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ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a colossal loss to
human health and lives and has deeply impacted socio-economic growth. Remarkable efforts have
been made by the scientific community in containing the virus by successful development of vaccines
and diagnostic kits. Initiatives towards drug repurposing and discovery have also been undertaken. In
this study, we compiled the known natural anti-viral compounds using text mining of the literature
and examined them against four major structural proteins of SARS-CoV-2, namely, spike (S) protein,
nucleocapsid (N) protein, membrane (M) protein and envelope (E) protein. Following computational
approaches, we identified fangchinoline and versicolactone C as the compounds to exhibit strong
binding to the target proteins and causing structural deformation of three structural proteins (N, S
and M). We recommend the inhibitory effects of these compounds from our study should be experi-
mentally validated against SARS-CoV-2.
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Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) from the Coronaviridae family has created an unprece-
dented healthcare crisis (Khan et al., 2020). It has disseminated
around the world with a mortality rate of 2.15% (22 July,
2021) (WHO). Further, the emergence of new variants of SARS-
CoV2 and their high transmission rate has created an unparal-
leled disruption in human life and still poses a big threat to
human health and global economy. In the past decades, sev-
eral epidemics have been caused by coronavirus, which
include SARS-CoV in 2003 with a mortality rate of 10% (Cheng
et al., 2007; Lee et al., 2003) and Middle East Respiratory
Syndrome (MERS) in 2012 with 35% mortality rate (de Groot
et al. 2013; Zaki et al., 2012). The pathogenicity of SARS-CoV-2
is relatively less than SARS-CoV and MERS, but it is infectivity
is higher than other harmless human coronaviruses (D€omling
& Gao, 2020). The recent launch of several vaccines has
opened the possibility of containing the infection and provid-
ing protection to a large populace. However, effective drugs
for the treatment of infections caused by coronaviruses (Wu et
al., 2020) are still not available and a hunt for drugs against
SARS-CoV2 remains critical for the therapeutic interventions.

For discovery of new drugs, natural compounds serve as
rich resources (Lin et al., 2014) and nearly a quarter of
approved drugs have plant origins (Thomford et al., 2018).

Several well-characterized natural compounds have been
documented for their antimicrobial, anti-inflammatory and
other beneficial effects on humans and animals thereby
offering promising sources for drug development (Clark,
1996; El Sayed, 2000). Advancement in the synthetic biology
also has accelerated the mass production of natural com-
pounds (Chen et al., 2021). The ethno-medical literature has
listed various herbal plants for their appealing antiviral activ-
ity (Ganjhu et al., 2015; Mukhtar et al., 2008; Potroz & Cho,
2015). Natural products include extracts from herbal plants,
phytoconstituents, and precise extracts of seed, root, fruit,
stem, and flower of plants (Boukhatem & Setzer, 2020; Rates,
2001) Several derivatives of medicinal herbs have been
widely considered for antiviral activity (Ganjhu et al., 2015).
Antiherpetic acyclovir’, amoebicide ‘emetine’ and antimalarial
quinine are good examples of drugs modeled on natural
products (El Sayed, 2000; Ganjhu et al., 2015). Some of the
medicinal plants have also shown antiviral activity against
SARS-CoV-2 (Benarba & Pandiella, 2020; Mesli et al., 2021;
Mouffouk et al., 2021)

SARS-CoV-2 genome contains approximately 30,000 bases
but encodes only a few proteins (D€omling & Gao, 2020). The
structural proteins, namely, spike protein, envelope protein,
membrane protein and nucleocapsid protein are essential to
complete the viral structure. Spike (S) protein mediates the
entry of virus into host cells (Wrapp et al., 2020); membrane
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(M) protein assembles the virus via protein interactions
between membrane-membrane (M-M), membrane-spike (M-
S), and membrane-nucleocapsid (N) (Arndt et al., 2010; Kuo
et al., 2016). The envelope (E) protein is a short membrane
protein (Pervushin et al., 2009), which interacts with the cel-
lular adaptor proteins and further leads to the viral patho-
physiology (Jimenez-Guarde~no et al., 2014). N protein is the
most abundant structural protein, situated inside the virus
and plays an essential role in viral genome replication, tran-
scription, packaging and in virion assembly (Sarma et al.,
2020). Non-structural proteins such as proteases, helicase
and polymerase play an essential role in the life cycle of the
virus. These major structural and non-structural proteins are
hence considered as important targets for drug discovery
(Prajapat et al., 2020). Several studies on drug discovery have
been carried out since the pandemic began (Joshi et al.,
2020; Nitulescu et al. 2020; Y. Zhou, Hou, et al., 2020). Earlier,
screening of the available chemical and natural compounds
from PubChem (https://pubchem.ncbi.nlm.nih.gov/) for anti-
viral activity has also been studied (Wang et al., 2009) among
others.

