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Abstract

Previous studies have suggested that components of one-carbon metabolism, partic-

ularly circulating vitamin B6, have an etiological role in renal cell carcinoma (RCC).

Vitamin B6 is a cofactor in the transsulfuration pathway. We sought to holistically

investigate the role of the transsulfuration pathway in RCC risk. We conducted a

nested case-control study (455 RCC cases and 455 matched controls) within the

European Prospective Investigation into Cancer and Nutrition (EPIC) study. Plasma

samples from the baseline visit were analyzed for metabolites of the transsulfuration

pathway, including pyridoxal 50-phosphate (PLP, the biologically active form of vita-

min B6), homocysteine, serine, cystathionine, and cysteine, in addition to folate.

Bayesian conditional logistic regression was used to estimate associations of metabo-

lites with RCC risk as well as interactions with established RCC risk factors. Circulat-

ing PLP and cysteine were inversely associated with RCC risk, and these associations

were not attenuated after adjustment for other transsulfuration metabolites (odds

ratio (OR) and 90% credible interval (CrI) per 1 SD increase in log concentration: 0.76

[0.66, 0.87]; 0.81 [0.66, 0.96], respectively). A comparison of joint metabolite profiles

suggested substantially greater RCC risk for the profile representative of low overall

transsulfuration function compared to high function (OR 2.70 [90% CrI 1.26, 5.70]).

We found some statistical evidence of interactions of cysteine with body mass index,

and PLP and homocysteine with smoking status, on their associations with RCC risk.

In conclusion, we found evidence suggesting that the transsulfuration pathway may

play a role in metabolic dysregulation leading to RCC development.

K E YWORD S

dietary biomarkers, kidney cancer, transsulfuration, vitamin B6

What's new?

One-carbon metabolism, owing largely to its relationship with DNA methylation, is implicated in

cancer etiology. Whether alterations in the transsulfuration pathway—a critical unit of one-

carbon metabolism that is essential to homocysteine catabolism—has a role in cancer develop-

ment, however, remains unknown. In our study, analysis of data from the European Prospective

Investigation into Cancer and Nutrition cohort revealed an association between transsulfuration

and renal cell carcinoma (RCC) risk. The association extends beyond the previously described

role of vitamin B6 in RCC development and was characterized primarily by a marked increase in

RCC risk relative to low overall transsulfuration function.
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1 | INTRODUCTION

The incidence of kidney cancer is increasing, and it is currently the 14th

most common cancer globally.1 Incidence is highest in developed coun-

tries, and twice as high among men compared to women.1 Around 90%

of kidney cancer diagnoses are renal cell carcinoma (RCC).2 Established

modifiable risk factors for RCC include overweight and obesity, cigarette

smoking and high blood pressure.3 There is limited and inconclusive evi-

dence on associations with dietary or nutrient factors. However, of partic-

ular interest is a previous finding of an association between increased

circulating vitamin B6 concentration (measured in its biologically active

form of pyridoxal 50-phosphate [PLP]) and a lower risk of RCC, with a

60% lower risk in the highest fourth vs the lowest fourth of plasma con-

centration.4 The possibility of shared causal pathways in RCC between

the established risk factors and metabolic markers such as vitamin B6 has

not been thoroughly examined.

