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Abstract

Predicting protein subcellular localization is an important and difficult problem, particularly when query proteins may have
the multiplex character, i.e., simultaneously exist at, or move between, two or more different subcellular location sites. Most
of the existing protein subcellular location predictor can only be used to deal with the single-location or ‘‘singleplex’’
proteins. Actually, multiple-location or ‘‘multiplex’’ proteins should not be ignored because they usually posses some
unique biological functions worthy of our special notice. By introducing the ‘‘multi-labeled learning’’ and ‘‘accumulation-
layer scale’’, a new predictor, called iLoc-Euk, has been developed that can be used to deal with the systems containing
both singleplex and multiplex proteins. As a demonstration, the jackknife cross-validation was performed with iLoc-Euk on
a benchmark dataset of eukaryotic proteins classified into the following 22 location sites: (1) acrosome, (2) cell membrane,
(3) cell wall, (4) centriole, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10)
endosome, (11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome
(17) mitochondrion, (18) nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22) vacuole, where none of
proteins included has §25% pairwise sequence identity to any other in a same subset. The overall success rate thus
obtained by iLoc-Euk was 79%, which is significantly higher than that by any of the existing predictors that also have the
capacity to deal with such a complicated and stringent system. As a user-friendly web-server, iLoc-Euk is freely accessible to
the public at the web-site http://icpr.jci.edu.cn/bioinfo/iLoc-Euk. It is anticipated that iLoc-Euk may become a useful
bioinformatics tool for Molecular Cell Biology, Proteomics, System Biology, and Drug Development Also, its novel approach
will further stimulate the development of predicting other protein attributes.
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Introduction

Knowledge of the subcellular location of proteins is important as

can be viewed from the following four aspects. (1) It can provide

useful insights or clues about their functions; particularly, one of

the fundamental goals in cell biology and proteomics is to identify

the functions of proteins in the context of compartments that

organize them in the cellular environment. (2) It can indicate how

and in what kind of cellular environments the proteins interact

with each other and with other molecules; this is especially

important for the in-depth study of protein-protein interaction

(PPI), one of the currently hot topics in proteomics. (3) It can help

our understanding of the intricate pathways that regulate

biological processes at the cellular level [1,2] and hence it is

indispensable for many studies in system biology. (4) It is very

useful for identifying and prioritizing drug targets [3] during the

process of drug development.

Although the knowledge of protein subcellular localization can

be acquired by conducting various biochemical experiments, it is

both time-consuming and costly by relying on doing experiments

alone. Particularly, recent advances in large-scale genome

sequencing have generated a huge number of protein sequences.

For example, in 1986 the Swiss-Prot [4] database contained only

3,939 protein sequence entries, but now the number has jumped

to 521,016 according to the release 2010_10 on 05-Oct-2010 by

the UniProtKB/Swiss-Prot at http://www.expasy.org/sprot/

relnotes/relstat.html; meaning that the number of protein

sequence entries now is more than 132 times the number from

about 24 years ago.

Facing the avalanche of protein sequences generated in the

post-genomic age, it is highly desired to develop computational

methods for timely and effectively identifying various biological

features for newly found proteins [5,6,7,8], particularly to develop

user-friendly web-servers in this regard [9,10]. In this study, we are

to focus on the topic of protein subcellular localization.

Actually, the problem of predicting protein subcellular locali-

zation is somewhat reminiscent of the efforts by many previous

investigators because during the past 19 years or so, a series of

methods have been developed on this topic (see, e.g.,

[11,12,13,14,15,16,17,18,19,20,21,22,23,24] as well as a long list
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of references cited in two comprehensive review articles [25,26]).

These methods each had their own advantages and indeed played

a role in stimulating the development of this area although they

also each had their own limitations.

The development of protein subcellular localization has

generally followed two trends. One is to extract more useful

information from protein sequences via different approaches or

models, such as from the model of targeting or leader sequences

[11], to the amino acid composition [13,27], to the amino acid

pair composition [28], to the various modes [21,29,30,31,

32,33,34,35,36] of pseudo amino acid composition [37], and to

the higher-level forms of pseudo amino acid composition by

incorporating the functional domain information [38], gene

ontology information [39], and sequential evolution information

[40]. The other trend is to enhance the power of practical

application by enlarging the coverage scope, such as from covering

only 2 subcellular location sites [12], to 5 location sites [13], to 12

location sites [14,28], and to 22 location sites [40].

Most of these existing methods were established based on the

assumption that a protein resides at one, and only one,

subcellular location (see, e.g., [13,15,28,41,42,43,44]). Such an

assumption is valid only for the single-location or ‘‘singleplex’’

proteins but not for multiple-location or ‘‘multiplex’’ proteins

that may simultaneously reside at, or move between, two or

more different subcellular locations. Proteins with multiple

location sites or dynamic feature of this kind are particularly

interesting because they may have some unique biological

functions worthy of our special notice [2,3]. Particularly, as

pointed out by Millar et al. [45], recent evidences have

indicated that an increasing number of proteins have multiple

locations in the cell.