Our aim was to search and screen the antiviral com-
pounds published in literature but are not yet warehoused
in the PubChem libraries (https://pubchem.ncbi.nlm.nih.gov/).
We have used a multi-target screening approach as patho-
gens are less likely to develop resistance against inhibitors
that affect more than one target (Xie & Xie, 2019). Since the
structural proteins play essential role in the entry, assembly,
packaging and release of the virus (Yadav et al., 2021) they
serve as promising drug targets. Among all the structural
proteins, spike protein has been widely studied (Bojadzic et
al., 2020; Unni et al., 2020; Xia et al., 2020). In this study, we
have considered all four structural proteins in the search of
multi-target inhibitors. Hence, same sets of compounds were
screened against each of the 4 structural proteins of SARS-
CoV-2 virus.

Material and methods

Data mining

Natural compounds with reported antiviral activity were
extracted from the literature using pubmed.mineR (https://
cran.r-project.org/web/packages/pubmed.mineR/index.html)
(Rani et al., 2015). Total 13,421 PubMed abstracts with query
term ‘antiviral natural compounds’ were downloaded
and processed.

Molecular docking

The antiviral natural compounds were screened against all
four structural proteins of SARS-CoV-2. We examined com-
pounds, which could bind to more than one target protein.
To obtain and analyze all possible ligand-receptor complexes,
blind docking was carried out using AutoDock Vina 4.0 (Trott
& Olson, 2010).

Protein structures
Structure of S protein (PDB ID: 6VSB) with resolution 3.46 Å
bound with 2-acetamido-2-deoxy-beta-D-glucopyranose
(NAG) (Wrapp et al., 2020) and C-terminal domain (CTD) (PDB
ID: 7C22) with resolution 2.0 Å (R. Zhou, Zeng, et al., 2020) of
nucleocapsid protein (N) bound with di(hydroxyethyl)ether
(PEG) and acetate ion (ACT) were obtained from PDB (Rose
et al., 2017). We worked on the CTD of N protein as fewer
studies were reported on it than its N-terminal domain.
While selecting these structures, we chose the structures
showing least number of missing residues. Because the struc-
tures of E and M proteins have not yet been solved and pub-
lished in PDB, I-Tasser, a hierarchical protocol for the
prediction of structure and function of the protein (Yang &
Zhang, 2015) was used to download the structure of E and
M proteins (https://zhanglab.ccmb.med.umich.edu/COVID-
19/).

Protein structure preparation
Each of the four proteins (S, M, E and N (CTD)) were individu-
ally prepared for docking using Autodock tools (ADT) (El-
Hachem et al., 2017), which included addition of hydrogen
and removal of water. Minimization of structures was per-
formed using Chimera software (Pettersen et al., 2004). The
grid was set large enough to include the whole structure for
all possible ligand-receptor interactions. A shell script was
used to implement docking of each protein with all nat-
ural compounds.

Visual rescoring
Docking was carried out in triplicate and the top hits were
recorded using visual inspection of binding residues using
PyMol software (Rigsby & Parker, 2016). Antiviral drugs
Remdesivir, Favipiravir, Ritonavir, Lopinavir and
Hydroxychloroquine were taken as a positive control
(Bhatnagar et al., 2020; Cai et al., 2020; Vanden Eynde, 2020,
p. 19). LigPlot (Wallace et al., 1995) was used to explore the
hydrophobic interactions between proteins and compounds.