PLP is a coenzyme in over 160 different reactions in multiple meta-

bolic pathways.5 The inverse association between PLP and RCC risk may

be explained by its role in one or more of these pathways, and other met-

abolic components in these pathways may be mechanistically related to

RCC risk as well. The transsulfuration pathway, which requires PLP, is

part of one-carbon metabolism along with the folate and methionine

cycles. In the methionine cycle, homocysteine can either continue

the cycle and be remethylated into methionine, which is converted to

S-adenosylmethionine (SAM), or it can exit the methionine cycle and be

irreversibly catabolized by the transsulfuration pathway into cysteine.6

PLP is a coenzyme both for the enzyme cystathionine β-synthase (CBS),

which condenses homocysteine and serine to create cystathionine, and

for the enzyme cystathionine γ-lyase (CSE), which then converts

cystathionine to cysteine7 (Figure S1). SAM is an activator of CBS, and

folate indirectly influences CBS activity because of its robust linear posi-

tive association with SAM.8 RCC is of particular interest because the kid-

ney, along with the liver, are where most amino acid metabolism occurs,

including transsulfuration.6

The transsulfuration pathway is important for cell signaling and

protein synthesis and is therefore critical in cell proliferation.7 Its

downstream metabolite, glutathione, is important for the oxidative

stress response, and cysteine is the limiting component in glutathione

synthesis.9 Hydrogen sulfide, a gas-signaling molecule with physiologi-

cal effects associated with aging processes, is produced by trans-

sulfuration enzymes.10 As part of the broader one-carbon metabolism,

transsulfuration is related to regulation of methylation reactions

including DNA methylation, and nucleotide synthesis.6 Therefore,

there are a variety of possible biological mechanisms that may link

altered transsulfuration activity to cancer risk.

While the closely related methionine and folate cycles have been

more heavily probed regarding their associations with cancer develop-

ment, there is little evidence on the role of transsulfuration. In particu-

lar, because of the interdependent nature of biomarkers from a single

metabolic pathway, we aimed to build upon exiting evidence, which

has mostly focused on individual metabolites, with a holistic view of

pathway-wide associations. Using data from the same study that pre-

viously examined PLP and RCC risk,4 we extended the investigation

to include additional components of the transsulfuration pathway in

relation to RCC risk and assessed how these associations vary after

adjustment for, and interaction with, established risk factors.

2 | MATERIALS AND METHODS

2.1 | Participants and data collection

The European Prospective Investigation into Cancer and Nutrition

(EPIC) study is a multinational observational cohort consisting of over

500 000 participants recruited between 1992 and 2000. Participants

provided blood samples, completed questionnaires on diet and life-

style, and had anthropometric measurements taken. Details of recruit-

ment and data collection have been published previously.11,12

A nested case-control study within EPIC was established after

follow-up through 2004 to 2010, depending on the center, with 556 his-

tologically confirmed RCC cases and 556 controls matched on country,

sex, date of blood collection (±1 month) and date of birth (±1 year). Con-

trols were selected from the pool of all cohort members alive and without

a reported cancer diagnosis at the time of the RCC case diagnosis. Exclu-

sion criteria were a previous diagnosis of cancer other than nonmelanoma

skin cancer, or a diagnosis of RCC that was not histologically confirmed

(censored at the date of diagnosis).4 The Malmö, Sweden center did not

participate.

Blood fractions were divided into aliquots in 0.5-mL straws, which

were heat sealed and stored in liquid nitrogen tanks at �196�C, except in

Denmark, where samples were stored in 1-mL tubes between �120

and �160�C.12 Biochemical analyses were performed at the Bevital A/S

laboratory in Bergen, Norway. Plasma samples were analyzed for concen-

trations of PLP, homocysteine, serine, cystathionine, cysteine and folate.

In addition, symmetric dimethylarginine (SDMA) and neopterin were mea-

sured as markers of kidney function and cellular immune activation,

respectively. Total homocysteine, serine, cystathionine and total cysteine

were measured with GC-MS13,14; PLP, SDMA and neopterin were mea-

sured with LC-MS/MS15,16; and folate was measured with a microbiologi-

cal assay.17 Samples from each case with their matched control were

analyzed together in the same batch, and laboratory staff were blinded to

the case-control status of all samples. Full details of the nested case-

control study have been previously published.4

2.2 | Statistical analysis

Participants with missing data were excluded from analyses. Greece was

excluded, and all participants from Norway were excluded due to missing

data for anthropometric measurements. Baseline characteristics of cases

and controls were compared using frequencies for categorical variables

and the median and interquartile range for continuous variables. Correla-

tions between transsulfuration metabolites were estimated in the controls

using the Pearson correlation coefficient. Metabolite concentrations were

log base 2 transformed, centered and scaled to an SD of one prior to their

inclusion in regression analyses.
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Multivariable Bayesian conditional logistic regression was used to