Recently, a powerful predictor, called Euk-mPLoc 2.0 [40]

was developed that can be used to predict the subcellular

localization of eukaryotic proteins among their 22 location sites

in which some of the proteins may belong to two and more

subcellular locations. However, Euk-mPLoc 2.0 has the

following shortcomings. (1) Only the integer numbers 0 and 1

were used to reflect the GO (gene ontology) [46,47] information in

formulating protein samples; this might cause some information

lost and limit the prediction quality. (2) It was through an optimal

threshold factor h� to control the prediction of multiple locations

(see Eq.48 of [26]); it would be more natural if we could find a

more intuitive approach to deal with such a problem. (3) Although

a web-server for Euk-mPLoc has been established at http://

www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/, only one query pro-

tein sequence at a time is allowed when using the web-server to

conduct prediction; for the convenience of users in handling many

query protein sequences, such a rigid limit should be improved.

The present study was initiated in an attempt to develop a new

and more powerful predictor by addressing the above three

problems.

Methods

Given a query protein sequence P as formulated by

P~R1R2R3R4R5R6R7 � � �RL ð1Þ

where R1 represents the 1st residue of the protein P, R2the 2nd

residue, …, RL the L-th residue, and they each belong to one of

the 20 native amino acids. How can we use its sequence

information to predict which subcellular location(s) the protein P
belongs to? The most straightforward method to address this

problem is to use the sequence-similarity-search-based tools, such

as BLAST [48,49], to search protein database for those proteins

with high sequence similarity to the query proteinP. Subsequently,

the subcellular location annotations of the proteins thus found are

used to deduce the subcellular location(s) of P. Unfortunately, this

kind of straightforward and intuitive approach failed to work when

the query protein P did not have significant sequence similarity to

any location-known proteins.

Thus, various non-sequential or discrete models to represent

protein samples were proposed in hopes to establish some sort of

correlation or cluster manner through which the prediction could

be more effectively carried out.

The simplest discrete model used to represent a protein sample

is its amino acid (AA) composition or AAC [50]. According to the

AAC-discrete model, the protein P of Eq.1 can be formulated by

[51]

P~ f1 f2 � � � f20½ �T ð2Þ

where fi(i~1,2, � � � ,20) are the normalized occurrence frequen-

cies of the 20 native amino acids in protein P, and T the

transposing operator. Many methods for predicting protein

subcellular localization were based on the AAC-discrete model

(see, e.g., [12,13,14,27]). However, as we can see from Eq.2, if

using the ACC model to represent the protein P, all its sequence-

order effects would be lost, and hence the prediction quality might

be limited.

To avoid completely lose the sequence-order information, the

pseudo amino acid composition (PseAAC) was proposed to

represent the sample of a protein, as formulated by [37]

P~ p1 p2 � � � p20 p20z1 � � � p20zl½ �T ð3Þ

where the first 20 elements are associated with the 20 amino acid

components of the protein, while the additional l factors are used

to incorporate some sequence-order information via a series of

rank-different correlation factors along a protein chain.

Actually, the PseAAC for a protein P can be generally

formulated as

P~ y1 y1 � � � yu � � � yV½ �T ð4Þ

where the subscript V is an integer, and its value as well as the

components y1, y2, … will depend on how to extract the desired

information from the amino acid sequence of P (cf. Eq.1). The

form of Eq.4 can cover the PseAAC as originally formulated in

[37]; ie, when

yu~

fuP20

i~1

fizw
Pl
j~1

hj

, (1ƒuƒ20)

whu{20P20

i~1

fizw
Pl
j~1

hj

, (20z1ƒuƒ20zl~V; lvL)

8>>>>>>>><
>>>>>>>>:

ð5Þ

we immediately obtain the formulation of PseAAC as originally

given in [37], where the meanings for w, hj , and l were clearly

elaborated and hence there is no need to repeat here.

To develop a powerful method for statistically predicting

protein subcellular localization, one of the most important things

is to find a formulation to reflect the core and essential features of
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protein samples that are closely correlated with their subcellular

localization. However, this is by no means an easy thing to do

because this kind of features is usually deeply hidden or ‘‘buried’’

in piles of complicated sequences. To deal with this problem, let us

consider the following approaches via the general form of PseAAC

(Eq.4).

1. GO (Gene Ontology) Formulation
GO database [46] was established according to the molecular

function, biological process, and cellular component. Accordingly,

protein samples defined in a GO database space would be

clustered in a way better reflecting their subcellular locations

[26,52]. However, in order to incorporate more information,

instead of only using 0 and 1 elements as done in [40], here let us

use a different approach as described below.