Molecular dynamic simulation

Analysis of internal motions of a protein can be helpful for
the identification of multiple biological functions along with
their profound dynamic mechanisms. Compounds, which
showed high binding affinity and also targeted more than
one SARS-CoV2 protein (Figure 1) were further analyzed by
molecular dynamic simulation to study the consistency and
flexibility of the binding mode of selected inhibitor-protein
complexes. MD simulation was carried out by using
GROMACS (version 5.0) (Van Der Spoel et al., 2005). The top-
ology and coordinates files were prepared by using All-atom
GROMOS53a6.ff force field, and the inhibitor topology file
was generated from PRODRG server (Sch€uttelkopf & van
Aalten, 2004). Each complex was neutralized by adding a var-
ied number of Naþ ions and enclosed in a periodic box
TIP3P water and extended to 10Å from the solvent. The
water model Simple Point Charge (spc216) was used for the
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solvation. The Particle Mesh Ewald method (Darden et al.,
1999) and LINCS algorithm was used to restrain the long-
range electrostatics and bond length, respectively. Prior to
simulation the protein was minimized by using the steepest
descent method. The entire system was equilibrated in two
stages as temperature coupling step (NVT) and pressure cou-
pling step (NPT). Once the system was equilibrated, the con-
formational sampling production was started at constant
temperature 300 K and pressure 1 atm MD simulation trajec-
tory was collected for every 2 ps time steps.

Trajectory analysis

GROMACS toolkit was used for the analysis of MD simulation
trajectory. Root mean square deviation (RMSD) of initial
structure to the completion of simulation was calculated.
Root mean square fluctuation (RMSF) determining per resi-
due fluctuation and hydrogen bonds between the com-
pound(s) and the target protein were analyzed to measure
the stability of the protein-ligand complexes.

Gibbs free energy landscape

The Gibbs free energy landscape provides the structural fea-
tures and computational profiles of a protein by using con-
formational sampling methods (Hsieh et al., 2010). It was
projected onto the first principal component (PC1) and

second principal component (PC2) with highest eigenvalues
calculated from Principal Component Analysis (PCA). It can
be defined as

G PC1, PC2ð Þ ¼ �kBTlnP PC1, PC2ð Þ
kB ¼ Boltzmann constant
T¼ Temperature
P (PCS1, PC2) ¼ normalized joint probability distribution

Results and discussion

SARS-CoV-2 genome is made of 29,891 nucleotides with
9860 amino acids (Chan et al., 2020), packaged in a circular
nucleocapsid protein and encapsulated by envelope proteins
(Li, 2016). All four structural proteins included in this study,
namely, Spike protein, Membrane protein, Envelope protein,
and Nucleocapsid protein play significant roles in the life
cycle of the virus and hence are promising therapeutic tar-
gets to control COVID-19 (Satarker & Nampoothiri, 2020). In
the case of N protein, since its N terminal domain has been
widely studied, we have considered only the C terminal
domain (CTD) in our study.

We used algorithmic text mining approach to extract lit-
erature and retrieve the compounds with known anti-viral
activity. Significantly, several of these compounds are
reported to be effective, but are not yet included in chemical
databases. Text mining also enabled access to more potential
variants of the promising antiviral compounds. Our aim was

Figure 1. Summary of strategy followed to identify consensus compounds.
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Table 1. Functional and structural details of the seven consensus compounds.

Table 2. Illustration of binding affinity of consensus compounds with and binding residues in the respective proteins.

Envelope protein Membrane protein
Nucleocapsid protein

(CTD) Spike protein

Compounds

Binding
affinity

(kcal/mol)

Binding
residues

Binding
affinity

(kcal/mol)

Binding
residues

Binding
affinity

(kcal/mol)

Binding
residues

Binding
affinity

(kcal/mol)

Binding
residues

Fangchinoline –6.8 LYS53, SER50, ASN48 –7.7 SER197 –9.8 GLN260 –8.3 TYR904
Cepharanthine –6.9 None –8.4 None –10.5 None –8.1 TYR313
Compound 55 –6.3 ALA32 –8.3 ALA218, SER99 –10.3 GLN260, TYR333 –7.4 SER591
Tetrandrine –6.2 None –7.5 ARG107 –9.4 None –8.1 SER50, GLN853
Compound 3 –6.1 SER55 –7.7 SER99, ASP209 –9.1 ARG277,

ALA264, THR296
–7 CYS538, PRO589,

SER591
Compound 6 –6.8 None –8.2 SER4. ARG107 –9.6 AG277 –7.4 ALA288, SER297
Variant of Harmine –7.6 None –8 GLY78, TYR196 –9.9 None –7.5 None
Remdesivir –5 PHE4, SER6 –6.9 LEU181, SER197,

