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Background: An imbalance in the redox homeostasis has been reported in

multiple cancers and is associated with a poor prognosis of disease. However,

the prognostic value of redox-related genes in non-small-cell lung cancer

(NSCLC) remains unclear.

Methods: RNA sequencing data, DNA methylation data, mutation, and clinical

data of NSCLC patients were downloaded from The Cancer Genome Atlas and

Gene Expression Omnibus databases. Redox-related differentially expressed

genes (DEGs) were used to construct the prognostic signature using least

absolute shrinkage and selection operator (LASSO) regression analysis.

Kaplan–Meier survival curve and receiver operator characteristic (ROC) curve

analyses were applied to validate the accuracy of the gene signature.

Nomogram and calibration plots of the nomogram were constructed to

predict prognosis. Pathway analysis was performed using gene set

enrichment analysis. The correlations of risk score with tumor stage,

immune infiltration, DNA methylation, tumor mutation burden (TMB), and

chemotherapy sensitivity were evaluated. The prognostic signature was

validated using GSE31210, GSE26939, and GSE68465 datasets. Real-time

polymerase chain reaction (PCR) was used to validate dysregulated genes in

NSCLC.

Results: A prognostic signature was constructed using the LASSO regression

analysis and was represented as a risk score. The high-risk group was

significantly correlated with worse overall survival (OS) (p < 0.001). The area

under the ROC curve (AUC) at the 5-year stage was 0.657. The risk score was

precisely correlated with the tumor stage and was an independent prognostic

factor for NSCLC. The constructed nomogram accurately predicted the OS of

patients after 1-, 3-, and 5-year periods. DNA replication, cell cycle, and ECM

receptor interaction were themain pathways enriched in the high-risk group. In
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addition, the high-risk score was correlated with higher TMB, lowermethylation

levels, increased infiltratingmacrophages, activatedmemoryCD4+ T cells, and a

higher sensitivity to chemotherapy. The signature was validated in GSE31210,

GSE26939, and GSE68465 datasets. Real-time PCR validated dysregulated

mRNA expression levels in NSCLC.

Conclusions: A prognostic redox-related gene signature was successfully

established in NSCLC, with potential applications in the clinical setting.

KEYWORDS

gene signature, NSCLC, cancer prognosis, immune infiltration, redox homeostasis

Introduction

Lung cancer is the leading cause of cancer-related deaths

worldwide, with an estimated 1.8 million deaths (18% of the total

number of cancer deaths) (Sung et al., 2021). Non-small cell lung

cancer (NSCLC) is a major type of lung cancer, accounting for

approximately 85% of all lung cancers (Travis et al., 2015a; Travis

et al., 2015b). Only 25% of patients with NSCLC are diagnosed

during the early stages (Ni et al., 2018). Furthermore, cancer in

approximately 80% of the diagnosed patients is already in the

metastatic stage (Goldstraw et al., 2016). Despite recent progress

in novel medications, such as targeted therapies and

immunotherapies for NSCLC (Facchinetti et al., 2016), the

5 years survival rate remains below 15% (Goldstraw et al.,

2016). Therefore, an effective biomarker is urgently required

to predict the overall survival (OS) of patients diagnosed with

NSCLC.

Advancements in the next-generation sequencing technology

have identified multiple biomarkers correlated with prognosis,

immune infiltration, and therapy in lung cancer, such as

adhesion molecule interacting with CXADR antigen 1

(AMICA1) (Feng et al., 2022), chromobox protein homolog 3

(CBX3) (Niu et al., 2022), and lysine acetyltransferase 2B

(KAT2B) (Zhou et al., 2022). However, the researchers have

demonstrated that the construction of gene signature could

predict better prognosis and therapy response. For instance,

hypoxia-related gene signature (Chen et al., 2022), pyroptosis-

related gene signature (Zhang and Yan, 2021; Li et al., 2022),

autophagy-related gene signature (Wu et al., 2021a), and

inflammatory response-related signature (Zou et al., 2021)

may better predict prognosis, influence immunological state

and guide individualized therapy due to its multidimensional

parameters.

Oxidative stress is typically caused by the accumulation of

reactive oxygen species (ROS) (Li et al., 2021a). ROS production

in cells can cause oxidative damage resulting from DNA point

mutations (Lee et al., 2002; Ogrunc et al., 2014), disrupted lipid

membranes (Halliwell and Chirico, 1993), and altered protein

function (LeDoux et al., 1999; Kwon et al., 2004; Gao et al., 2007).

Such oxidative damages are countered by antioxidant systems

(Handy and Loscalzo, 2012), which scavenge harmful ROS.