estimate odds ratios (OR) and 90% credible intervals (90% CrI) for the

associations of the transsulfuration metabolites with risk of RCC. Min-

imally adjusted models included a single metabolite, highest level of

education (none or primary school, secondary school, technical/pro-

fessional, university degree) and fasting status at the time of blood

draw (<3 hours [not fasting], 3-6 hours [in between], >6 hours

[fasting]). Country, sex, age and date of blood draw were accounted

for as matching factors. Further adjusted models for single metabo-

lites additionally included body mass index (BMI, continuous) and

smoking status (never, former, current). The full transsulfuration

model included all five metabolites (PLP, homocysteine, serine,

cystathionine and cysteine), and was adjusted for folate concentra-

tion, highest level of education, fasting status, BMI and smoking sta-

tus. For the subset of participants with measured blood pressure data

available, additional models were further adjusted for systolic blood

pressure, diastolic blood pressure and both. All regression model

results for continuous predictors are presented per 1 SD increase.

Because components of tightly regulated metabolic systems vary

in concert with each other, and not in isolation, we were interested

in the associations of pathway-wide metabolite profiles with RCC

risk, and so we compared joint risk estimates across multiple metabo-

lites. These associations do not represent variation in a single metab-

olite while holding all others constant, but rather, represent patterns

of variation across multiple related metabolites. We first defined four

different types of profiles, each indicative of empirically or theoreti-

cally plausible variations of metabolites. Each set included three pro-

files, with the “mid” profile setting all metabolite values at their

mean, and “low” and “high” profiles with equal magnitude distance

from the mean in opposite directions. For example, where PLP is set

to 1 SD below the mean for a low profile, it is 1 SD above the mean

in the high profile. We used this approach to estimate associations

with RCC risk for one set of empirically motivated profiles (PLP

values were assigned then other metabolites were set to their condi-

tional expected values from unadjusted linear regressions of the log

concentration on log PLP) and three sets of theoretically determined

profiles (regulatory control of overall transsulfuration, CBS and CSE

function). These three sets were designed following the assumptions

that a higher concentration of an enzymatic cofactor reduces the reg-

ulatory restriction of activity, which subsequently results in lower

substrate concentrations and higher product concentrations. There-

fore, high, mid and low overall transsulfuration function profiles had

values set to 1, 0 and �1 respectively for PLP (cofactor) and cysteine

(product) and �1, 0 and 1 for homocysteine and serine (substrates),

while cystathionine did not vary because it is an intermediate. Like-

wise, the high, mid, and low CBS profiles had values set to 1, 0

and �1 for PLP and cystathionine, and �1, 0 and 1 for homocysteine

and serine. The high, mid and low CSE profiles had values to 1, 0

and �1 for PLP and cysteine, and �1, 0 and 1 for cystathionine.

Looking at separate sets of profiles for CBS and CSE may be informa-

tive because these two enzymes are controlled by different regula-

tory processes.

All analyses were conducted in R version 4.0.5 and Bayesian

inference was done with the package RStanArm version 2.21.1.18,19

3 | RESULTS

This analysis included 455 RCC cases and 455 matched controls with

complete data on all markers and covariates. A comparison of the

included 910 participants vs 194 excluded with missing data is shown

in Table S1. Among included participants, median age at recruitment

was 57 years, median time from blood draw to case diagnosis was

7 years, and median age of cases at diagnosis was 64 years. The

majority (56%) of pairs were men. Median BMI for cases and controls

was 27.1 and 26.2 kg/m2, respectively. 32% of cases and 24% of con-

trols were current smokers (Table 1). Median PLP for cases and con-

trols was 30.4 and 36.4 nmol/L, respectively. All other metabolite

concentrations were similar between cases and controls (Table 2). The

strongest correlation between transsulfuration biomarkers in controls

was for homocysteine and cysteine (r = 0.44) (Figure S2).

