0.0438 0.0082 0.0037 0.0027 −0.0037 0.0027 0.0000 −0.0018

Note. AdaBoost: adaptive boosting; CatBoost: categorical boosting; DT: decision tree; GB: gradient boosting; kNN: k-nearest neighbors; LR: logistic regression;
NB: Naïve Bayes; RF: random forest; SVM: support vector machine; XGBoost: extreme gradient boosting. The top three most significant features for each model
are in bold.

Figure 3. Surrogate decision tree illustrating the classification of doses with (class= 1) and without (class= 0) medication administration
errors. Each box contains following components: selected feature for classification, Gini index, number of samples classified to the box
according to the previous variable, the number of samples in dataset for each classification, and the majority class of samples at the split
node. The colours blue and orange represent the classes with and without MAEs respectively, with the colour intensifying as the Gini
indexes decreases.
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Algorithm comparison

Although our study applied ten ML algorithms to predict
the presence of MAEs, significant differences in perform-
ance were observed between AdaBoost and logistic
regression method, with AdaBoost demonstrating superior
performance based on the F1-score. AdaBoost performed
better than logistic regression in terms of F1-score, achiev-
ing a score of 83.28% while logistic regression achieved a
score of 76.15% with a difference of 7.13%. This suggests
that AdaBoost achieved a better balance between precision
and recall in identifying doses with MAEs and it is able to
minimise both false positives and false negatives, making it
a more robust model. However, it is noteworthy that logistic
regression demonstrated high precision (89.19%) and speci-
ficity (82.86%), indicating its proficiency in correctly clas-
sifying non-MAE instances. This suggests that logistic
regression may be more conservative in predicting MAEs,
resulting in fewer false positives. Conversely, precision
and sensitivity often exhibit a trade-off relationship, with
high precision typically resulting in low recall.43 This is
evident as logistic regression exhibited lower sensitivity
(66.44%) compared to AdaBoost, indicating a higher rate
of false negatives.

The difference in performance between AdaBoost and
logistic regression can be attributed to several factors.
AdaBoost, as an ensemble learning technique, combines
multiple weak learners to improve predictive accuracy.
By iteratively focusing on instances misclassified by pre-
ceding base models, AdaBoost effectively learns from the
data and enhances predictive performance. In contrast,
logistic regression is a simpler model that estimates prob-
abilities based on linear combinations of predictor vari-
ables. While logistic regression offers interpretability and
ease of implementation, it may struggle to capture
complex relationships and interactions among predictors,
particularly in nonlinear data.44

With AdaBoost outperforming all the other algorithms,
this indicates the presence of complex and nonlinear rela-
tionships among predictors that linear classifiers or simple
decision trees failed to capture. In the past, linear categor-
isation tasks were limited to models developed using the
conventional statistical method of logistic regression.
However, with the help of modern ML techniques, non-
linear relationships can now be described reliably as the
computational power increases to do so. The accuracy of
these techniques has been found to significantly outperform
the conventional statistical approach when the underlying
data exhibits nonlinear characteristics.44

Importance of sensitivity in MAE detection

Given the potentially life-threatening consequences of
MAEs among neonates in the NICU, the primary goal of
predictive modelling would be to minimise false negatives,

thereby ensuring that the presence of MAE goes
undetected. AdaBoost’s proficiency in capturing complex
patterns in the data and striking a balance between precision
and recall makes it a valuable tool for enhancing patient
safety in the NICU. Although, logistic regression may
exhibit higher specificity and precision, resulting in fewer
false positives, but this is potentially at the expense of
missing true positive cases, leading to an increased likeli-
hood of adverse events for neonates.

Therefore, in the context of predicting the presence of
MAEs among neonates in the NICU, it is imperative to pri-
oritise sensitivity over specificity. Minimising false nega-
tives ensures that the presence of all MAEs is identified
and receive timely interventions to prevent harm. While
logistic regression may offer advantages in terms of inter-
pretability,45 AdaBoost’s superior sensitivity and ability
to balance false positives and false negatives make it a
more suitable choice for enhancing patient safety in the
NICU.

Feature importance analysis

A major challenge in preventing MAEs among neonates in
the NICU lies in determining the right parameters that fore-
cast MAEs and help to accurately predict the presence of
MAEs. This holds the potential to minimise MAEs.
Through permutation feature importance analyses, we
can understand the contribution of each feature to the
predictive ability of the ML algorithms. Interestingly,
although the parameters identified in the analyses were
reduced, the overall accuracies achieved among the algo-
rithms were not significantly different as compared to the
algorithms without permutation feature importance ana-
lyses. Therefore, the identification of the presence of
MAEs can be expedited. This is attributed to the identifica-
tion of a set of important features through the permutation
feature importance analysis while still achieving compar-
able prediction accuracies.

Most of the features found to be influential in the
AdaBoost model were also found to be associated with
MAEs among neonates in NICU in multiple logistic regres-
sion analyses of previous studies,7,46 namely the intravenous
route of administration, experience at the study site, gesta-
tional age and number of medications prescribed.
Although working hours, number of patients, working
shift, and absence of interruption and/or distraction were
not found to be significantly associated with MAEs among
neonates in NICU in other studies, these features were
found to be influential in AdaBoost. The use of permutation
feature importance in this study prioritised features based on
their predictive power rather than their significance as typic-
ally done in regression analyses. This could be attributed to
the complexity and non-linearity of the features which may
be uncovered in ML algorithms but not in logistic regres-
sion44; especially through a multi-staged approach.
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Implication to policy and practice

The implementation of the AdaBoost algorithm on MAE
predictors in NICUs offers valuable insights that can dir-
ectly inform hospital best practices, policies, and staff train-
ing. For example, by identifying specific variables like the
intravenous route of administration as high-risk factors,
hospitals can allocate resources more effectively and
tailor training programs to address these risks. This targeted
approach can significantly enhance medication safety.