Normal ROS and antioxidant levels maintain redox

homeostasis in healthy cells, while increased ROS levels are

observed in cancer cells. These increased levels lead to

genomic instability, facilitate cell proliferation, increase

motility, and activate oncogenic signaling (Moloney and

Cotter, 2018; Forman and Zhang, 2021). ROS can participate

in several cancer signaling pathways implicated in tumor growth,

metabolism, differentiation, and metastasis (Aggarwal et al.,

2019). Importantly, redox imbalance has also been observed

in NSCLC (Weng et al., 2018; Zhao et al., 2021a). For

example, antioxidant enzymes including superoxide dismutase

(SOD), catalase (CAT), and glutathione peroxidase (GPX) are all

reduced in NSCLC in comparison with corresponding controls

(Zalewska-Ziob et al., 2019), and glutathione (GSH) and its

related enzymes that detoxify ROS, are increased in lung

cancer (Luengo et al., 2019). Cellular ROS level is usually

regulated by nuclear factor-erythroid 2-related factor 2

(NRF2) and its repressor Kelch-like ECH-associated protein 1

(KEAP1) (Zhang et al., 2015). Large-scale genomic studies have

revealed that the KEAP1/NRF2 pathway is altered in 23% of lung

adenocarcinoma (LUAD) and 34% of lung squamous cell

carcinoma (LUSC), approximately (The Cancer Genome Atlas

Research Network, 2014). Moreover, the upregulated activity and

expression of the NADPH oxidase (NOX) family correlate with

tumorigenesis of lung cancer through ROS production (Han

et al., 2016). Additionally, cigarette smoking is the most

important risk factor for lung cancer, which accounts for

nearly two-thirds of all lung cancer cases (Hedyed et al.,

2021), and cigarette smoking could induce oxidative stress

and mitochondrial damage leading to metabolic

reprogramming associated with increased glycolytic flux,

contributing to epithelial-mesenchymal transition processes,

and cell migration, therefore, promoting tumor progression

(Di Vincenzo et al., 2021). However, there are no systematic

studies on the role of redox-related genes in NSCLC. Thus, a

better understanding of the molecular composition of these genes

and their roles in NSCLC is necessary for its accurate prognosis

and treatment.

In our study, a redox-related gene signature was established

using the least absolute shrinkage and selection operator

(LASSO) regression analysis to predict the OS, immune
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infiltration, and evaluate therapy response in patients diagnosed

with NSCLC.

Materials and methods

Data preprocessing and identification of
DEGs

RNA sequencing data, DNA methylation data, mutation

data, and clinical information of patients with NSCLC were

downloaded from the cancer genome atlas (TCGA) (https://

www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga). A total of 1,037 cancer and

108 normal samples with sequencing data, 807 cancer and

71 normal samples with DNA methylation data, 1,059 tumor

samples with mutation data, and 1,027 tumor samples with

clinical data were obtained. The GSE31210, GSE68465, and

GSE26939 datasets were downloaded from gene expression

omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),

which included 226, 442, 116 patients diagnosed with NSCLC,

respectively. GSE31210 was from GPL570 [HG-U133_Plus_2]

Affymetrix Human Genome U133 Plus 2.0 Array,

GSE68465 from GPL96 [HG-U133A] Affymetrix Human

Genome U133A Array, and GSE26939 from GPL9053

Agilent-UNC-custom-4X44K. Patients with incomplete follow-

up were excluded from the analysis. Therefore, TCGA cohort,

GSE31210, GSE68465, and GSE26939 datasets included 978, 226,

442, and 114 patients with complete follow-up information,

respectively. Baseline characteristics of patients with NSCLC

are listed in Table 1. In TCGA database, 767 and 754 patients

with complete follow-up data have mutation data, and

methylation data, respectively. The sequencing data from

TCGA database and GEO database were analyzed as the

training cohort and test cohort, respectively. The redox-related

gene sets were obtained from GSEA-MSigDB database (https://

www.gsea-msigdb.org/gsea/msigdb), and two redox-related gene

sets, namely “GO_CELL_REDOX_HOMEOSTASIS” and “GO_

RESPONSE_TO_REDOX_STATE”, were downloaded for

further analysis. A total of 4,087 redox-related genes were

included in the current study (Supplementary Table S1)

(Cook et al., 2011; Gerstberger et al., 2014). The redox-related

differentially expressed genes (DEGs) were identified in TCGA

cohort using the “limma package” in R programming language

(Version 4.0.2) based on |log2 fold change (FC)| ≥ 2 and adjusted

p-value < 0.05.

TABLE 1 Clinical features of patients from TCGA and GEO databases.

Clinical characteristic TCGA cohorts (978) GSE31210 (226) GSE26939 (114) GSE68465 (442)

Platform TCGA GPL570 GPL9053 GPL96

Age (years)

>=65 590 (60.33%) 62 (0.27%) 61 (53.51%) 228 (51.58%)

<65 388 (39.67%) 164 (72.57%) 53(46.49%) 214 (48.42%)

unknown 0 0 0 0

Gender

Male 585 (59.82%) 105 (46.46%) 52 (46.61%) 223 (50.45%)

Female 393 (40.185) 121 (53.54) 62 (54.39%) 219 (49.55%)

unknown 0 0 0 0

T classification

T1-T2 819 (83.74%) 226 (100%) / 401 (90.72%)

T3-T4 156 (15.95%) 0 / 39 (8.82%)

unknown 3 (0.31%) 0 / 2 (0.45%)

N classification

N0 629 (64.31%) / / 299 (67.65%)

N1-N3 333 (34.05%) / / 140 (31.67%)

unknown 16 (1.64%) / / 3 (0.68%)

M classification

M0 722 (73.82%) / / /

M1 31 (3.17%) / / /

unknown 225 (23.01%) / / /

UICC stage

Stage I-II 772 (78.94%) 226 (100%) 81 (71.05%) /

Stage III-IV 194 (19.84%) 0 20 (17.54%) /

unknown 12 (1.23%) 0 13 (11.40%) /
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Construction and validation of the
prognostic signature

Univariate Cox regression analysis was performed to identify

prognostic genes using redox-related DEGs with p < 0.05.