The association between PLP and RCC risk was similar across

the three models with an OR (90% CrI) for a 1 SD increase in log

PLP of 0.72 (0.64, 0.82), 0.75 (0.66, 0.86) and 0.76 (0.66, 0.87)

from the minimally adjusted, BMI and smoking adjusted, and mutu-

ally adjusted models, respectively (Table 3). We also found evidence

of an inverse association between cysteine concentration and RCC

risk (mutually adjusted OR 0.81, 90% CrI 0.66, 0.96) and an esti-

mate for cystathionine in the direction of a positive association

(mutually adjusted OR 1.12, 90% CrI 0.97, 1.30). Systolic and dia-

stolic blood pressure were available for 367 matched pairs, and

among these participants there was no notable change in the esti-

mates for any of the five metabolites after adjustment for systolic

blood pressure, diastolic blood pressure or both (Table S2).

RCC risk was greater for the low PLP metabolite profile compared

to the high PLP profile (OR 1.88, 90% CrI 1.44, 2.49). An even stron-

ger association was seen for the profile representative of low trans-

sulfuration function compared to high function (OR 2.70, 90% CrI

1.26, 5.70) (Table 4). The estimated association for low vs high CSE

function (OR 3.40, 90% CrI 1.99, 5.91) was stronger than that for CBS

function (OR 1.37, 90% CrI 0.73, 2.60).

There were some variations in the strengths of associations

of the transsulfuration metabolites with RCC at different levels

of established RCC risk factors. We found statistical evidence of

a stronger association for cysteine with RCC risk at higher com-

pared to lower levels of BMI, with an OR of 0.55 (90% CrI 0.39,

0.76) at a BMI of 35 kg/m2 (Figure 1, Table S3). We also found

statistical evidence of interactions with smoking status, with

stronger associations of both PLP (inversely) and homocysteine

(positively) with RCC risk among current smokers compared to

never smokers (Figure 2, Table S3). There were no notable inter-

actions with sex. There was evidence of an interaction of serine

with systolic and diastolic blood pressure with inverse associa-

tions among those with lower blood pressure, and an interaction
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of PLP with systolic blood pressure with a stronger inverse asso-

ciation among those with lower systolic blood pressure

(Figures S3-S5 and Table S3).

Adjustment for SDMA (kidney function) and neopterin (cellu-

lar immune activation) did not notably change any reported

metabolite associations with RCC risk (Table S4). Results were

TABLE 1 Characteristics of RCC cases and matched controls in a nested case-control study within EPIC

Cases (N = 455) Controls (N = 455)

Country

Denmark 109 (24%) 109 (24%)

France 8 (2%) 8 (2%)

Germany 118 (26%) 118 (26%)

Italy 86 (19%) 86 (19%)

Spain 51 (11%) 51 (11%)

The Netherlands 43 (9%) 43 (9%)

United Kingdom 40 (9%) 40 (9%)

Sex

Male 256 (56%) 256 (56%)

Female 199 (44%) 199 (44%)

Smoking status

Never 172 (38%) 199 (44%)

Former 138 (30%) 148 (33%)

Current 145 (32%) 108 (24%)

Educational attainment

Primary school or less 190 (42%) 173 (38%)

Secondary school 65 (14%) 59 (13%)

Technical/professional school 107 (24%) 111 (24%)

Longer education (incl. University

deg.)

