
Systems biology

TIMMA-R: an R package for predicting

synergistic multi-targeted drug combinations

in cancer cell lines or patient-derived samples

Liye He, Krister Wennerberg, Tero Aittokallio and Jing Tang*

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, FI-00290, Helsinki,

Finland

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on October 17, 2014; revised on January 9, 2015; accepted on January 26, 2015

Abstract

Summary: Network pharmacology-based prediction of multi-targeted drug combinations is

becoming a promising strategy to improve anticancer efficacy and safety. We developed a logic-

based network algorithm, called Target Inhibition Interaction using Maximization and Minimization

Averaging (TIMMA), which predicts the effects of drug combinations based on their binary drug-

target interactions and single-drug sensitivity profiles in a given cancer sample. Here, we report

the R implementation of the algorithm (TIMMA-R), which is much faster than the original MATLAB

code. The major extensions include modeling of multiclass drug-target profiles and network visual-

ization. We also show that the TIMMA-R predictions are robust to the intrinsic noise in the experi-

mental data, thus making it a promising high-throughput tool to prioritize drug combinations in

various cancer types for follow-up experimentation or clinical applications.

Availability and implementation: TIMMA-R source code is freely available at http://cran.r-project.

org/web/packages/timma/.

Contact: jing.tang@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recently, a network pharmacology paradigm for anticancer drug

discovery has been proposed, with an aim of developing multi-tar-

geted drug combinations that consist of distinct chemical agents as a

promising strategy to improve treatment efficacy and safety (Al-

Lazikani et al., 2012). Most mathematical models for predicting the

effects of drug combinations relies on empirical cellular dynamic

models, such as those based on signaling pathways or metabolic net-

works. These types of methods are hardly applicable for predicting

cancer-selective drug combinations due to lack of accurate kinetic

parameters for each cancer type (Sun et al., 2013). Other methods

use the transcriptional responses of drugs, i.e. gene expression pro-

files before and after drug treatments, to predict drug combinations

(Zhao et al., 2014). However, such drug-induced transcriptional

phenotypes are not routinely profiled in a typical high-throughput

drug screen, and thus provide limited translation potential in the

clinical settings.

We have developed a logic-based network pharmacology ap-

proach Target Inhibition Interaction using Maximization and

Minimization Averaging (TIMMA) for predicting the effects of drug

combinations in a given cancer cell sample (Tang et al., 2013).

TIMMA combines drug-target interaction networks with single-

drug sensitivity profiles, derived either from individual cell line mod-

els (Barrettina et al. 2012) or from patient-derived cell samples

(Pemovska et al. 2013). The network algorithm starts by searching a

set of combinatorial targets that are most predictive of the single-

drug sensitivities. A drug combination is then treated as a combin-

ation of target inhibitions, the effect of which can be estimated

based on the set relationships with the target profiles of the drugs.

The outcome of the TIMMA model provides a list of predicted
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synergy scores for drug combinations, from which a target inhib-

ition network can be inferred.

To enable wider applications of the method, several major limi-

tations need to be overcome. First, the original TIMMA package

was written in MATLAB, the accessibility of which in biomedical re-

search community is rather limited compared with the open source

R environment. Second, for applying the target set comparison, the

drug-target profiles must be binarized, encoding 1 for a true target

and 0 for a non-target. A typical drug-target profiling assay, how-

ever, often reveals quantitative polypharmacological interactions

more complex than what such binary data can capture. Third, the top-

ology of the target inhibition networks was derived manually from

the model predictions. The lack of efficient network reconstruction

algorithms may become the bottleneck for more straightforward bio-

logical interpretations when the network sizes increase. These issues

are now addressed in the newly developed R implementation.

2 Implementation

The TIMMA-R workflow starts by preparing two types of input

data (Fig. 1). To maximize the prediction power, the first input de-

fines the drugs’ polypharmacological profiles by considering both

strong and weak drug-target interactions, so that the effect of a drug

combination can be modeled through its (multiple) target inter-

actions. The proteome-wide quantitative drug-target interaction

data are available in PubChem, ChEMBL (Gaulton et al., 2012) or

CanSAR (Halling-Brown et al., 2012) databases. To minimize the

false positive or negative interactions, bioactivity data integration

from multiple studies is advised (Tang et al., 2014). The second in-

put data involves drug sensitivity profiles for a given cancer cell line,

which can be obtained e.g. from the Cancer Cell Line Encyclopedia

(CCLE) (Barretina et al., 2012), the Genomics of Drug Sensitivity in

Cancer (GDSC) (Yang et al., 2013) or the Library of Integrated

Network-based Cellular Signatures (LINCS) (Vempati et al., 2014)

databases. However, the TIMMA-R is not limited to using cell line

data only, but can also be applied to patient-derived drug sensitivity

profiles (Pemovska et al., 2013). In the following, we briefly report

the major updates of the algorithm that will facilitate its usage for

high-throughput drug combination discoveries.