ARG198, VAL139,
GLU137, THR77

–8.3 TYR333,
GLY335, ILE337

None None

Favipiravir –3.6 ASP72, VAL75 –5 GLU137, VAL139,
GLY78

–4.3 GLN283, ASN285 –4.5 THR1077

Ritonavir –5.8 SER55, TYR57,
TYR59, ARG61

–6.9 ARG44, ARG101,
ASP209

–7.7 ARG277 None None

Lopinavir –5.1 ASP72, VAL75 –7.4 HIS125, TRP20 –8.5 GLN260,
ARG259, ARG277

–6.8 SER172, GLN173,
LEU226, PRO225

Hydroxychloroquine –4.9 None –5.7 ALA188 –6 ILE304 –4.8 ASP294, SER297,
ASP287

ACT (ACETATE ION) None None None None –2.9 Thr271,
ARG276, ARG277

None None

PEG DI(HYDROXYETHYL)ETHER None None None None –2.8 PHE286 None None
NAG

2-acetamido-2-deoxy-
beta-D-glucopyranose

None None None None None None –4.6 None
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to identify multi-target inhibitor(s) from among these natural
compounds, which could potentially inhibit more than one
protein in SARS-CoV2. Multi-target inhibitors can not only be
more toxic, probability of the virus gaining resistance against
such compounds is expected to be low. Keeping this signifi-
cance in perspective, molecular interaction studies were
done between each of the identified natural compounds
with the four structural viral proteins. Out of the identified
compounds, 7 showed multi-target binding in docking ana-
lysis, which we have mentioned as the ‘consesus com-
pounds’. Stability of interaction between the compounds and
the target proteins was further evaluated using molecular
dynamics simulation.

Data mining

On text mining of the PubMed abstracts, a total of 106 nat-
ural compounds (Supplemental Table 1) with antiviral activity
were identified. The available variants of these compounds
are also included in the study. Each compound was screened
against the four structural proteins of SARS-CoV-2.

Molecular docking

Docking of compounds with each protein showed uneven
binding affinity. Hence, from the docking output
(Supplemental Table 2), first top hits for all four proteins
were considered (Figure 1). Next, the top hit compounds for
each of the four proteins were searched to find a consensus
compound which could target more than one protein (multi-
target effect). Based on binding affinity, 7 compounds were
identified as consensus compounds (Table 1), and were fur-
ther considered for validation by simulation using GROMACS.

Interaction between compounds and proteins

The visual rescoring was performed for deep understanding
of binding between ligands and targets (Table 2). Consensus
compounds Table 1 were then subjected to PyMol (Rigsby &
Parker, 2016). Compounds that did not show hydrogen
bonding with the respective target proteins were further
searched for hydrophobic interactions using the LigPlot tool
(Wallace et al., 1995) (Figure 2).

Figure 2. Hydrophobic interactions between proteins (E, M, S and N) and consensus compounds. A, B, C and D represent hydrophobic interactions between
Envelope protein (E), Membrane protein (M), Spike protein (S) and Nucleocapsid protein (N-CTD), respectively. The red colored semi circles represent the protein
residues forming hydrophobic interaction with the protein.
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Hydrophobic interactions

After analyzing the hydrogen bonding between the com-
pounds and proteins, compounds lacking hydrogen bonding
were screened for hydrophobic interactions using LigPlot as
shown in Figure 2.

Molecular dynamics simulation

All four proteins were simulated with each of the consensus
compounds regardless of the number of binding residues
(except for the compound 6 for E protein, which neither
showed hydrogen bonds nor hydrophobic interactions). The
preliminary simulation filtered out the least stable and
weakly bound compounds and for the remaining com-
pounds, simulation was extended for 100 ns.

Nucleocapsid protein (C terminal domain)

Structure deviations and fluctuations (RMSD and RMSF
and RG)
Root mean square deviation, root mean square fluctuations
and the radius of gyration were analyzed from the stable
region of trajectories to find the structural dynamics of C-

terminal domain (CTD) of the N protein complexed with
identified compounds, namely, fangchinoline, cepharanthine
and compound 3. The average RMSD of apo-CTD protein
was 0.60 nm and the average RMSD of CTD-fangchinoline,
CTD-cepharanthine and CTD-Compound 3 was 0.54 nm,
0.65 nm, and 0.67 nm, respectively (Figure 3A). It was
observed that CTD tends to show stable and low fluctuations
when bound to fangchinoline, whereas with cepharanthine
and compound 3, fluctuations were observed to be high.

The average RMSD values of fangchinoline, cepharanthine
and compound 3 were found to be 0.05 nm, 0.04 nm, and
0.11 nm, respectively. Cepharanthine showed least RMSD
fluctuation as compared to fangchinoline and compound 3
(Figure 3B).