Step 1. Compression and reorganization of the existing GO

numbers. The GO database (version 740 released 30 July 2009)

contains many GO numbers. However, these numbers do not increase

successively and orderly. For easier handling, some reorganization and

compression procedure was taken to renumber them. For example,

after such a procedure, the original GO numbers GO:0000001,

GO:0000002, GO:0000003, GO:0000009, GO:00000011, GO:000

0012, GO:0000015, …, GO:0090204 would become GO_compress:

0000001, GO_compress: 0000002, GO_compress: 0000003, GO_

compress: 0000004, GO_compress: 0000005, GO_compress: 0000

006, GO_compress: 0000007, ……, GO_compress: 0011118,

respectively. The GO database obtained thru such a treatment is

called GO_compress database, which contains 11,118 numbers

increasing successively from 1 to the last one.

Step 2. Using Eq.4 with V~11,118, the protein P can be

formulated as

PGO~ yG
1 yG

2 � � � yG
u � � � yG

11118

� �T ð6Þ

where yG
u (u~1,2, � � � ,11118)are defined via the following steps.

Step 3. Use BLAST [53] to search the homologous proteins

of the protein P from the Swiss-Prot database (version 55.3), with

the expect valueEƒ0:001 for the BLAST parameter.

Step 4. Those proteins which have §60% pairwise sequence

identity with the protein P are collected into a set, SP-homo, called

the ‘‘homology set’’ of P. All the elements in SP-homo can be

deemed as the ‘‘representative proteins’’ of P, sharing some similar

attributes such as structural conformations and biological functions

[54,55,56]. Because they were retrieved from the Swiss-Prot

database, these representative proteins must each have their own

accession numbers.

Step 5. Search the GO database at http://www.ebi.ac.uk/

GOA/ to find the corresponding GO number(s) [57] for each of

the accession numbers collected in Step 4, followed by converting

the GO numbers thus obtained to their GO_compress numbers

as described in Step 1. (Note that the relationships between the

UniProtKB/Swiss-Port protein entries and the GO numbers may

be one-to-many, ‘‘reflecting the biological reality that a particular

protein may function in several processes, contain domains that

carry out diverse molecular functions, and participate in multiple

alternative interactions with other proteins, organelles or

locations in the cell’’ [46]. For example, the Uni-ProtKB/

Swiss-Prot protein entry ‘‘P01040’’ corresponds to three GO

numbers, i.e., ‘‘GO:0004866’’, ‘‘GO:0004869’’, and

‘‘GO:0005622’’).

Step 6. Thus, the elements in Eq.6 is given by

yG
u ~

PN(rep)
k~1 g(u,k)

N(rep)
(u~1,2, � � � ,11118) ð7Þ

where N(rep) is the number of representative proteins in S
P-homo

,

and

g(u,k)~

1, if the k-th representative protein hits

the u-th GO compress number

0, otherwise

8<
: ð8Þ

As we can see from Eq.7, the GO formulation derived from the

above steps consists of 11,118 real numbers rather than only the

elements 0 and 1 as in the GO formulation adopted in [40].

Note that the GO formulation of Eq.6 may become a naught

vector or meaningless under any of the following situations: (1) the

protein P does not have significant homology to any protein in the

Swiss-Prot database, i.e., SP-homo~1 meaning the homology set

SP-homois an empty one; (2)its representative proteins do not

contain any useful GO information for statistical prediction based

on a given training dataset.

Under such a circumstance, let us consider using the sequential

evolution formulation to represent the protein P, as described

below.

2. SeqEvo (Sequential Evolution) Formulation
Biology is a natural science with historic dimension. All

biological species have developed continuously starting out from

a very limited number of ancestral species. It is true for protein

sequence as well [56]. Their evolution involves changes of single

residues, insertions and deletions of several residues [58], gene

doubling, and gene fusion. With these changes accumulated for a

long period of time, many similarities between initial and resultant

amino acid sequences are gradually eliminated, but the corre-

sponding proteins may still share many common attributes, such as

having basically the same biological function and residing in a

same subcellular location.

To incorporate the sequential evolution information into the

PseAAC of Eq.4, here let us use the information of the PSSM

(Position-Specific Scoring Matrix) [53], as described below.

Step 1. According to [53], the sequential evolution

information of protein P can be expressed by a 20|L matrix as

given by

PSSM~

E0
1?1 E0

2?1 � � � E0
L?1

E0
1?2 E0

2?2 � � � E0
L?2

..

. ..
. ..

. ..
.

E0
1?20 E0

2?20 � � � E0
L?20

2
666664

3
777775 ð9Þ

where L is the length of P (counted in the total number of its

constituent amino acids as shown in Eq.1), E0
i?jrepresents the

score of the amino acid residue in the i-th position of the protein

sequence being changed to amino acid type j during the

evolutionary process. Here, the numerical codes 1, 2, …, 20 are

used to denote the 20 native amino acid types according to the

alphabetical order of their single character codes. The 20|L

scores in Eq.9 were generated by using PSI-BLAST [53] to search

the UniProtKB/Swiss-Prot database (Release 2010_04 of 23-Mar-
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2010) through three iterations with 0001 as the E-value cutoff for

multiple sequence alignment against the sequence of the protein P.