93 (20%) 112 (25%)

Fasting status

Yes 130 (29%) 132 (29%)

In between 86 (19%) 85 (19%)

No 239 (53%) 238 (52%)

Hypertension

No 232 (51%) 265 (58%)

Yes 157 (35%) 119 (26%)

Do not know 14 (3%) 15 (3%)

Missing 52 (11%) 56 (12%)

Systolic BP (mm Hg)a 138 (126, 152) 132 (120, 147)

Diastolic BP (mm Hg)a 85 (78, 92) 82 (76, 90)

BMI (kg/m2) 27.1 (24.5, 29.9) 26.2 (23.9, 28.8)

Age at recruitment (years) 56.8 (52.0, 61.9) 56.9 (51.9, 61.8)

Age at diagnosis (years) 63.8 (59.0, 68.1) NA

Time from blood draw to diagnosis

(years)

6.8 (3.3, 9.5) NA

Folate (nmol/L) 11.5 (8.4, 17.1) 12.0 (8.6, 17.1)

SDMA (μmol/L) 0.440 (0.380, 0.500) 0.440 (0.380, 0.500)

Neopterin (nmol/L) 13.4 (10.6, 16.6) 12.7 (10.3, 15.8)

Note: Frequencies are shown for categorical variables. Median and IQR are shown for continuous variables.

Abbreviations: BMI, body mass index; BP, blood pressure; EPIC, European Prospective Investigation into Cancer and Nutrition; RCC, renal cell carcinoma;

SDMA, symmetric dimethylarginine.
aN = 367 cases and 367 controls for blood pressure measurements.
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also similar after removing circulating folate from the fully

adjusted model.

4 | DISCUSSION

We found that multiple components of the transsulfuration pathway

were associated with risk of RCC. The strength and direction of some

of these associations depended on adjustment for other metabolites

as well as interactions with established RCC risk factors. The inverse

association of PLP with RCC risk was not attenuated by adjustment

for BMI, smoking status or other transsulfuration metabolites. The

strong association we found for metabolite profiles of regulation of

overall transsulfuration activity, with over 2-fold differences in risk for

low compared to high function, indicates that the transsulfuration

pathway may play a role in RCC etiology beyond any individual role of

PLP. Furthermore, the strong association found for CSE profiles

TABLE 2 Median and IQR of transsulfuration pathway metabolite
plasma concentrations in RCC cases and matched controls at baseline

in a nested case–control study within EPIC

Transsulfuration
metabolite Cases (N = 455) Controls (N = 455)

PLP (nmol/L) 30.4 (22.3, 42.8) 36.4 (25.6, 52.0)

Total homocysteine

(μmol/L)

9.41 (7.91, 11.28) 9.56 (7.71, 11.40)

Serine (μmol/L) 94.8 (82.9, 109.5) 97.7 (85.6, 112.5)

Cystathionine (μmol/L) 0.180 (0.130, 0.260) 0.180 (0.130, 0.250)

Cysteine (μmol/L) 252 (231, 277) 255 (232, 280)

Abbreviations: EPIC, European Prospective Investigation into Cancer

and Nutrition; IQR, interquartile range; PLP, pyridoxal 50-phosphate;
RCC, renal cell carcinoma.

TABLE 3 Odds ratios (OR) and 90% credible intervals (CrI) of transsulfuration metabolites (per 1 SD increment) with risk of RCC in a nested

case-control study in EPIC (N = 455 cases and 455 controls)

Separate models Combined model

Minimally adjusted Additionally adjusted (BMI and smoking status) Mutually adjusted (all metabolites)

Transsulfuration metabolite OR (90% CrI) OR (90% CrI) OR (90% CrI)

PLP 0.72 (0.64, 0.82) 0.75 (0.66, 0.86) 0.76 (0.66, 0.87)

Homocysteine 1.07 (0.94, 1.22) 1.04 (0.92, 1.19) 1.10 (0.92, 1.32)

Serine 0.85 (0.75, 0.96) 0.89 (0.78, 1.00) 0.90 (0.79, 1.04)

Cystathionine 1.16 (1.02, 1.33) 1.12 (0.98, 1.29) 1.12 (0.97, 1.30)