CTD-fangchinoline showed least residual fluctuations
(RMSF) as compared to CTD-cepharanthine and CTD-com-
pound 3, which could be due to strong hydrogen bonding
between the respective ligand-receptor complexes (Figure
3C). Radius of gyration (Rg) is linked to the tertiary structural
volume of fangchinoline, cepharanthine and compound 3.
Proteins with higher Rg are assumed to have less tight pack-
ing (Lobanov et al., 2008). The average Rg values for apo-
CTD, fangchinoline, cepharanthine and compound 3 were
found to be 1.32, 1.39 nm, 1.43 nm, and 1.40 nm, respectively

Figure 3. Structural dynamics of N-CTD. (A) Root mean square deviation (RMSD) plots for CTD as a function of time. (B) RMSD of compounds as a function of time.
(C) Root mean square fluctuations (RMSF) plot for CTD. (D) Time evolution of radius of gyration (Rg). Black, blue, green and red color represent values obtained for
apo-CTD, CTD-fangchinoline, CTD-cepharanthine and CTD-compound 3 during 100 ns MD simulations, respectively.
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(Figure 3D). Fangchinoline showed tight packing in compari-
son to the other two compounds. Based on these structural
dynamics, fangchinoline appears to attain the highest stable
conformation.

SASA and hydrogen bonds
The solvent accessible surface area (SASA) is defined as the sur-
face area of the networks resulting from the complex of a pro-
tein with its solvent molecules (Durham et al., 2009). The
average SASA values with respect to apo-CTD protein, fangchi-
noline, cepharanthine and compound 3 were found to be
71.74 nm2, 79.30nm2, 80.78nm2, and 77.15 nm2, respectively
(Figure 4A). A lower SASA value in the case of compound 3 sug-
gests that its internal residues are not exposed to the solvent.

Free solvation for apo-CTD, fangchinoline, cepharanthine
and compound 3 was found to be 145.89, 159.56 KJ/mol/nm2,
170.40 KJ/mol/nm2, and 146.06 KJ/mol/nm2, respectively
(Figure 4B). Additionally, the SASA plots were also resolved
into hydrophobic and hydrophilic regions. Hydrophobic SASA
with respect to backbone for apo-CTD was 26.21 nm2 and

SASA with respect to backbone for CTD in complex with fang-
chinoline, cepharanthine and compound 3 was found to be
27.15 nm2, 28.63 nm2, and 26.57 nm2, respectively. Hydrophilic
SASA with respect to backbone for apo-CTD, CTD-fangchino-
line, CTD-cepharanthine and CTD-compound 3 was 35.98 nm2,
38.88 nm2, 37.16 nm2, and 36.86 nm2, respectively.

Hydrogen bonds play a vital role in stabilizing the protein
conformations. Hydrogen bonding between CTD and com-
pounds, namely, fangchinoline, cepharanthine and compound 3
were analyzed by estimating the hydrogen bond pair within
0.35nm. Here, compound 3 was found to establish more hydro-
gen bond contacts with CTD, followed by fangchinoline.
Cepharanthine showed weakest interaction (Figure 4C).

Secondary structure analysis
To spot the structural features of CTD, secondary structure
analysis was performed. The secondary structure assign-
ments, such as a-helix, b-sheet and turn were split into
individual residues and the average number of residues
participating in the formation of secondary structure were

Figure 4. Solvent Accessible Surface Area (SASA) and Hydrogen bonds. (A) Solvent Accessible Surface Area as a function of time and (B) the free energy of solv-
ation with reference to time. Black, blue, green and red color represent values obtained for apo-CTD, CTD-fangchinoline, CTD-cepharanthine and CTD-compound 3
during 100 ns MD simulations, respectively. (C) Hydrogen bonds between protein and ligand obtained for fangchinoline, cepharanthine, and compound 3
with CTD.

Table 3. Percentage of residues participating in average structure formation during MD simulations.

Percentage of secondary structure (SS %)

Protein Structurea Coil b-sheet b-bridge Bend Turn a-helix 310-helix

CTD 42 38 8 2 2 10 22 1
CTD-fangchinoline 41 40 5 2 15 11 23 2
CTD-cepharanthine 44 34 9 2 21 9 25 1
CTD-compound 3 50 31 11 4 18 12 23 1
aStructure¼a-helixþb-sheetþb-bridgeþ Turn.
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compared. The percentage of residues participating in
structure formation during MD simulation is given in
Table 3.