Step 2. Use the elements inPSSMof Eq.9 to define a new

matrix M as formulated by

M~

E1?1 E2?1 � � � EL?1

E1?2 E2?2 � � � EL?2

..

. ..
. ..

. ..
.

E1?20 E2?20 � � � EL?20

2
66664

3
77775 ð10Þ

with

Ei?j~
E0

i?j{
�EE0

j

SD �EE0
j

� � (i~1,2, � � � ,L; j~1,2, � � � ,20) ð11Þ

where

�EE0
j ~

1

L

XL

i~1

E0
i?j(j~1,2, � � � ,20) ð12Þ

is the mean for E0
i?j(i~1,2, � � � ,L) and

SD �EE0
j

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

i~1
E0

i?j{
�EE0

j

h i2
�

L

s
ð13Þ

is the corresponding standard deviation.

Step 3. Introduce a new matrix generated by multiplying M
with its transpose matrix MT; i.e.,

MMT~

PL
i~1 Ei?1Ei?1

PL
i~1 Ei?1Ei?2 � � �

PL
i~1 Ei?1Ei?20PL

i~1 Ei?2Ei?1

PL
i~1 Ei?2Ei?2 � � �

PL
i~1 Ei?2Ei?20

..

. ..
. ..

. ..
.

PL
i~1 Ei?20Ei?1

PL
i~1 Ei?20Ei?2 � � �

PL
i~1 Ei?20Ei?20

2
666664

3
777775ð14Þ

which contains 20|20~400 elements. Since MMT is a

symmetric matrix, we only need the information of its 210

elements, of which 20 are the diagonal elements and

(400{20)=2~190 are the lower triangular elements, to

formulate the protein P; i.e., the general PseAAC form of Eq.4
can now be formulated as

PEvo~ yE
1 yE

2 � � � yE
u � � � yE

210

� �T ð15Þ

where the components yE
u (u~1,2, � � � ,210) are respectively taken

from the 210 diagonal and lower triangular elements of Eq.14 by

following a given order, say from left to right and from the 1st row

to the last as illustrated by following equation

(1)

(2) (3)

(4) (5) (6)

..

. ..
. ..

.
P

(191) (192) (193) � � � (210)

2
66666664

3
77777775

ð16Þ

where the numbers in parentheses indicate the order of elements

taken from Eq.14 for Eq.15.

3. The Self-consistency Formulation Principle
Regardless of using which formulation to represent protein

samples, the following self-consistency principle must be observed

during the course of prediction: if the query protein P was defined

in the form of PGO (see Eq.6), then all the protein samples used to

train the prediction engine should also be expressed in the GO

formulation; if the query protein was defined in the form of PEvo

(see Eq.15), then all the training data should be expressed in the

SeqEvo formulation as well.

Below, let us consider the algorithm or operation engine for

conducting the prediction.

4. Multi-Label KNN (K-Nearest Neighbor) Classifier
In this study, let us introduce a novel classifier, called the multi-

label KNN or abbreviated as ML-KNN classifier, to predict the

subcellular localization for the systems that contain both single-

location and multiple-location proteins.

Without losing generality, let us consider a system or dataset S

that contains N eukaryotic proteins classified into M~22
subcellular location sites (Fig. 1); i.e.,

S~S1|S2|S3|S4|S5|S6| � � �|S22ð17Þ

where S1 represents the subset for the subcellular location of

‘‘acrosome’’, S2 for ‘‘cell membrane’’, S3 for ‘‘cell wall’’, and so

forth (cf Table 1); while | represents the symbol for ‘‘union’’ in

the set theory. For convenience, hereafter let us just use the

subscripts of Eq.17 as the codes of the 22 location sites; i.e., ‘‘1’’

for ‘‘acrosome’’, ‘‘2’’ for ‘‘cell membrane’’, ‘‘3’’ for ‘‘cell wall’’, and

so forth (Table 2).

Suppose P(m,j) is thej-thprotein in the m-thsubset Sm of S

(Eq.17). Thus, we have

P(m,j)~
PGO(m,j), in GO space

PEvo(m,j), in SeqEvo space

�
(m~1,2, � � � ,22; j~1,2, � � � ,Nm) ð18Þ

where PGO(m,j) and PEvo(m,j) have the same forms as PGO(Eq.6), and

PEvo(Eq.15), respectively; the only difference is that the

corresponding constituent elements are derived from the amino

acid sequence of P(m,j) instead of P.