Cysteine 0.87 (0.76, 1.00) 0.84 (0.73, 0.97) 0.81 (0.66, 0.96)

Note: Matching variables are country, sex, age and date of blood draw. Model covariates are as follows: Minimally adjusted: education level (four

categories) and fasting status (yes, in between, no). Additionally adjusted for BMI and smoking status: Minimally adjusted plus BMI (continuous) and

smoking status (never, former, current). Mutually adjusted for all metabolites: All previously listed covariates plus folate concentration and all five

metabolites (continuous, per 1 SD of log transformed concentration). Assessed by Bayesian conditional logistic regression, conditioning on individual

case sets.

Abbreviations: BMI, body mass index; CrI, credible interval; EPIC, European Prospective Investigation into Cancer and Nutrition; OR, odds ratio;

PLP, pyridoxal 50-phosphate; RCC, renal cell carcinoma.

TABLE 4 Odds ratios and 90% credible intervals of
transsulfuration metabolite profiles with risk of RCC in a nested case-
control study in EPIC (N = 455 cases and 455 controls)

Basis of comparison Profile OR (90% CrI)

Expected metabolite

concentrations at specified PLP

concentrationa

High Reference

Moderate 1.37 (1.20, 1.58)

Low 1.88 (1.44, 2.49)

Theoretically expected metabolite

concentrations at differing

levels of transsulfuration

functionb

High Reference

Moderate 1.64 (1.12, 2.39)

Low 2.70 (1.26, 5.70)

Theoretically expected metabolite

concentrations at differing

levels of CBS functionc

High Reference

Moderate 1.17 (0.85, 1.61)

Low 1.37 (0.73, 2.60)

Theoretically expected metabolite

concentrations at differing

levels of CSE functiond

High Reference

Moderate 1.85 (1.41, 2.43)

Low 3.40 (1.99, 5.91)

Note: Profiles are joint estimates from the mutually adjusted model.

Abbreviations: CBS, cystathionine β-synthase; CrI, credible interval;

CSE, cystathionine γ-lyase; EPIC, European Prospective Investigation into

Cancer and Nutrition; OR, odds ratio; PLP, pyridoxal 50-phosphate;
RCC, renal cell carcinoma.
aPLP is set to 1, 0 and �1 SD from the mean for high, mid and low

profiles. Other biomarkers were set to their conditional expected values

based on linear regression models of the log concentration of each

biomarker on log PLP.
bMetabolite values (SD from the mean) for high, mid and low profiles,

respectively: PLP 1, 0, �1; homocysteine �1, 0, 1; serine �1, 0, 1;

cystathionine 0, 0, 0; cysteine 1, 0, �1.
cMetabolite values (SD from the mean) for high, mid and low profiles,

respectively: PLP 1, 0, �1; homocysteine �1, 0, 1; serine �1, 0, 1;

cystathionine 1, 0, �1.
dMetabolite values (SD from the mean) for high, mid and low

profiles, respectively: PLP 1, 0, �1; cystathionine �1, 0, 1; cysteine

1, 0, �1.
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suggests the second half of the transsulfuration pathway may be the

driver behind any overall association with RCC risk.

Although we did not find strong statistical evidence of interac-

tions overall, we did observe an indication that the inverse association

between cysteine and RCC risk became stronger with higher BMI.

The relationship between cysteine and BMI is complex, and while a

strong positive association between them has been established, the

causal direction of the association is unclear.20 Evidence from the

Hordaland Homocysteine Study suggests the association between

cysteine and BMI is driven by its strong association with fat mass. This

association with fat mass was independent of diet and exercise as well

as cholesterol concentration. There was no evidence of a link between

cysteine and lean mass independent of fat mass.20 Further investiga-

tion of the role of body composition may help to explain the relation-

ship between cysteine and BMI with cancer risk.