Subsequently, a prognostic signature was constructed using

LASSO regression analysis following a linear combination of

gene expression values multiplied by a regression coefficient (β).

A formula was as follows: risk score = ∑ (coefficient i ×

expression of gene i). All patients could obtain a risk score

using the formula and be divided into the low-risk or high-

risk groups according to the median risk score. Kaplan–Meier

survival curve was calculated between the two risk groups and

was compared using the log-rank test. Receiver operator

characteristic (ROC) curve analysis was used to assess the

predictive accuracy of the prognostic signature, and area

under the ROC curve (AUC) values with 95% confidence

intervals (CIs) were calculated. The prognostic signature was

validated using GSE31210, GSE68465, and GSE26939 datasets.

Correlation of risk score with clinical
characteristics

The risk score in different age groups (≥65 and <65 years),
biological sexes (female and male), Union for International

Cancer Control (UICC) stages (stages I, II, III, and IV), T

stages (T1, T2, T3, and T4), N stages (N0, N1, N2, and N3),

and M stages (M0 andM1) were compared using R programming

language in TCGA cohort. The clinical characteristics including

age, gender, smoking history, UICC stage, and risk score were

applied to identify independent prognostic factors contributing

to NSCLC using univariate and multivariate Cox regression

analyses.

Nomogram prediction model

A Nomogram prediction model was constructed to predict

the 1-, 3-, and 5-years OS rates using independent prognostic

factors with the “rms package” in R programming language, and

calibration plots of the nomogram were applied to compare the

nomogram-predicted probability of OS and the actual OS.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is a computational

method that determines whether a priori defined set of genes

shows statistically significant and concordant differences between

two biological states (Subramanian et al., 2005). The high- and

low-risk groups were defined according to the median risk score in

NSCLC. GSEA (version 4.0.3) was applied to perform Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis

between the high- and low-risk expression groups.

Analysis of DNAmethylation and mutation

The DNA methylation data were normalized as the beta

value in TCGA database and the values of DNA methylation

expression were excluded when their value was missing or zero.

The analysis of DNA methylation was performed using the

patients with DNA methylation data and complete follow-up

data. DNAmethylation levels of prognostic genes were compared

between the high- and low-risk groups. The mutation data of

LUAD and LUSC were allocated in two different files in TCGA

database, thus gene mutation frequency of the two risk groups

was calculated in LUAD, and LUSC, respectively, using the

“maftools package” in R programming language. The

correlation of risk score with TMB was evaluated in all

NSCLC using the “ggpubr package” and “reshape2 package”

in R programming language, and statistical analysis was

performed using the Mann–Whitney test and Spearman rank

correlation analysis. Kaplan–Meier survival curve was calculated

between the high-risk score + high TMB group and the low-risk

score + low TMB group and was compared using the log-

rank test.

Analysis of immune infiltration

The gene expression matrix of NSCLC firstly converted tumor

micro-environment score matrix using “commonGenes.gct,”

“estimateScore.gct,” and “uniq.symbol.txt” in R programming

language, and then immune-infiltration profiles were evaluated

between the two risk groups and displayed in a violin plot by using

the “vioplot” package. The correlation of the risk score with

immune infiltration was calculated and displayed using

Spearman rank correlation analysis with “limma package,”

“reshape2 package,” “tidyverse package,” “ggplot2 package,”

“ggpubr package,” and “ggExtra package” in R programming

language.

Analysis of chemotherapy sensitivity

To assess the clinical therapeutic value of prognostic signature,

the half inhibitory concentration (IC50) of different chemotherapy

drugs was evaluated using all patients in prognostic signature with

“pRRophetic packages” in R programming language. Nine

chemotherapy drugs, namely bortezomib (Wang et al., 2022a),

dasatinib (Kim et al., 2021; Redin et al., 2021), docetaxel (Xiao

et al., 2022a; Matsumoto et al., 2022), midostaurin (Ctortecka et al.,

2018), paclitaxel (Duan et al., 2022), parthenolide (Li et al., 2020a),

pazopanib (Tanimoto et al., 2018), shikonin (Pan et al., 2021), and
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thapsigargin (Jaskulska et al., 2020) were collected from the

previous literature, which has proven to have the potential of

anti-tumor in lung cancer.