2.1 Computational speed
With the techniques of vectorization and multi-dimensional matrix

computation, the TIMMA-R algorithm has been made more effi-

cient and scalable for large-scale analyzes. For a typical data, con-

sisting of 50 drugs and 500 targets, the average running time on a

desktop computer is <50 s, compared with >250 s when using the

original MATLAB implementation. Note that the current TIMMA-

R aggregates the information from each drug sequentially. A

straightforward extension would be thus parallel computing using

multiple processors, e.g. one processor for one drug, which can fur-

ther increase the computational speed.

2.2 Sensitivity analysis
The traditional definition of a drug’s target, originated from the

magic bullet paradigm, often considers one or two primary targets

that are thought to induce the therapeutic effects (Hopkins, 2008).

However, recent proteome-wide bioactivity studies have revealed

much more low-affinity, multi-targeted drugs than previously

thought (e.g. Davis et al., 2011). An important question for any pol-

ypharmacological modeling method is therefore its robustness with

respect to experimental uncertainties in drug-target interactions.

We performed a sensitivity analysis using simulated binary drug-

target interaction data with 50 drugs and 100 targets, where experi-

mental noise was modeled by flipping either from 0 to 1 (false posi-

tive) or vice versa (false negative), for up to 30% of the drug-target

interactions. The prediction results between the selected target sets

before and after the flipping were compared using the RV coefficient

(Lê et al., 2008). The rate of positive interactions in the data were

set at 0.3. The simulation was repeated 100 times and summarized

in Figure 2. As expected, the RV coefficient decreased as the false

interaction rates increase, yet being significantly higher than the ran-

dom predictions (P<0.001, paired t-test). These results indicate

that TIMMA-R is applicable for those real case studies, where the

drug-target interaction data has been either experimentally validated

or manually curated.

2.3 Modeling of multi-class drug-target data
Compared with the conventional drug-target binarization, a more

realistic drug-target modeling classifies the targets of a given drug

into several classes in terms of their binding affinities (Tyner et al.,

2013). TIMMA-R modeling of such multi-class data are straightfor-

ward, as the set relationships still hold between two drugs, except

that the number of possible scenarios for a target combination goes

from 2n to pn; where n is the number of targets and p is the number

of interactions classes. Even though the target combination space in-

creases, the prediction accuracy of TIMMA-R under the categorical

setting stays at the same level as using the binary data

(Supplementary Material). On the other hand, we found that

introducing more drug-target classes may not always lead to better

prediction accuracy. This may be due to the multi-classification

scheme of Tyner et al. (2013), where weak interactions, such as Kd

or IC50 values close to 10 lM, were considered as one of the active

classes. Such a classification might be sub-optimal for characterizing

the response of patient-derived samples given that the majority of

the drugs’ in vivo or ex vivo efficacy is expected to be

elicited via their targets with nanomolar potency. Given that the

drug-target data are already sparse in the binary case, we do not rec-

ommend over-interpreting the drug-target interactions with more

than three classes (see Supplementary Material for more detailed

discussion).

Fig. 1. The TIMMA-R workflow

Fig. 2. Robustness of TIMMA-R predictions using simulated drug-target inter-

actions with a varying degree of false negative or false positives. y-axis: aver-

age RV coefficient, where error bars indicate standard error of the means; x-

axis: false positive rate or false negative rate; Dotted trace, random prediction
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2.4 Network reconstruction
The TIMMA-R predictions can be formulated as a complete truth

table, based on which the minimized Boolean expression is deter-

mined by the enhanced Quine-McCluskey algorithm using the

Qualitative Comparative Analysis (QCA) package in R (Dus�a,

2010). The minimized Boolean expression is a union of target com-

bination scenarios leading to the same (maximal) response. For net-

work visualization, we utilized a two-terminal graph, with series

and parallel components, to represent the predicted response of can-

cer survival signaling pathways (see Supplementary Material). With

the network reconstruction algorithm, TIMMA-R is able to produce

illustrative visualizations that facilitate the interpretation of the drug

combination predictions. The nested network format enables net-

work visualization and analysis in Cytoscape.

5 Conclusion

The TIMMA-R package will facilitate effective integration of

drug-target and drug sensitivity profiles which are becoming increas-

ingly available for the anticancer research. The package does not only

offer an efficient prioritization tool for selecting the most promising

drug combinations for further experimental testing, but also produces

data-driven hypotheses for their target interactions. Such network-

centric investigation of the underlying mechanisms of action in the

given cellular context will greatly improve our knowledge about the

functional cross-talks between parallel cancer signaling pathways to

be utilized in anticancer treatment applications.
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