In sequence analysis, there are many different scales to define

the distance between two proteins, such as Euclidean distance,

Hamming distance [59], and Mahalanobis distance [51,60,61]. In

[40], the distance between P(m,j) and P was defined by

1{ cos{1 P,P(m,j)½ �. However, we found that when the GO

descriptor was formulated with real numbers, better results would

be obtained by using the Euclidean metric; i.e., the distance

between P and P(m,j) is defined here by

D P,P(m,j)f g~ P{P(m,j)k k ð19Þ

where P{P(m,j)k k represents the module of the vector difference

between P and P(m,j) in the Euclidean space. According to

Eq.19, when P:P(m,j) we have D P,P(m,j)f g~0, indicating the

distance between these two protein sequences is zero and hence

they have perfect or 100% similarity.

Suppose P�1,P�2, � � � ,P�K are the K nearest neighbor proteins to

the protein P that forms a set denoted bySP
K , which is a subset of

S; i.e.,SP
K(S Based on the K nearest neighbor proteins in SP

K , let

us define an accumulation-layer (AL) scale, given by

(14)

(19)

(18)

Predict Eukaryotic Protein Subcellular Locations

PLoS ONE | www.plosone.org 4 March 2011 | Volume 6 | Issue 3 | e18258



Q(P,K)~ rK
1 rK

2 � � � rK
m � � � rK

M

	 

ð20Þ

where

rm~

PK
i~1 d(P�i ,m)

N�(K)
(m~1,2, � � � ,M) ð21Þ

where

d(P�i ,m)~
1, if P�i belongs to the m-th location

0, otherwise

�
ð22Þ

and

N�(K)~
XM

m~1

XK

i~1
d(P�i ,m) ð23Þ

Note that N�(K)§K because a protein may belong to one or

more subcellular location sites in the current system.

Now, for a query protein P, its subcellular location(s) will be

predicted according to the following steps.

Step 1. The number of how many different subcellular

locations it belongs to will be determined by its nearest neighbor

protein in S: For example, suppose P� is the nearest protein to P
in S. If P� has only one subcellular location, then P will also have

only one location; if P� has two subcellular locations, then P will

also have two locations; and so forth. In general, if P� belongs to

M different location sites, then P will be predicted to have the

same number, M, of subcellular locations as well, as can be

formulated by

M~Num P�[L
	 


~Num P[Lf g ð24Þ

where M is an integer (ƒM~22), Num P�[L
	 


represents the

number of different subcellular locations to which P� belongs, and

so forth.

Step 2. However, the concrete location site(s) to which P
belongs will not be the same as P� does, but determined by the

element(s) in Eq.20 that has (have) the highest score(s), as can be

expressed by ‘f g, the subscript(s) of Eq.17. For example, if P is

found belonging to only one location (M~1) in Step 1, and the

highest score in Eq.20 is rK
2 , then P will be predicted as ‘f g~2

meaning that it belongs to S2 or resides at ‘‘cell membrane’’

(cf. Table 1). If P is found belonging to three locations (M~3) in

Step 1, and the first three highest scores in Eq.20 are rK
1 , rK

11, and

rK
22, then P will be predicted as ‘f g~(1,11,22) meaning that it

belongs to S1,S11 and S22 or resides simultaneously at

‘‘acrosome’’, ‘‘extracellular’’, and ‘‘vacuole’’. And so forth. In

other words, the concrete predicted subcellular location(s) can be

formulated as

‘f g~Max4
M
Sub rK

1 rK
2 � � � rK

m � � � rK
M

	 

MƒMð Þ ð25Þ

where the operator ‘‘Max4
M
Sub’’ means identifying the M highest

scores for the elements in the brackets right after it, followed by

taking their M Subscripts.

The entire classifier thus established is called iLoc-Euk, which

can be used to predict the subcellular localization of both

singleplex and multiplex eukaryotic proteins. To provide an

Figure 1. Illustration to show the 22 subcellular locations of eukaryotic proteins. The 22 locations are: (1) acrosome, (2) cell membrane, (3)
cell wall, (4) centriole, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12)
Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome (17) mitochondria, (18) nucleus, (19) peroxisome, (20) spindle
pole body, (21) synapse, and (22) vacuole. Adapted from [73] with permission.
doi:101371/journalpone0018258.g001
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intuitive picture, a flowchart is provided in Fig. 2 to illustrate the

prediction process of iLoc-Euk.

5. Protocol Guide
For those who are interested in using the predictor but not its

mathematical details, a web-server for iLoc-Euk was established.

Below, let us give a step-by-step guide on how to use it to get the

desired results.

Step 1. Open the web server at site http://icpr.jci.edu.cn/

bioinfo/iLoc-Euk and you will see the top page of the predictor on

your computer screen, as shown in Fig. 3. Click on the Read Me

button to see a brief introduction about iLoc-Euk predictor and

the caveat when using it.