Real-time polymerase chain reaction
validation

Sixteen paired lung tissues were obtained from patients with

NSCLC in Zigong First People’s Hospital, and the clinical

information was summarized in Table 2. Total RNA was

extracted by using the E. Z.N.A. HP Total RNA Kit (Omega,

GA, United States ). Complementary DNA (cDNA) was

synthesized by using the PrimeScript™ RT reagent kit (Takara,

Japan). Real-time PCR was performed by using iQ ™ SYBR

Green Supermix (Bio-Rad). Levels of gene relative expression

were normalized to β-actin Ct value, using a 2−ΔΔCt relative

quantification method. The primer sequences used were listed

in Table 3.

Statistical analysis

All statistical analyses were performed using R software

(version 4.0.2) or GraphPad Prism (version 7.00). Comparisons

between the two groups were quantified using Student’s t-test for

parametric data or the Mann–Whitney test for nonparametric

data. Statistical significance among multiple groups was tested

using the Kruskal–Wallis test or analysis of variance (ANOVA).

Statistical significance was set at values of p < 0.05.

Results

Identification of DEGs

The flowchart depicting the procedure followed in the study

is shown in Figure 1. A total of 388 DEGs (279 up-regulated and

109 down-regulated genes) were identified in TCGA cohort

when cancer tissues compared with control tissues.

Construction of a prognostic signature in
the TCGA cohort

Among the 388 DEGs, a total of 24 genes were correlated with

prognosis using univariate Cox regression analysis (Figure 2A).

Furthermore, a prognostic signature comprising 12 genes

(CDC25C, GRIA1, CHEK2, KLK6, S100P, SPP1, COL1A1,

CAV1, SCN1A, CYP24A1, GPR37, and SLC7A5) was

constructed using the LASSO regression analysis (Figures 2B–D).

The risk score for each patient was calculated as follows:

riskcore � (0.1159 ×CDC25Cexp)+([−0.3928]×GRIA1exp)
+([−0.0703]×CHEK2exp)+(0.005 ×KLK6exp)
+(0.0002 × S100Pexp)+(0.0002 × SPP1exp)
+(0.0002 ×COL1A1exp)+(0.0021 × CAV1exp)

+([−0.3256]× CN1Aexp)+(0.0026 ×CYP24A1exp)
+(0.0361 ×GPR37exp)+(0.0026 × SLC7A5exp)

Then, based on the median risk score of 0.9403, 978 patients

were divided into the high- and low-risk subgroups (Figure 2G).

Kaplan–Meier survival curve showed that the high-risk group

had a worse OS than the low-risk group (p < 0.001; Figure 2E),

and the AUC values for OS at the 1-, 3-, 5-year periods were

TABLE 2 Clinical characteristic of 16 paired lung tissue from patients
with NSCLC.

Clinical characteristic Patients (16)

Age, years 70.5 (66–74.5)

Male, n (%) 16 (100%)

Smokng status, n (%) 16 (100%)

UICC stage I-II, n (%) 5 (31.25%)

TABLE 3 The primer sequences.

Gene symbol Primer symbol Primer sequences

CDC25C CDC25C-forward CTGCCACTCAGCTTACCACT

CDC25C-reverse AAGCTGTGCTGGGCTACATT

GRIA1 GRIA1-forward TGCTTGGTAGATGGTGCTTGAT

GRIA1-reverse CTGTGAGTTGCGACAAAGCAA

CHEK2 CHEK2-forward CTGCAGGTTTAGCGCCACTC

CHEK2-reverse TCAGCAGTGGTTCATCAAAGC

KLK6 KLK6-forward ACACGCTGTAGCTGTCTCCC

KLK6-reverse AGCAATCAGACTCAGCACCA

S100P S100P-forward TCAAGGTGCTGATGGAGAAGG

S100P-reverse TTGCAGCCACGAACACTATGA

COL1A1 COL1A1-forward GGCTCCTGCTCCTCTTAGC

COL1A1-reverse CACACGTCTCGGTCATGGTA

CAV1 CAV1-forward ACAGGGCAACATCTACAAGCC

CAV1-reverse ATGCCGTCAAAACTGTGTGT

SCN1A SCN1A-forward AGTGTAGGAGACACACTGCT

SCN1A-reverse GCACTGTTTGCTCCATCTTGTC

CYP24A1 CYP24A1-forward GCAGCCTAGTGCAGATTTCC

CYP24A1-reverse GCACTTGGGGATTACGGGAT

GPR37 GPR37-forward TGTCACCCCAGTCCTCCTTT

GPR37-reverse GAGTTCGAGTTCCGTGGTGT

SLC7A5 SLC7A5-forward GTGACGCTGGTGTACGTGCT

SLC7A5-reverse GGGTGGATCATGGAGAGGAT

β-actin β-actin-forward CCACGAAACTACCTTCAACTCC

β-actin-reverse GTGATCTCCTTCTGCATCCTGT
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FIGURE 1
Schematic flowchart representing the procedure followed for establishing the gene signature, and the main findings of the study. Numbers
within parenthesis indicate the size of the sample obtained. NSCLC, Non-small cell lung cancer; PCR, polymerase chain reaction; LASSO, least
absolute shrinkage, and selection operator; ROC: receiver operator characteristic; TCGA, The Cancer Genome Atlas.