Moreover, the AdaBoost model allows us to better
profile, predict, and estimate case risks, providing health-
care professionals with a powerful tool to assist in real-time
decision-making. By embedding this algorithm within elec-
tronic health records or clinical decision support systems, it
can generate alerts for potential MAEs, enabling quicker
responses to elevated-risk cases. This not only reduces the
cognitive load on nurses by flagging high-risk situations
but also facilitates timely interventions, thereby improving
patient safety.

Additionally, the algorithm’s capacity to analyse complex
and nonlinear relationships among various factors involved
in medication administration allows it to generate more
detailed insights compared to traditional approaches. As the
system continuously learns from new data, it can adjust to
shifts in clinical practices, emerging MAE trends, and
changes in patient demographics. This adaptability ensures
that the predictivemodel remains effective over time, consist-
ently contributing to enhanced patient safety outcomes.

Strengths and limitations

A strength of this study is that, to the best of our knowledge,
this is the first study to develop a risk prediction model for
the prediction of the presence of MAEs among neonates in
NICUs, using ML algorithms. A key advantage of ML
algorithms is that they are agnostic towards specific theor-
ies, allowing for tuning and exploration. Hence, the
methods used in our study may be easily applied to
similar datasets to identify factors to MAEs using the
same pipeline or through transfer learning.

The present study has some limitations. Firstly, our ML
model was developed and validated using the data collected
from a multi-centre, single-health system in Malaysia, thus
limiting generalisability. Variations in healthcare infrastruc-
ture, staffing, protocols, and cultural practices across differ-
ent health systems or countries may significantly impact the
model’s performance. For instance, hospitals with different
resource availability or training standards for nursing staff
might experience different rates and causes of MAEs.
Therefore, external validation of the models in other hospi-
tals with different environments and health systems is war-
ranted to assess their robustness and adaptability.

Secondly, our dataset lacked information on potential
variables such as personal factors (nurses’ psychological

well-being, job satisfaction) and environmental factors
(lighting and noisy environment), which may be risk
factors for MAEs. These variables were not gathered due
to the nature of the direct observational study, the gold
standard in detecting MAEs. Although the direct observa-
tion study did not encompass these factors, supplementary
surveys could have enriched the dataset and provided
deeper insights into these aspects. The absence of these
variables may have led to an incomplete understanding of
the full range of factors contributing to MAEs, potentially
affecting the model’s accuracy and applicability.
Although the direct observation method is most efficient
in detecting MAEs, it may introduce observer bias also
known as the Hawthorne effect. Despite efforts taken to
reduce the Hawthorne effect, we cannot eliminate it thus
leading to potential underestimation of MAEs.

Recommendations for future research

Our current work has taken into account the robustness of
the model by evaluating its performance across datasets
obtained from three different healthcare facilities in
Malaysia. This initial step demonstrates the model’s cap-
acity to handle variations in operational contexts, staffing,
and patient demographics within a specific region.
However, to further ensure the model’s adaptability and
generalisability, future research should extend this evalu-
ation to include datasets from different health systems. To
externally validate the model effectively in other settings,
a collaboration with various healthcare institutions would
be beneficial to gather diverse datasets reflecting different
operational contexts, staffing and patient demographics.
Such collaborations would provide an opportunity to test
the model’s adaptability and robustness in predicting the
presence of MAEs among neonates in NICUs across differ-
ent environments. The ML methods we have developed is
reproducible and can be adapted for use in other healthcare
systems and countries.

In addition to external validation, future studies should
include other potential variables such as nurses’ psycho-
logical well-being, environmental factors like lighting and
noise levels, and specific workflow characteristics, to
develop a more comprehensive and robust model capable
of performing well globally in predicting the presence
of MAEs among neonates in NICUs. Further, comparative
analysis of these models across different health systems will
enable researchers to better understand how different envir-
onments influence the occurrence of MAEs. Additionally,
future research could include external validation of the
developed model by testing the model on independent data-
sets from different hospitals and countries to assess its gen-
eralisability. This process should also include sensitivity
analyses to determine how changes in input variables
affect the model’s predictions, ensuring that it remains
robust across different scenarios. Furthermore, exploration
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with newer state-of-the-art models such as neural networks,
deep learning models, or a hybrid of combining different
algorithms could enhance prediction accuracy, albeit at
potentially higher computational and data requirements.
By expanding our ML-aided approach to other practices,
we can further demonstrate the potential of these technolo-
gies in advancing healthcare outcomes.

Conclusion
In conclusion, this study developed and validated a
ML-based risk prediction model to predict the presence of
MAEs among neonates in NICUs. A rigorous method-
ology, including a direct observational study, dataset
analysis, and the application of advanced ML techniques
was employed to overcome the complexity of factors
contributing to MAEs and the limitations of traditional
statistical methods in capturing nonlinear relationships
within the data. Key findings from our study include the
identification of AdaBoost as the most effective ML
algorithm for predicting MAEs, outperforming other algo-
rithms. Additionally, permutation feature importance ana-
lysis revealed insights into the significant predictors of
MAEs, such as the intravenous route of administration,
nursing experience, gestational age, number of patients,
evening shift, morning shift, and absence of interruptions
and/or distraction. While the model aids in predicting the
presence of MAEs among neonates in NICUs, it is import-
ant to acknowledge that its implementation alone may not
directly reduce MAEs. However, through appropriate and
timely interventions guided by the model’s predictions,
healthcare providers can potentially mitigate the occurrence
of MAEs. We believe that integrating this risk prediction
model into clinical practice has the potential to enhance
patient safety by facilitating proactive interventions,
thereby improving neonatal health outcomes in NICUs.
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