This analysis revealed the average residues participating
in structure formation in CTD to be 42%, and after binding
with fangchinoline, cepharanthine and compound 3, the

Figure 5. The secondary structure plot as a function of time. Each structural element has been represented by different colors: black (overall structure), red (coil),
green (b-sheet), blue (b-bridge), yellow (bend), brown (turn), gray (a-helix), and cyan (3-helix). A) Apo-CTD, B) CTD-fangchinoline, C) CTD-cepharanthine D) CTD-
compound 3.

Figure 6. The structural volume and density plot as a function of time. (A) Structural volume and (B) Density of Apo-CTD (black), CTD-fangchinoline (Blue), CTD-
cepharanthine (Green), and compound 3 (red) calculated during MD simulations, respectively.
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percentage of average number of residues participating in
structure formation were 41%, 44%, and 50%, respectively
(Figure 5). The CTD-fangchinoline complex showed the least
values of average secondary structure during MD simulation.
Binding of fangchinoline resulted in increased coils as com-
pared to other two compounds, which indicates it might
have a denaturing effect on the protein.

Further, the volume and density of above complexes were
calculated. The volumes for apo-CTD, CTD-fangchinoline,
CTD-cepharanthine and CTD-compound 3, were 23.07 nm3,
23.63 nm3, 27.75 nm3, and 23.46 nm3, respectively. The aver-
age densities were 890.59 g/l, 869.56 g/l, 865.06 g/l, and
875.53 g/l, respectively (Figure 6). The results suggest min-
imal variations in the volume and density of CTD in com-
plexes with all the three compounds.

Membrane protein (M protein)

Structure deviations and fluctuations (RMSD and RMSF
and Rg)
The structural dynamics of M protein complexed with com-
pound 3 was calculated by root mean square deviation, root
mean square fluctuations and the radius of gyration,

analyzed from the stable region of their trajectories and was
found to show low fluctuations in complex with compound
3. Average RMSD of apo-M protein and complex with com-
pound 3 was 0.55 nm (Figure 7A) and the average RMSD of
compound 3 was 0.23 nm (Figure 7B). Average RMSF fluctua-
tions in apo-M protein and M Protein-compound 3 was 0.19
and 0.23 nm, respectively (Figure 7C) and average Rg values
for apo-M protein and M Protein-compound 3 complex was
found to be 1.63 nm and 1.68 nm, respectively (Figure 7D).

SASA and hydrogen bonds
The average SASA values for apo-protein and for Compound
3 were found to be 119.62 nm2, and 127.02 nm2, respectively
(Figure 8A). High SASA value suggested internal residues in
compound 3 to be exposed to the solvent.

The free solvation for apo-M protein and compound 3
was 237.24 KJ/mol/nm2 and 240.32 KJ/mol/nm2, respectively
(Figure 8B). Additionally, the SASA plots were also resolved
into hydrophobic and hydrophilic regions. The hydrophobic
SASA with respect to backbone for M protein was 68.58 nm2,
whereas SASA with respect to backbone for M protein in
complex with compound 3 was 71.09 nm2. The hydrophilic
SASA with respect to backbone for apo-M protein, and M

Figure 7. Structural Dynamics of M Protein. (A) Root mean square deviation (RMSD) plots for M Protein as a function of time. (B) RMSD of compound 3 as a func-
tion of time. (C) Root mean square fluctuations (RMSF) plot for M Protein. (D) Time evolution of radius of gyration (Rg). Black, and red color represent values
obtained for apo-M Protein, and M Protein-compound 3, respectively during 100 ns MD simulations.
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protein-compound 3 were found to be 58.43 nm2 and
57.42 nm2, respectively.

Hydrogen bond formations between M protein and com-
pound 3 were analyzed by estimating the hydrogen bond
paired within 0.35 nm and compound 3 was observed to
establish a high number of hydrogen bond contacts with M
protein (Figure 8C).

Secondary structure analysis
The secondary structure assignments, namely, a-helix,
b-sheet and turns were split into individual residues and the

average number of residues participating in the formation of
secondary structure were compared. The percentage of resi-
dues participated in structure formation during MD simula-
tion are given in Table 4.

In this analysis we found that average residues participating
in the structure formation in M protein when free was 46% and
on binding with Compound 3 was 41%, (Figure 9). Additionally,
an increase in the coils was also observed, suggesting the dena-
turing effect of the compound on the protein.