FIGURE 2
Construction of gene signature. Gene signature constructed using (A) univariate Cox regression analysis and (B–D) LASSO regression analysis in
NSCLC. (E) Kaplan–Meier survival analysis. (F) ROC curve analysis. (G) risk score distribution. (H) survival status of the prognostic gene signature.
LASSO, least absolute shrinkage and selection operator; NSCLC, non-small cell lung cancer; ROC, receiver operating characteristic; AUC, area under
the ROC curve.
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0.674, 0.671, and 0.657, respectively (Figure 2F). Patients in the

high-risk group had higher mortality rates than those in the low-

risk group (Figure 2H).

Validation of the prognostic signature in
GEO datasets

In GSE31210 dataset, compared with the low-risk group, the

high-risk group had a worse OS (p < 0.001; Figure 3A), and the 1-

, 3-, 5-years AUC was 0.687, 0.700, and 0.717, respectively

(Figure 3B). Additionally, patients in the high-risk group have

also a worse OS in comparison with the low-risk group in both

GSE68465 and GSE26939 datasets (p < 0.001; Figures 3C,D).

Correlation of risk score with clinical
characteristics

The risk score in patients with stage II (p = 0.066), stage III

(p < 0.001), and stage IV (p = 0.010) cancer was higher than that

in patients with stage I cancer. (Figure 4A). Patients with T2 (p =

0.004) and T3 (p = 0.003) had higher risk scores than those with

T1 (Figure 4B). The risk scores of patients with N2-3 were higher

than those of patients with N0 (p = 0.002) and N1 (p = 0.002)

(Figure 4C). The patients with M1 had a higher risk score than

those with M0 (p = 0.036, Figure 4D). The male patients have a

higher risk score compared with female patients (p =

0.002 Figure 4E). The risk score did not differ significantly

between the different age groups (Figure 4F).

Risk score as an independent NSCLC
prognostic factor

Univariate Cox regression analysis showed that the age

(hazard ratio [HR] = 1.014; p = 0.025), UICC stage (HR =

1.475; p < 0.001), and allocated risk score (HR = 1.427; p < 0.001)

were correlated with prognosis in TCGA cohort (Figure 5A).

This was confirmed using multivariate Cox regression analysis

(for age: HR = 1.017; p = 0.006; for UICC stage: HR = 1.453; p <
0.001; for risk score: HR = 1.395; p < 0.001) (Figure 5B). Similar

FIGURE 3
Validation of gene signature. (A) Kaplan–Meier survival analysis and (B) ROC curve analysis in GSE31210. Kaplan–Meier survival analysis in (C)
GSE26939 and (D) GSE68465, respectively. ROC, receiver operating characteristic. AUC, an area under the ROC curve.
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results were obtained in GSE31210 when testing was done using

univariate Cox regression analysis (for UICC stage: HR = 4.106;

p < 0.001; for risk score: HR = 1.011; p = 0.001) (Figure 5C) and

multivariate Cox regression analysis (for UICC stage: HR =

3.301; p < 0.001; for risk score: HR = 1.009; p = 0.014)

(Figure 5D). Thus, risk score can independently predict the

prognosis of NSCLC.

Nomogram prediction model

A nomogram prediction model was generated using

independent prognostic factors, including age, UICC stage,

and risk score in patients with NSCLC, and the estimated

survival probabilities after 1-, 3-, and 5-years were calculated

by plotting a vertical line between the total point axis and each

prognostic axis (Figure 5E). Calibration plots of the

nomogram showed high agreement between the

nomogram-predicted and the actual OS at the end of 1-, 3-,

and 5-year periods (Figure 5F).

Results of GSEA

The results of GSEA showed that DNA replication, cell cycle,

and ECM receptor interaction were the main pathways enriched

in the high-risk group (Figure 6A); drugmetabolism, cytochrome

P450, ether lipid metabolism, and intestinal immune network for

IgA production were the main pathways enriched in the low-risk

group (Figure 6B).

Results of DNA methylation and mutation

A total of 753 overlapping patients with NSCLC were

identified between the patients with DNA methylation data

and the patients with complete follow-up data, among whom

386 patients were in the low-risk group and 367 patients were

in the high-risk group. Methylation data of SCN1A and

KLK6 are missing and zero, respectively, and thus are

excluded. The overall trend of methylation levels of

10 prognostic genes in the high-risk group was lower than

that in the low-risk group (Figures 7A–J). The mutation

analysis revealed that TP53, MUC16, TTN, and RYR2 were

the most frequently mutated genes in both two risk groups of

both LUAD (Figures 8A and B) and LUSC (Figures 8C and D).

The high-risk group had a higher TMB compared with the

low-risk group in NSCLC (p = 0.002, Figure 8E) and a positive

correlation existed between risk score and TMB (r = 0.13, p <
0.001, Figure 8F). Kaplan–Meier survival curve showed that

the patients with the high-risk score and high TMB had a

worse OS than those with the low-risk score and low TMB (p <
0.001; Figure 8G), and the AUC values for OS at 1-, 3-, 5-year

periods were 0.739, 0.654, and 0.673, respectively (Figure 8H).