We also found evidence of stronger associations for PLP and

homocysteine with RCC risk among current smokers compared to

never smokers. Because cigarette smoking is responsible for increased

production of reactive oxygen species and heightened inflammatory

processes,21 it is possible that smokers have a higher requirement for

transsulfuration function to deal with these biological stressors.

Based on both empirically and theoretically constructed joint metab-

olite profiles, we found strong evidence of associations between

transsulfuration pathway-wide variation and RCC risk. Oxidative stress

response is a possible mechanistic explanation for this finding. In a state

of high oxidative stress, PLP and cysteine are likely decreased, and homo-

cysteine is increased,5,22,23 which aligns with the directions of variation in

metabolite concentrations used to build the transsulfuration function pro-

files. Transsulfuration is critical to oxidative stress response because the

synthesis of glutathione, a free radical scavenger, is dependent on cyste-

ine.24 Accumulation of reactive oxygen species results in decreased flux

of one-carbon units through the methionine cycle in favor of an increase

is transsulfuration activity.24 Our finding that CSE function appears to be

more strongly associated with RCC risk than CBS function may be

explained by a greater loss of activity for CSE compared to CBS in the

presence of PLP insufficiency.25

There is an established relationship between vitamin B6 and can-

cer risk. A meta-analysis found an inverse association between PLP

concentration and risk of all cancers, with 34% lower risk among par-

ticipants in the highest vs lowest category.26 The associations of other

components of transsulfuration with cancer risk are less clear. In the

Northern Sweden Health and Disease Study, a Bayesian network

analysis of one-carbon metabolism, including transsulfuration metabo-

lites as well as other folate and methionine cycle metabolites, identi-

fied an independent association of circulating PLP with colorectal

cancer risk, but no direct associations for homocysteine, serine,

Transsulfuration

metabolite

PLP

Homocysteine

Serine

Cystathionine

Cysteine

BMI

20

27

35

20

27

35

20

27

35

20

27

35

20

27

35

OR (90% CrI)

0.62 (0.48, 0.79)

0.74 (0.64, 0.85)

0.91 (0.67, 1.24)

0.93 (0.69, 1.24)

1.11 (0.92, 1.34)

1.36 (0.97, 1.91)

0.93 (0.72, 1.20)

0.92 (0.80, 1.05)

0.90 (0.69, 1.19)

1.04 (0.79, 1.37)

1.13 (0.97, 1.32)

1.24 (0.91, 1.69)

1.13 (0.81, 1.59)

0.81 (0.66, 0.98)

0.55 (0.39, 0.76)

0.35 0.50 0.71 1.0 1.41 2.0

OR (90% CrI)ELPD difference (SE): −3.7 (3.5)

F IGURE 1 Associations of transsulfuration metabolites with risk
of RCC at specified levels of BMI within a nested case-control study
in EPIC (N = 455 cases and 455 controls). Estimates shown are
contrasts from the mutually adjusted model with separate interaction
terms added for each metabolite with BMI as a continuous predictor.
The expected log predictive density (ELPD) difference and its SE were
used for model comparison against the mutually adjusted model
without interaction terms. A negative ELPD indicates a worse fit for
the interaction model, and the SE indicates the precision of the
comparison of model fit

Transsulfuration

metabolite

PLP

Homocysteine

Serine

Cystathionine

Cysteine

Smoking

status

never

former

smoker

never

former

smoker

never

former

smoker

never

former

smoker

never

former

smoker

OR (90% CrI)

0.95 (0.76, 1.18)

0.59 (0.45, 0.78)

0.64 (0.49, 0.82)

0.93 (0.68, 1.25)

0.82 (0.60, 1.12)

1.48 (1.08, 2.04)

1.00 (0.81, 1.23)

0.90 (0.71, 1.14)

0.78 (0.60, 1.00)

1.22 (0.96, 1.54)

1.17 (0.93, 1.48)

1.08 (0.81, 1.43)

0.94 (0.69, 1.27)