Further, on calculating the volume and density of the
above shown complexes, less variation was noticed in these

Figure 8. Solvent Accessible Surface Area (SASA) and hydrogen bonds. (A) SASA as a function of time and (B) the free energy of solvation with reference to time.
(C) Hydrogen bonds between compound 3 and M Protein. Black and red color represent values obtained for apo-M protein, and M protein-compound 3, respect-
ively during 100 ns MD simulations.

Table 4. Percentage of residues participating in average structure formation during MD simulations.

Percentage of secondary structure (SS %)

Protein Structurea Coil b-sheet b-bridge Bend Turn a-helix 310-helix

M protein 46 34 10 2 19 12 22 1
M protein-compound 3 41 37 12 3 21 9 17 1
aStructure¼a-helixþb-sheetþb-bridgeþ Turn.
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two parameters. Volumes of apo-M protein and M protein-
compound 3 were 45.70 nm3 and 46.37 nm3, respectively
(Figure 10) and the average density were 914.04 g/l and
900.86 g/l, respectively.

Spike protein (S protein)

Structure deviations and fluctuations (RMSD, RMSF
and RG)
The structural dynamics of S protein complexed with com-
pound 3 was calculated by root mean square deviation, root
mean fluctuations and the radius of gyration, analyzed from
the stable region of their trajectories and were observed to
be low fluctuations in complex with compound 3. The aver-
age RMSDs of apo-S protein and its complex with compound
3 was 1.90 nm and 2.21 nm, respectively (Figure 11A). The
RMSDs of compound 3 was observed to be 0.22 nm (Figure
11B). We observed low fluctuations in S protein complexed

with compound 3. The average RMSF fluctuations in apo-S
protein and S Protein-compound 3 complex was found to be
0.72 nm and 0.84 nm, respectively (Figure 11C) and the aver-
age Rg values for apo-S protein and S Protein-compound 3
complex were found to be 4.17 nm, and 4.09 nm, respectively
(Figure 11D).

SASA and hydrogen bonds
The average SASA values for apo-S protein and for com-
pound 3 were found to be 486.76 nm2, and 492.41 nm2,
respectively (Figure 12A). High SASA values suggested
internal residues in compound 3 to be exposed to
the solvent.

Free solvation for apo-S protein and compound 3 was
829.97 KJ/mol/nm2, and 863.18 KJ/mol/nm2, respectively
(Figure 12B). Hydrogen bonds between S protein and com-
pound 3 within 0.35 nm were observed to be significant in
number (Figure 12C).

Figure 9. The secondary structure plot as a function of time. Each structural element A) M protein, B) M protein-compound 3 complex, has been represented by
different colors. Black (overall structure), red (coil), green (b-sheet), blue (b-bridge), yellow (bend), brown (turn), gray (a-helix), and cyan (3-helix).

Figure 10. Structural volume and density plot as a function of time. (A) Structural volume and (B) Density of Apo-M protein (black), and compound 3 (red) calcu-
lated during MD simulations, respectively.
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Secondary structure analysis
The secondary structure assignments for a-helix, b-sheet and
turn were split into individual residues and the average num-
ber of residues participating in the formation of secondary
structure were compared. The percentage of residues partici-
pated in structure formation during MD simulation are given
in Table 5.

In this analysis we obtained that average residues partici-
pating in structure formation in S protein are 59%, which
remain the same after binding with compound 3 (Figure 13).
No alteration in the secondary structure of S protein
was observed.

Further, on calculating the volume and density of the
above shown complexes, less variation was noticed in these
two parameters. Volumes of apo-S protein and S protein-
compound 3 were 186.76 nm3 and 187.31 nm3, respectively
(Figure 14A) and the average density was 944.20 g/l and
941.39 g/l, respectively (Figure 14B). These results depict less
variation in the volume and density of each complex.

Conclusions

Development of new drugs is a time taking and expensive
process. Comprehensive efforts are being made globally
towards the search of therapeutics against SARS-CoV-2 (Liu
et al., 2020; Ojha et al., 2021; Rabaan et al. 2020). Given the
urgent requirement for treatment options for Covid19

disease, great thrust has been given on drug repurposing
also. Several drugs such as, remdesivir, favipiravir, ritonavir,
and lopinavir (Bhatnagar et al., 2020; Cai et al., 2020; Vanden
Eynde, 2020, p. 19) have been included in the treatment
regimen and shown effective results in several cases.
However, to mitigate the current crisis and prepare for future
pandemics, there is a continuous need to explore the diver-
sity of natural compounds for their antiviral activity. In this
study, we extracted information available in the literature on
antiviral phytochemicals and evaluated their potential to
interact and potentially inhibit the structural proteins of
SARS-CoV-2.