FIGURE 4
Graphs showing the correlation of risk score with clinical characteristics. (A)UICC stages. (B) T stages. (C)N stages. (D)M stages. (E) genders. (F)
ages. UICC, Union for International Cancer Control. ns, no significance. *p < 0.05; **p < 0.01; ***p < 0.001.
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Results of immune infiltration

The immune-infiltration profiles between the two risk

groups were significantly different and displayed in the

violin plot (Figure 9A). The correlation analysis showed

that risk score was positively correlated with resting NK

cells, activated memory CD4+ T cells, M0 macrophages, and

activated mast cells, and negatively correlated with resting

memory CD4+ T cells, naive and memory B cells, resting

dendritic cells, resting mast cells, and monocytes (p < 0.05;

Figures 9B–K).

The risk score correlated with
chemotherapy sensitivity

The results of chemotherapy sensitivity analysis indicated

that the high-risk group exhibited lower IC50 values for

FIGURE 5
Identification of independent prognostic factors and construction of nomogram. Validation of the risk score as an independent prognostic
factor using the univariate Cox analysis in (A) TCGA cohorts and (C) GSE31210 cohorts, and multivariate Cox analysis in (B) TCGA cohorts and (D)
GSE31210 cohorts (E) Nomogram to predict OS at the end of 1-, 3-, and 5-year periods (F) Calibration plots of the nomogram. TCGA, The Cancer
Genome Atlas; OS, overall survival. **p < 0.01; ***p < 0.001.
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bortezomib, dasatinib, docetaxel, midostaurin, paclitaxel,

parthenolide, pazopanib, shikonin, and thapsigargin compared

with the low-risk group (p < 0.001, Figures 10A–I).

The Results of real-time PCR

The levels of CYP24A1 (p < 0.001), CDC25C (p < 0.001),

CHEK2 (p < 0.001), KLK6 (p = 0.044), S100P (p < 0.001),

COL1A1 (p < 0.001), GPR37 (p < 0.001), and SLC7A5 (p <
0.001) mRNA expression were higher in cancerous tissues of

patients with NSCLC than in corresponding controls (Figures

11A–H); whereas the levels of SCN1A (p < 0.001), CAV1 (p <

0.001), and GRIA1 (p < 0.001) mRNA expression in cancerous

tissues of patients with NSCLC were lower than those in control

tissues (Figures 11I–K). The increased SPP1 mRNA levels in

NSCLC were validated in previous research (Miao et al., 2021)

(Figure 11L).

Discussion

In the present study, a prognostic signature was successfully

established using genes involved in redox homeostasis.

Kaplan–Meier survival curve and ROC curve analysis

validated the predictive accuracy of the signature.

FIGURE 6
The primary Kyoto Encyclopedia of Genes and Genomes pathways enriched in the (A) high-risk group and (B) low-risk group.

FIGURE 7
The methylation levels of prognostic genes in the two risk groups (A) CAV1, (B) CDC25C, (C) CHEK2, (D) COL1A1, (E) CYP24A1, (F) GPR37, (G)
GRIA1, (H) S100P, (I) SPP1, and (J) SLC7A5.
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Furthermore, the constructed nomogram accurately predicted

the OS of patients, and there was high conformity between the

predicted and actual OS. The risk score is an independent

prognostic factor for NSCLC and is correlated with tumor

progression, immune infiltration, DNA methylation, TMB,

and chemotherapy sensitivity.

The mechanism(s) of action of genes associated with redox

homeostasis in the progression and prognosis of NSCLC remains

unclear. CDC25C mRNA expression is increased in LUAD and

associated with poor prognosis (Xia et al., 2019). KLK6 mRNA

expression is enhanced in patients with lung cancer (Ju et al.,

2020) and is an indicator of tumor proliferation and poor OS

(Nathalie et al., 2009; Michel et al., 2014). The overexpression of

the SPP1 was associated with the growth and stage of lung cancer,

and lymph node metastasis (Shijubo et al., 1999; Schneider et al.,

2004; Boldrini et al., 2005; Donati et al., 2005; Hu et al., 2005).

CAV1 is downregulated in lung cancer and thus acts as a tumor

suppressor gene (Bélanger et al., 2004; Zhan et al., 2012).

CYP24A1 overexpression is associated with accelerated cell

growth and invasion (Shiratsuchi et al., 2017) and worse

survival in LUAD (Chen et al., 2011), and its polymorphisms

are associated with susceptibility to lung cancer (Qu et al., 2019;

Xiong et al., 2020). The levels of S100P mRNA and protein

expression are higher in lung cancer, and upregulated S100P

increases cancer cell migration and metastasis (Hsu et al., 2015).