Step 2. Either type or copy and paste the query protein

sequence into the input box at the center of Fig. 3. The input

sequence should be in the FASTA format. A sequence in FASTA

format consists of a single initial line beginning with a greater-than

symbol (‘‘.’’) in the first column, followed by lines of sequence

data. The words right after the ‘‘.’’ symbol in the single initial line

are optional and only used for the purpose of identification and

description. All lines should be no longer than 120 characters and

usually do not exceed 80 characters. The sequence ends if another

line starting with a ‘‘.’’ appears; this indicates the start of another

sequence. Example sequences in FASTA format can be seen by

clicking on the Example button right above the input box. For

more information about FASTA format, visit http://en.wikipedia.

org/wiki/Fasta_format. Different with Euk-mPLoc 2.0 [40],

where only one query protein sequence is allowed as an input for

each submission, now the maximum number of query proteins can

be 10.

Step 3. Click on the Submit button to see the predicted result.

For example, if you use the three query protein sequences in the

Example window as the input, after clicking the Submit button,

you will see Fig. 4 shown on your screen, indicating that the

predicted result for the 1st query protein is ‘‘Extracellular’’, that

for the 2nd one is ‘‘Cytoplasm; Nucleus’’, and that for the 3rd

one is ‘‘Cytoplasm; Mitochondrion; Nucleus’’. In other

words, the 1st query protein (A0S865) is a single-location one

residing at ‘‘extracellular’’ only, the 2nd one (P40057) can

simultaneously occur in two different sites (‘‘cytoplasm’’ and

Table 1. A system or dataset S that contains N eukaryotic
proteins classified into 22 subcellular location sites (cf. Eq.17),
where the m-th site or subset Sm(m~1,2, � � � ,22~M)
contains Nm proteins. Note that since a protein may belong to
more than one subcellular location, we generally haveXM

m~1
Nm§N .

Subset a Subcellular location
Number of
proteins

S1 Acrosome N1

S2 Cell membrane N2

S3 Cell wall N3

S4 Centrosome N4

S5 Chloroplast N5

S6 Cyanelle N6

S7 Cytoplasm N7

S8 Cytoskeleton N8

S9 Endoplasmic reticulum N9

S10 Endosome N10

S11 Extracellular N11

S12 Golgi apparatus N12

S13 Hydrogenosome N13

S14 Lysosome N14

S15 Melanosome N15

S16 Microsome N16

S17 Mitochondrion N17

S18 Nucleus N18

S19 Peroxisome N19

S20 Spindle pole body N20

S21 Synapse N21

S22 Vacuole N22

doi:101371/journalpone0018258.t001

Table 2. A comparison of iLoc-Euk with Euk-mPLoc 2.0
[40] using the jackknife cross-validation test on the
benchmark dataset taken from the Online Supporting
Information S1 of [40].

Code
Subcellular
location site Success rate by jackknife test

Euk-mPLoc 2.0 a iLoc-Euk b

1 Acrosome 1/14 = 7.14% 1/14 = 7.14%

2 Cell membrane 452/697 = 64.85% 561/697 = 80.49%

3 Cell wall 6/49 = 12.24% 8/49 = 16.33%

4 Centrosome 22/96 = 22.92% 67/96 = 69.79%

5 Chloroplast 318/385 = 82.60% 338/385 = 87.79%

6 Cyanelle 47/79 = 59.49% 51/79 = 64.56%

7 Cytoplasm 1418/2186 = 64.87% 1677/2186 = 76.72%

8 Cytoskeleton 44/139 = 31.65% 38/139 = 27.34%

9 Endoplasmic
reticulum

348/457 = 76.15% 407/457 = 89.06%

10 Endosome 2/41 = 4.88% 3/41 = 7.32%

11 Extracell 858/1048 = 81.87% 948/1048 = 90.46%

12 Golgi apparatus 56/254 = 22.05% 161/254 = 63.39%

13 Hydrogenosome 2/10 = 20.00% 0/10 = 0.00%

14 Lysosome 26/57 = 45.61% 18/57 = 31.58%

15 Melanosome 0/47 = 0.00% 1/47 = 2.13%

16 Microsome 1/13 = 7.69% 0/13 = 0.00%

17 Mitochondrion 427/610 = 70.00% 470/610 = 77.05%

18 Nucleus 1501/2320 = 64.70% 2040/2320 = 87.93%

19 Peroxisome 56/110 = 50.91% 60/110 = 54.55%

20 Spindle pole body 23/68 = 33.82% 45/68 = 66.18%

21 Synapse 0/47 = 0.00% 18/47 = 38.30%

22 Vacuole 101/170 = 59.41% 122/170 = 71.76%

Overall 5709/8897 = 64.17% c 7034/8897 = 79.06% c

The dataset contains 7,766 different eukaryotic protein sequences covering 22
location sites where none of the proteins included has §25% pairwise
sequence identity to any other in a same location.
aThe predictor from [40].
bThe predictor proposed in this paper.
cNote that instead of 7,766 (the number of total different proteins), here we use
8,897 (the number of total different virtual proteins) for the denominator. This is
because some proteins may have two or more location sites. As for the definition
of ‘‘virtual protein’’, see Eqs.2–3 of [40] and the relevant explanation there.

