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Abstract
Despite increases in vaccination coverage, reductions in
influenza-related mortality have not been observed. Better
vaccines are therefore required and influenza challenge stud-
ies can be used to test the efficacy of new vaccines. However,
this requires the accurate post-challenge classification of sub-
jects by outcome, which is limited in current methods that use
artificial thresholds to assign ‘symptomatic’ and ‘asymptom-
atic’ phenotypes. We present data from an influenza challenge
study in which 22 healthy adults (11 vaccinated) were inocu-
lated with H3N2 influenza (A/Wisconsin/67/2005). We gen-
erated genome-wide gene expression data from peripheral
blood taken immediately before the challenge and at 12, 24
and 48 h post-challenge. Variation in symptomatic scoring
was found amongst those with laboratory confirmed influen-
za. By combining the dynamic transcriptomic data with the
clinical parameters this variability can be reduced. We identi-
fied four subjects with severe laboratory confirmed influenza
that show differential gene expression in 1103 probes 48 h
post-challenge compared to the remaining subjects. We have
further reduced this profile to six genes (CCL2, SEPT4,
LAMP3, RTP4, MT1G and OAS3) that can be used to define
these subjects. We have used this gene set to predict

symptomatic infection from an independent study. This anal-
ysis gives further insight into host-pathogen interactions dur-
ing influenza infection. However, the major potential value is
in the clinical trial setting by providing a more quantitative
method to better classify symptomatic individuals post influ-
enza challenge.

Key message
& Differential gene expression signatures are seen following

influenza challenge.
& Expression of six predictive genes can classify response to

influenza challenge.
& The genomic influenza response classification replicates

in an independent dataset.
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Introduction

Seasonal influenza is common, affecting 5–10 % of the 900
million people in the European Region [1] with substantial
associated mortality, morbidity and socioeconomic costs. De-
spite increases in vaccination coverage, reductions in
influenza-related mortality have not been observed [2]. In
order to develop better vaccines for seasonal and pandemic
influenza, influenza challenge studies are central to testing
vaccine efficacy. Consenting subjects are vaccinated,
quarantined and then inoculated with influenza via intranasal
administration. This approach has the advantage that poten-
tially susceptible individuals can be positively selected based
on low pre-existing immunity to the challenge virus. The
sample size is restricted by the capacity of quarantine facilities
and the high costs associated with performing a challenge
experiment. Accurate post-challenge classification of subjects
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by outcome is then critical to determining vaccine efficacy.
However these outcomes are based on scoring systems, which
have artificial thresholds for ‘symptomatic’ and ‘asymptom-
atic’ phenotypes and include subjective self-reported observa-
tions and on biological evidence for infection (i.e. virus shed-
ding and post-challenge serology) that are often discordant.

We sought to investigate the utility of genome-wide gene
expression profiling in classification of volunteers following
challenge. Application of a transcriptomic approach in the
context of a challenge study is also a powerful approach to
gain new insights into the biology of disease, as concordance
in the exposure history and detailed clinical phenotyping
before and after infection reduce the heterogeneity inherent
to study of naturally acquired infection. Gene expression
microarrays have been used to characterise the aberrant nature
of the immune response to the 1918 pandemic influenza virus
in macaques [3]. A number of studies have applied blood
transcriptomics to understand host response to influenza in
the context of lower respiratory tract infection and the H1N1
pandemic [4–8]. These approaches have also been applied to
the field of influenza vaccinology [9], giving insights into the
mechanisms of protective immunity. There has been one
previous challenge study involving H3N2 with application
of transcriptomic approaches [10, 11].

Here, we describe application of gene expression profiling
to an influenza challenge study involving a vaccine called
MVA-NP+M1. This viral-vectored vaccine has the potential
to induce heterosubtypic immunity through the induction of
cytotoxic T cells with specificity for epitopes within con-
served influenza proteins. We have found MVA-NP+M1 to
be safe and immunogenic [12, 13] with evidence that it may
increase antibody responses to inactivated influenza vaccine
when both vaccines are administered together [14]. The influ-
enza challenge study (FLU002) to test the efficacy of MVA-
NP+M1 [15] showed that vaccinees with laboratory con-
firmed influenza (LCI) shed virus for fewer days than control
subjects with LCI. In this paper, we report the nature of the
transcriptional response to influenza based on genome-wide
gene expression profiling of participants during the FLU002
study. We describe how this information could be used to
improve the biological classification of influenza challenge
subjects. These results have implications for our understand-
ing of the host-pathogen interactions for influenza and have
the potential to inform clinical diagnostic testing.