The levels of SLC7A5 mRNA and protein expression are

increased in NSCLC and are correlated with grade, pathologic

stage, and OS (Takeuchi et al., 2010; Liu et al., 2021). The levels of

COL1A1 mRNA expression in lung cancer are increased and are

significantly correlated with tumor diameter, metastasis, and OS

(Geng et al., 2021; Hou et al., 2021). Our real-time PCR validated

dysregulated CDC25C, KLK6, SPP1, CAV1, CYP24A1, S100P,

SLC7A5, and COL1A1 expression in NSCLC. Additionally,

GPR37 expression is lower in cancer and is a prognostic

indicator (Liu et al., 2014). Elevated GRIA1 mRNA levels are

significantly associated with worse OS in patients with basal-like

urothelial carcinomas (Tilley et al., 2017). CHEK2 is identified as

a susceptibility gene for pheochromocytomas and

paragangliomas (Gao et al., 2021), and CHEK2 mutations are

associated with the survival of patients with stage T1 bladder

cancer (Złowocka-Perłowska et al., 2021). SCN1A has not been

reported to be involved in cancer origin and progression. The

upregulated levels of GPR37 and CHEK2 expressions and

reduced levels of GRIA1 and SCN1A expressions in NSCLC

were firstly reported in this study. However, the exact molecular

mechanisms remain unknown, and further investigations are

needed to elucidate the possible mechanisms.

Previous studies have reported the successful construction of

the redox-related prognostic signature in clear cell renal cell

carcinoma (Wu et al., 2021b), and hepatocellular carcinoma (Tu

et al., 2021). However, both of them are only based on

bioinformatics analysis and thus, lack reliable experimental

FIGURE 8
The tumor mutation analysis. Comparison of gene mutation frequencies in the high-risk group of (A) LUAD and (C) LUSC. Comparison of
mutation frequencies in the low-risk group (B) LUAD and (D) LUSC (E) Boxplot illustrated that the TMB value was significantly higher in the high-risk
group in NSCLC (F) Scatter plot of correlations between the TMB value and the risk score in NSCLC (G) Kaplan–Meier survival curve between the
high-risk score + high TMB group and the low-risk score + low TMB group (H) ROC curve analysis. LUAD, lung adenocarcinoma. LUSC, lung
squamous cell carcinoma; NSCLC, Non-small cell lung cancer; TMB, tumor mutation burden; ROC, receiver operating characteristic. AUC, an area
under the ROC curve. ***p < 0.001.
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verification. Additionally, a redox-related gene signature has

been established in LUAD (Xiao et al., 2022b), which is only

suitable for a subset of patients with NSCLC and also lacks

reliable experimental verification. In the present study, the redox-

related gene signature was first constructed in all the patients

with NSCLC, and Kaplan–Meier survival curve showed that the

high-risk group had a worse OS than the low-risk group, which

was different from and cannot be replaced by the previously

constructed signature using hypoxia-related gene (Chen et al.,

2022), pyroptosis-related gene (Zhang and Yan, 2021; Li et al.,

2022), autophagy-related gene (Wu et al., 2021a), and

inflammatory response-related gene (Zou et al., 2021) because

it could be meaningful in exploring the value of the redox-related

gene in initiation, progression, prognosis, and therapy of NSCLC.

The previous prognostic signatures in other cancers showed

better diagnostic performance, with an AUC value of more

FIGURE 9
The correlation of risk score with immune infiltration (A) The different immune-infiltration profiles between the two risk groups. A positive
correlation with the risk score was seen for (B) resting NK cells, (C) activated memory CD4+ T cells, (D)M0macrophages, and (E) activated mast cells.
Whereas (F) resting memory CD4+ T cells, (G) naïve B cells, (H) memory B cells, (I) resting dendritic cells, (J) resting mast cells, and (K) monocytes
were negatively correlated with the risk score. *p < 0.05; **p < 0.01; ***p < 0.001.
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than 0.8 (Qian et al., 2022; Zhang et al., 2022). However, in the

current study, the AUC value for OS at the 5 year periods was

0.657 in TCGA and 0.717 in GSE31210. Various researches

showed that the AUC values of many signatures for lung

cancer or NSCLC were more than 0.75 (Wu et al., 2021a; Li

et al., 2021b; Ouyang et al., 2021; Qu et al., 2021; Zhang and Yan,

2021; Zou et al., 2021; Wang et al., 2022b; Chen et al., 2022; Li

et al., 2022; Yang et al., 2022). Thus, the prognostic biomarkers or

signatures with a higher AUC value need to be explored in the

future. Moreover, the 12 genes in prognostic signature were

validated using real-time PCR in NSCLC; thus its reliability is

higher than the above-mentioned redox-related gene signature

for clear cell renal cell carcinoma (Wu et al., 2021b),

hepatocellular carcinoma (Tu et al., 2021), LUAD (Xiao et al.,

2022b), and hypoxia-related gene signature (Chen et al., 2022),

pyroptosis-related gene signature (Zhang and Yan, 2021; Li et al.,

2022), autophagy-related gene signature (Wu et al., 2021a), and

inflammatory response-related signature (Zou et al., 2021) for

NSCLC. Moreover, the risk score positively correlated with the

progression of NSCLC and was an independent prognostic factor

for NSCLC adjusted for age and UICC stage. Importantly, the

signature was successfully validated using multiple GEO datasets.