doi:101371/journalpone0018258.t002
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‘‘nucleus’’), and the 3rd one (Q05043) can simultaneously occur in

three different sites (‘‘cytoplasm’’, ‘‘mitochondrion’’, and

‘‘nucleus’’). All these results are fully consistent with the

experimental observation as summarized in the Online

Supporting Information S1 [40]. It takes about 10 seconds for

the above computation before the predicted result appears on your

computer screen; the more number of query proteins and longer of

each sequence, the more time it is usually needed.

Step 4. As shown on the lower panel of Fig. 3, you may also

choose the batch prediction by entering your e-mail address and

your desired batch input file (in FASTA format) via the ‘‘Browse’’

button. To see the sample of batch input file, click on the button

Batch-example The maximum number of the query proteins for

each batch input file is 50. After clicking the button Batch-submit,

you will see ‘‘Your batch job is under computation; once the results

are available, you will be notified by e-mail.’’ Note that if you submit

a batch input file from an Apple computer, although it looks like in

the FASTA format, your input might change to non-FASTA format

in the server end and cause errors. Under such a circumstance, the

safest way is to submit your input file with a pdf format.

Figure 2. A flowchart to show the prediction process of iLoc-Euk.
doi:101371/journalpone0018258.g002

Figure 3. A semi-screenshot to show the top page of the iLoc-Euk web-server. Its website address is at http://icpr.jci.edu.cn/bioinfo
/iLoc-Euk.
doi:101371/journalpone0018258.g003
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Step 5. Click on the Citation button to find the relevant

papers that document the detailed development and algorithm of

iLoc-Euk.
Step 6. Click on the Data button to download the benchmark

datasets used to train and test the iLoc-Euk predictor .

Caveat. To obtain the predicted result with the expected

success rate, the entire sequence of the query protein rather than

its fragment should be used as an input. A sequence with less than

50 amino acid residues is generally deemed as a fragment. Also, if

the query protein is known not one of the 22 locations as shown in

Fig. 1, stop the prediction because the result thus obtained will not

make any sense.

Results and Discussion

In statistical prediction, it would be meaningless to simply say a

success rate of a predictor without specifying what method and

benchmark dataset were used to test its accuracy. As is well known,

the following three methods are often used to examine the quality

of a predictor: independent dataset test, subsampling test, and

jackknife test [62]. Since independent dataset can be treated as a

special case of subsampling test, one benchmark dataset is

sufficient to serve all the three kinds of cross-validation. However,

as demonstrated by Eq.1 of [63] and elucidated in [26], among the

three cross-validation methods, the jackknife test is deemed the

least arbitrary that can always yield a unique result for a given

benchmark dataset and hence has been widely recognized and

increasingly used to examine the power of various predictors (see,

e.g., [17,64,65,66,67,68,69,70,71,72]). Accordingly, the jackknife

test will be used in this study to evaluate the power of iLoc-Euk.

However, even if using the jackknife approach for cross-

validation, a same predictor may still generate obviously different

success rates when tested by different benchmark datasets. This is

because the more stringent of a benchmark dataset in excluding

homologous and high similarity sequences, the more difficult for a

predictor to achieve a high overall success rate [40]. Also, the

more number of subsets (subcellular locations) a benchmark

dataset covers, the more difficult to achieve a high overall success

rate. This can be easily conceivable via the following consider-

ation. Suppose a benchmark dataset consists of two subsets

(subcellular locations) with each containing a same number of

proteins. The overall success rate in identifying their attribute

categories by random assignment would be 1=2~50%. However,

for a benchmark dataset consisting of 22 subsets (subcellular

locations), the corresponding overall success rate by the random

assignment would be only 1=22^4:5%.

In this study, the same benchmark dataset S as investigated in

[40] was adopted for demonstration. The dataset can be obtained

from the Online Supporting Information S1 of [40]. It can also be

directly downloaded from the web-site at http://www.csbio.sjtu.

edu.cn/bioinf/euk-multi-2/Data.htm. The reasons we choose it as

a benchmark dataset for the current study are as follows. (1) The

dataset was constructed specialized for eukaryotic proteins and it

can cover 22 subcellular location sites; compared with the other

datasets in this area that only covered 5-10 subcellular locations,

the coverage scope of the current dataset is much wider. (2) None

of proteins included in the current benchmark dataset has §25%
pairwise sequence identity to any other in a same subcellular

location; compared with most of the other benchmark datasets in

this area, the current one is much more stringent in excluding

homology bias and redundancy. (3) It contains both singleplex and

multiplex proteins and hence can be used to train and test a

predictor developed aimed at being able to deal with proteins with

both single and multiple location sites. (4) Using the current

benchmark dataset will also make it more fair and easier to

compare the new predictor with the existing one because the

tested results by Euk-mPLoc 2.0 on the current benchmark

dataset have been well documented and reported is a recent paper

[40].