Materials and methods

Study subjects and clinical trial procedures

Detailed description of the subjects and methods used in the
clinical trial are provided in Lillie et al. [15]. The trial protocol
was approved by the local Research Ethics Committee and

conducted in accordance with the Declaration of Helsinki. All
participants provided written informed consent. Briefly, 22
healthy volunteers, aged 18–45 years, were enrolled and 11
were vaccinated with 1.5×108 plaque forming units (pfu) of
MVA-NP+M1. Thirty days after vaccination, all 22 volunteers
underwent intranasal challenge with H3N2 influenza (A/Wis-
consin/67/2005) at a dose of 1 ml of 105.25 TCID50/ml in a
quarantine facility. Volunteers were all challengedwithin a 2-h
period. All subjects had haemagglutination inhibition (HI)
titres of <1:10 to the challenge virus on admission to the
quarantine unit.

After virus challenge, volunteers had a physical examina-
tion by a trial physician daily and self-reported their symptoms
using a modified Jackson scoring system [16, 17] twice daily,
from 12-h post-challenge, for 6 days. This system lists upper
respiratory and systemic symptoms on a scale of 0–3: ‘no
symptoms’, ‘just noticeable’, ‘bothersome but can still do
activities’ and ‘bothersome and cannot do daily activities’.
Scores were summed over the duration of the challenge period
to give a total symptom score. Those volunteers with scores of
≥4 and positive viral culture from nasal wash samples were
categorised as having LCI. Severity of infection was graded as
mild if the summed symptom score was 4–28, with scores of
≥29 classified as moderate/severe. HI titres for each individual
at 26 days after challenge are provided (Online Resource,
Table S1). Volunteers were kept in quarantine until day 6
post-challenge, and all had a negative rapid antigen test on
nasal wash sample prior to discharge.

Whole blood was collected in PAXgene tubes prior to
influenza challenge (day 30) and then at three further time
points (12, 24 and 48 h post-challenge). All nasal washing and
blood collections for viral shedding and gene expression
analysis were taken in the same order that the volunteers were
challenged in.

RNA extraction and globin mRNA depletion

Total RNA was extracted from whole blood using the
PAXgene Blood RNA Kit (Qiagen) according to the manu-
facturer’s instructions. The abundance of globin mRNA pres-
ent in whole blood reduces the sensitivity of expression array
data, and therefore, globin mRNA depletion was carried out
using the GLOBINclearTM-Human kit (Ambion) following
the manufacturer’s instructions. Briefly, total RNA from
whole blood is mixed with a biotinylated capture oligo mix
specific for human globin mRNA. Streptavidin magnetic
beads capture the globin mRNA. Placing the tube against a
magnet then allows the globin mRNA depleted RNA to be
transferred to a fresh tube. Globin-depleted RNA is further
purified using a rapid, magnetic bead-based clean up proce-
dure. Globin mRNA depleted samples were quantified using a
NanoDrop spectrophotometer, and the quality for a subset was
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verified using a Bioanalyzer following the manufacturer’s
instructions (Bioanalyzer RNA 6000 Nano kit, Agilent).

Microarray data processing and analysis

Genome-wide gene expression analysis was carried out on
500-ng globin depleted RNA using the Illumina HumanHT-
12 v4 Expression BeadChip gene expression platform com-
prising 47,231 probes (Core Genomics, WTCHG). The report
for analysis was generated by Illumina’s GenomeStudio ver-
sion 1.6.0. Background signals were subtracted and 11,158
low expression probes (detection value <0.95) were removed.
The raw data were transformed and normalised using the
Variance Stabilization and Normalization method [18]. Qual-
ity control checks including principal component analysis to
check for batch and array effects were carried out using R
[19]. Two samples were excluded as outliers. The raw and
normalised data are accessible through GEO (GSE61754).

Statistical analysis

Differential gene expression analysis was carried out on
36,073 probes using three different R packages: limma [20],
maSigPro [21] and timecourse [22]. Benjamini-Hochberg
corrected values are used to control for multiple testing in
differential gene expression analysis and subsequent pathway
analysis. Pathway and network analysis was performed using
IPA (Ingenuity® Systems, www.ingenuity.com) analysing
probes differentially expressed between the four moderate/
severe LCI and the remaining samples, 48 h post-challenge.
The pamr R package [23] was used to identify genes whose
expression could accurately categorise moderate/severe LCI
compared to the remaining samples. The pamr package em-
ploys a ‘nearest shrunken centroids’ method to identify sub-
sets of genes that are best able to classify samples into the
specified groups of interest. The Huang dataset [11] was
normalised using the robust multi-array (RMA) method (data
accessible at NCBI GEO database [24], accession
GSE30550).

Results

Following influenza challenge, two individuals in the vacci-
nated group and five individuals in the unvaccinated group
developed LCI as defined in the clinical trial protocol [15]
(Fig. 1). Within the LCI group, there was considerable varia-
tion in the summed modified Jackson scores (ranging from 4
to 38) that describe the extent to which volunteers were
symptomatic. We therefore hypothesised that these differ-
ences in clinical phenotype might be reflected in patterns of

gene expression detected through microarray gene expression
analysis.