0.88 (0.67, 1.15)

0.64 (0.46, 0.89)

0.50 0.71 1.0 1.41 2.0

OR (90% CrI)ELPD difference (SE): −3.1 (5.4)

F IGURE 2 Associations of transsulfuration metabolites with risk
of RCC at specified levels of smoking status within a nested case-
control study in EPIC (N = 455 cases and 455 controls). Estimates
shown are contrasts from the mutually adjusted model with separate
interaction terms added for each metabolite with smoking status. The
expected log predictive density (ELPD) difference and its SE were
used for model comparison against the mutually adjusted model
without interaction terms. A negative ELPD indicates a worse fit for
the interaction model, and the SE indicates the precision of the
comparison of model fit
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cystathionine or cysteine.27 However, in the same cohort, a positive

association was found between the ratio homocysteine:cysteine and

colorectal cancer risk.28 A 43% lower colorectal cancer risk was found

in a comparison of highest to lowest fourths of cysteine concentration

in the Women's Health Initiative cohort.29 A case-cohort study in

Linxian, China found an inverse association for circulating cysteine

with both gastric and esophageal cancers.30 Cystathionine and CBS

are both found in higher concentration in breast cancer tumor tissue

compared to healthy breast tissue,31 and an analysis from the

Women's Health Study found a positive association between circulat-

ing cysteine and breast cancer risk.32 Findings from meta-analyses

have shown higher concentrations of homocysteine among lung can-

cer cases compared to controls,33 but no evidence of an association

between homocysteine concentration and prostate cancer risk.34 A

nested case-control study using four US cohorts found no associa-

tions between plasma PLP or homocysteine and pancreatic cancer

risk. However, the risk estimates were in the same direction as those

we found for RCC risk (OR above 1 for homocysteine and below 1 for

PLP).35

Strengths of our analysis include the use of a multinational study

representing a wide range of dietary preferences and lifestyle differ-

ences. Because this case-control study was nested within the EPIC

cohort, plasma samples were collected at baseline in all participants,

with data available for cases often years prior to their diagnosis. This

allowed us to minimize the risk of reverse causation. Additionally,

samples for all participants were analyzed at the same lab under the

same protocol, and at the same time, minimizing the risk of measure-

ment errors.

There were limitations of this investigation as well. Residual con-

founding is possible, in part because we did not have data on germline

genetic mutations for our cases or controls, and therefore could not

account for differences in CBS or other transsulfuration pathway genes.

Additionally, the function of CBS is strongly influenced by allosteric regu-

lation by SAM, which was not measured in our study. We also did not

have data for downstream products of transsulfuration, namely glutathi-

one. We had a limited sample size with only one control matched to each

case. Metabolites were measured in blood samples taken at a single time-

point, so we could not determine the intrapersonal stability of these

markers or assess associations of trajectories in transsulfuration bio-

markers over time with RCC risk. However, an analysis of biomarkers

measured at the same lab (Bevital) comparing samples drawn at different

time points found good within-person reproducibility for all metabolites

used in our analysis, with cysteine and serine having the highest intraclass

correlation coefficients.36

Regarding the joint metabolite profile comparisons, it should be

noted that only the directions, but not the magnitudes, of assigned

values (except for empirically determined values in the PLP profiles)

have a strong theoretical basis supported by the literature. While our

approach assumes equal variation for all metabolites, in reality there is

likely a different strength of association for different cofactors, sub-

strates and products with regulatory control of enzyme function.

Therefore, our results should be considered a preliminary attempt at

quantifying the function of a complex pathway.

In summary, we identified individual metabolite and pathway-

wide associations linking homocysteine metabolism via trans-

sulfuration to RCC risk. While recent years have seen an increasing

interest in the role of the folate and methionine cycles in carcinogene-

sis, the closely related transsulfuration pathway has received relatively

little attention, but may play a central role because of its involvement

in several key metabolic processes including oxidative stress

response.
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