The dataset S contains 7,766 different eukaryotic proteins, of

which 6,687 belong to one subcellular location, 1,029 to two

locations, 48 to three locations, and 2 to four locations.

For such a complicated dataset containing both single-location

and multiple-location proteins distributed among 22 subcellular

Figure 4. A semi-screenshot to show the output of iLoc-Euk. The input was taken from the three protein sequences listed in the Example
window of the iLoc-Euk web-server (cf. Fig. 3).
doi:101371/journalpone0018258.g004
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location sites, so far only two existing predictors, i.e., Euk-mPLoc
[73] and Euk-mPLoc 2.0 [40], had the capacity to deal with it. It

was reported [40] that, when tested by the dataset S, the overall

jackknife success rate achieved by Euk-mPLoc 2.0 was about

25% higher than that by Euk-mPLoc. Therefore, to demonstrate

the power of the predictor proposed in this paper, it would be

sufficient to just compare iLoc-Euk with Euk-mPLoc 2.0 [40].

Listed in Table 2 are the results obtained with Euk-mPLoc
2.0 [40] and iLoc-Euk on the aforementioned benchmark

dataset S by the jackknife test. As we can see from Table 2, for

such a stringent and complicated benchmark dataset, the overall

success rate achieved by iLoc-Euk is over 79%, which is about

15% higher than that by Euk-mPLoc 2.0.

Note that during the course of the jackknife test by Euk-
mPLoc 2.0 and iLoc-Euk, the false positives (over-predictions)

and false negatives (under-predictions) were also taken into

account to reduce the scores in calculating the overall success

rate. As for the detailed process of how to count the over-

predictions and under-predictions for a system containing both

single-location and multiple-location proteins, see Eqs.43–48 and

Fig. 4 in a comprehensive review [26].

To provide a more intuitive and easier-to-understand measure-

ment, let us introduce a new scale, the so-called ‘‘absolute true’’

success rate, to reflect the accuracy of a predictor, as defined by

L~

PN
i~1 D(i)

N
ð26Þ

where L represents the absolute true rate, N the number of total

proteins investigated, and

D(i)~

1, if all the subcellular locations of the i-th protein are

correctly predicted without any overprediction

0, otherwise

8<
: ð27Þ

According to the above definition, for a protein belonging to, say,

three subcellular locations, if only two of the three are correctly

predicted, or the predicted result contains a location not belonging

to the three, the prediction score will be counted as 0. In other

words, when and only when all the subcellular locations of a query

protein are exactly predicted without any underprediction or

overprediction, can the prediction be scored with 1. Therefore, the

absolute true scale is much more strict and harsh than the scale

used previously [26,40] in measuring the success rate. However,

even if using such a stringent criterion on the same benchmark

dataset by the jackknife test, the overall absolute true success rate

achieved by iLoc-Euk was 5535/7766 = 71.27%.

The reasons why iLoc-Euk can achieve higher success rates

than Euk-mPLoc 2.0 are as follows. (1)The GO formulation

used to represent protein samples in iLoc-Euk is formed by the

hit probabilities and hence contains more information than that in

Euk-mPLoc 2.0 [40] where only the number ‘‘0’’ or ‘‘1’’ was

used regardless how many hits were found to the corresponding

component in the GO formulation. (2) The accumulation-layer

scale has been introduced in iLoc-Euk that is particularly useful

and more natural for dealing with proteins having multiple

subcellular locations.

Finally, it should be pointed out that although iLoc-Euk is

more powerful than the existing predictors in identifying the

subcellular locations of eukaryotic proteins, there is much room for

further improvement in future studies. As shown in Table 2, the

success rates by iLoc-Euk for proteins belonging to ‘‘hydrogeno-

some’’ and ‘‘microsome’’ locations are still very low. This is

because of that, compared with the most of the other 20 location

sites, the numbers of proteins in the two sites are not sufficiently

large to train the prediction engine in a more effective way. It is

anticipated that with more experimental data available for the two

sites in the future, the situation will be improved and the

anticipated success rates by iLoc-Euk will be further enhanced.

Supporting Information

Supporting Information S1 The benchmark dataset S used in

this study contains 7,766 different eukaryotic protein sequences

classified into 22 subsets according to their subcellular locations.

Of the 7,766 different proteins, 6,687 belong to one subcellular

location, 1,029 to two locations, 48 to three locations, and 2 to

four locations. Both the accession numbers and sequences are

given. None of the proteins included has §25% pairwise sequence

identity to any other in the same subset. See Table 1 and the

relevant text of the paper for further explanation.

(PDF)
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