Therefore, our prognostic signature can successfully predict

prognosis and is not restricted by different groups of patients,

sequence platforms, and technologies. These were consistent

with the successfully established signatures for NSCLC (Ye

et al., 2021; Yang et al., 2022). Finally, a nomogram prediction

model was constructed using the risk score, age, and UICC stage

to precisely predict OS rate after 1-, 3-, and 5-year periods, and

calibration plots of the nomogram showed high agreement

between the nomogram-predicted and the actual OS.

The mechanisms of different prognoses of two risk groups

were explored using GSEA, and findings showed that DNA

replication and cell cycle were the main pathways in the high-

risk group. The cell cycle has a vital role in lung cancer

pathogenesis and progression (Caputi et al., 2005), and DNA

damage-response or DNA-repair genes with germline

aberrations induce cancerous tendencies (Brown et al., 2017).

FIGURE 10
The IC50 of chemotherapy drugs including (A) bortezomib, (B) dasatinib, (C) docetaxel, (D) midostaurin, (E) paclitaxel, (F) parthenolide, (G)
pazopanib, (H) shikonin, and (I) thapsigargin. IC50, half inhibitory concentration. ***p < 0.001.
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Thus, the worse OS in the high-risk group may be correlated with

DNA replication and cell cycle. Additionally, DNA methylation

alteration could result in cancer development and progression

(Kinnaird et al., 2016). Hypomethylation of the promoter is

correlated with the overexpression of oncogenes and other genes

associated with tumor invasion or metastasis (Ehrlich, 2009).

Our results showed that methylation levels of 10 prognostic genes

were lower in the high-risk group. Moreover, dysregulated TMB

has also been reported to be involved in the prognosis of cancers

(Handy and Loscalzo, 2012), and could predict immunotherapy

response (Chalmers et al., 2017). The high TMB is correlated

with poor prognosis in LUAD (Zhao et al., 2021b). The high-risk

group has an increased TMB compared with the low-risk group

in the present study, and Kaplan–Meier survival curve showed

that the patients with the high-risk score and high TMB had a

worse OS than those with the low-risk score and low TMB. Thus,

DNA methylation and mutation play a critical role in the

progression and prognosis of NSCLC.

In recent years, immunotherapy has become an important

therapeutic method for multiple tumor types (Alemohammad

et al., 2021; Cai et al., 2021); thus, a possible correlation between

the risk score and immune infiltration was assessed. The results

showed that a high-risk score was positively correlated with

macrophages, activated memory CD4+ T cells, activated mast

cells, and resting NK cells. Tumor-associated macrophages

(TAMs) are significantly correlated with angiogenesis,

progression (Hwang et al., 2020), and a poor prognosis

(Montuenga and Pio, 2007; Li et al., 2020b) in NSCLC. A

high percentage of CD4+ T cells in the tumor stroma is

associated with a poor prognosis in lung cancer

(Giatromanolaki et al., 2021). The mast cells were activated in

lung cancer by cancer-derived extracellular vesicles (Salamon

et al., 2020), and activated mast cells accelerated cancer cell

proliferation and migration (Xiao et al., 2014; Xiao et al., 2019).

Thus, our results indicated that the high-risk group has a worse

OS via increased immune infiltration.

Considering that chemotherapy is still an important

therapeutic method for advanced lung cancer, a possible

association between the risk score and chemotherapy was also

studied. The results showed that the high-risk group had a lower

IC50 value for nine chemotherapy drugs, suggesting that the

high-risk group may respond better to chemotherapy. Thus, our

prognostic signature can be useful for guiding treatment

strategies for patients diagnosed with NSCLC.

FIGURE 11
Real-time PCR validation. The levels of (A)CYP24A1, (B)CDC25C, (C)CHEK2, (D) KLK6, (E) S100P, (F)COL1A1, (G)GPR37, (H) SLC7A5, (I) SCN1A,
(J)CAV1, (K)GRIA1, and (L) SPP1mRNA expression in NSCLC. Data are presented asmedian (interquartile range). NSCLC, non-small cell lung cancer,
PCR, polymerase chain reaction. *p < 0.05; **p < 0.01; ***p < 0.001.
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However, it is worth noting that the results obtained in this

study were based on bioinformatic analyses of the public database,

which needs to be validated in a clinical prospective, multicenter

study. Furthermore, studies are required to validate molecular

mechanisms between two risk groups in NSCLC. Moreover, the

previous studies showed that the prognostic signature could be

used to guide immunotherapy choices (Cao et al., 2022). However,

there was not a significant correlation between the risk scores and

levels of immune checkpoint inhibitors expression. Despite these

limitations, our study has established a promising signature for

predicting patient prognosis. The signature was validated using

GSE31210, GSE68465, and GSE26939 datasets. Secondly, the

12 prognostic genes were validated using real-time PCR in

lung tissue samples. Lastly, the risk score was shown to be

correlated with immune infiltration and chemotherapy

response; thus, it could be applied to guide treatment modules

in the clinical setting.

Conclusion

A redox-related gene signature was established using LASSO

regression analysis and was represented as a risk score. The high-

risk score in this signature was significantly correlated with worse

OS and the risk score was an independent prognostic factor for

NSCLC. Moreover, the risk score was correlated with tumor

progression, DNA methylation, TMB, immune infiltration, and

sensitivity to chemotherapy.
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