Seven consensus compounds which showed binding to
all the four structural proteins on docking are fangchinoline,
cepharanthine, compound 55, tetrandrine, compound 3,
compound 6 and harmine. While determining the binding
residues in each of the four proteins with these 7 com-
pounds using PyMol, we did not observe H-bonding
between the compounds tetrandrine, cepharanthine, har-
mine, and compound 6 with any of the target proteins so
we also examined hydrophobic interactions using LigPlot
(Figure 4). Compound 6 did not show hydrophobic inter-
action either (with E protein) and hence was excluded from
the simulation studies. Further, four compounds which
showed weak binding and low stability during the prelimin-
ary simulation were also excluded from this study. Finally,
fangchinoline, cepharanthine and compound 3 were studied
further by RMSD, RMSF and hydrogen bonding analysis.

Figure 11. Structural Dynamics of S Protein. (A) Root mean square deviation (RMSD) plots for S Protein as a function of time. (B) RMSD of compounds 3 as a func-
tion of time. (C) Root mean square fluctuations (RMSF) plot for S Protein. (D) Time evolution of radius of gyration (Rg). Black, and red color represent values
obtained for apo-S Protein, and S Protein-Compound 3, respectively, during 100 ns MD simulations.
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Fangchinoline is a bisbenzylisoquinoline alkaloid sourced
from Stephania tetrandra (Kim et al., 2019; Weber & Opatz,
2019), known for its anticancer (M�erarchi et al., 2018) and
anti-inflammatory (Choi et al., 2000) activities. Fangchinoline
has earlier been shown as an inhibitor of the replication of
human immunodeficiency virus (HIV). It interfers with proteo-
lytic processing of gp160 in HIV (Wan et al., 2012) and
recently its potential in the prevention and treatment of
human coronavirus (HCoV-OC43) infection (Kim et al., 2019)
has also been reported. In our analysis, not only does fang-
chinoline bind stably to CTD of N protein, the CTD-fangchi-
noline complex showed least values of average secondary
structure during MD simulation. Further, binding of fangchi-
noline resulted in increased coils in CTD, indicating it might
also have a denaturing effect on the protein.

Aspergillus spp are widely considered as abundant source
of secondary metabolites, namely, peptides, alkaloids, poly-
ketides, lignans and terpenes with biological properties (Ge
et al., 2010; H.-W. Zhang et al., 2010; M. Zhou et al., 2015,
2014). Compound 3, a butyrolactone (versicolactone C) is a

subclass of lignans produced by fungi and plants
(Matsumoto et al., 2006; Mohagheghzadeh et al., 2006).
Butyrolactones are largely known for their anti-bacterial,
anti-viral, anti-inflammatory activities ( Haritakun et al.,
2010; Qin et al., 2011; H.-J. Zhang et al., 2005). Similar to
fangchinoline, compound 3 also causes denaturation of sec-
ondary structure in M protein by increasing the number of
coils. In S protein, though its secondary structure was not
found to be affected, the RMSD and hydrogen bond ana-
lysis revealed adequate stability of interaction between
the compound.

Taken together, from among the reported bis-benzyliso-
quinoline alkaloids (tetrandrine, fangchinoline, and cepharan-
thine), our in silico analysis shows fangchinoline to be a
potential inhibitor of NCTD and Compound 3 (versicolactone
C) exhibits multi-target binding on the key structural proteins
of the coronavirus. Based on these encouraging results, we
believe these compounds could be tested experimentally for
inhibitory effect on SARS-CoV2 virus for their prospects in
antiviral drug discovery.

Table 5. Percentage of residues participated in average structure formation during MD simulations.

Percentage of secondary structure (SS %)

Protein Structurea Coil b-sheet b-bridge Bend Turn a-helix 310-helix

S protein 59 25 28 1 14 8 22 1
S protein-compound 3 59 26 29 2 14 8 21 1
aStructure¼a-helixþb-sheetþb-bridgeþ Turn.

Figure 12. Solvent Accessible Surface Area (SASA) and hydrogen bonds. (A) SASA as a function of time and (B) the free energy of solvation with reference to time
(C) Hydrogen bonds between protein and ligand obtained for compound 3 with S protein. Black and red color represent values obtained for apo-S protein and S
protein-compound 3 complex during 100 ns MD simulations, respectively.
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