Principal component analysis (PCA) and hierarchical clus-
tering was performed to visualise variation in the dataset
(Fig. 2). This demonstrated that four subjects shared a similar
profile of variance in gene expression. These four subjects
were the only cases of LCI whose symptom score was
moderate/severe rather than mild. They also shared other
virology outcomes as shown in Fig. 1.

We proceeded to analyse differential gene expression using
a linear regression model. The likelihood of observed differ-
ences in gene expression was defined using an empirical
Bayes approach in which prior distribution was estimated
from the overall variance in the dataset, allowing a more stable
inference given small numbers of arrays [25]. Implementing
this approach using the Limma package [15], a total of 1103
probes were differentially expressed between these four vol-
unteers and the remaining samples at 48 h post-challenge (q<
0.05 controlling for multiple testing using Benjamini and
Hochberg’s method, Online Resource, Table S2 and
Table S3). Using the same approach, no probes were differ-
entially expressed at 12 or 24-h post-challenge (Online Re-
source, Table S2). This specific effect on differential expres-
sion at 48 h post-challenge is consistent with the observed
temporal onset of symptoms [15].
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In further analyses, the most significant 100 of these
differentially expressed probes (9 %) were selected and
almost all were found to be upregulated at 48 h post-
challenge in the moderate/severe LCI individuals
(Fig. 3a). In contrast, subjects with LCI and mild symp-
toms did not show substantial changes in expression of the
same probes (Fig. 3b). To further validate these findings,
two alternative methods based on a two-step regression
approach (maSigPro package [21]) and on multivariate
empirical Bayes statistics (timecourse package [22]) were
employed to generate an equivalent list of the 200 most
significant differentially expressed probes. The overlap
with the original probe list was 81 and 74 %, respectively
(Online Resource Fig. S1).

To assess the functional significance of the differentially
expressed genes in subjects with moderate/severe LCI at 48 h
post-challenge, we performed pathway and network analysis
(Fig. 4, Online Resource Figure S2). This showed significant
enrichment for genes involved in a number of pathways
notably interferon signalling (Benjamini-Hochberg corrected
p value = 6.4×10−10), role of pattern recognition receptors
(PRR) in recognition of bacteria and viruses (p=4.0×10−6),
activation of IRF by cytosolic PRR (p=7.7×10−4), eIF2 sig-
nalling (p=8.1×10−3) and death receptor signalling (p=8.1×
10−3) (Fig. 4). The most significant upstream regulators iden-
tified were type III, II and I interferons (IFNL1 p=2.2×10−59,
IFNA2 2.7×10−53, IFNG 3.4×10−42). Network analysis fur-
ther highlighted the significant upregulation of genes involved
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in the IFN response seen in these patients (Fig. S2). IFNs play
a critical role in host defence to viral infection with the
significance of IFNλ recently recognised [26–28]. The eIF2
signalling pathway plays a role in host defence by reducing
translation in the host cell thereby reducing the rate at which
new viral particles are generated [29] while death receptor
signalling involving apoptosis has been related to disease
severity in influenza A infection [30]. In terms of diseases
and functions related to the differentially expressed genes at

48 h post-challenge, infectious disease was most significant,
specifically replication of virus (P=9.3×10−17).

Although the analysis of over 1000 differentially expressed
probes can provide insight into host-pathogen interactions,
this magnitude of variables does not lend itself well to use in
diagnostics. We therefore sought to find the minimum number
of genes that could be used to successfully classify our data.
Using the tool ‘prediction analysis for microarrays’ (pamr)
[23], we identified six genes (CCL2, SEPT4, LAMP3, RTP4,
MT1G andOAS3) which alone classified our samples into two
groups with 100 % accuracy. These two groups comprised
those from subjects with moderate/severe LCI taken at 48 h
post-challenge in one group and the remaining 18 samples
(with either mild LCI or without LCI) in the second group.
The six selected genes are strongly upregulated in individuals
with moderate/severe LCI with network analysis showing
relationships involving interferon activation (Online Resource
Fig. S3).

In order to assess the validity of this six gene signal, we
identified a data set from an independent but similarly con-
ducted influenza challenge study, published by Huang et al.
[11]. This study used similar methods for RNA collection and
extraction, and the challenge was performed with the same
strain of influenza (A/Wisconsin/67/2005). Of the 17 subjects
in this study, eight were described as having asymptomatic
infection and nine as having symptomatic infection. Those
with symptomatic infection had a median summed Jackson
score of 39.

For each of the subjects in the Huang study, we included
six samples taken at different time points: two samples prior to
challenge were included, and the remaining four samples were
from consecutive post-challenge time points taken at 45, 53,
60 and 69 h. For all the post-challenge samples in the eight
asymptomatic volunteers, the six gene set classified the sam-
ples with 100 % accuracy. For 89 % (8/9) of the symptomatic
volunteers, pamr correctly classified at least one of these six
post-challenge timepoints (Table 1).

In addition, we investigated whether any differences were
observed between other subgroups in the study, for instance,
individuals who do not shed virus. We found no significant
difference between the symptomatic and asymptomatic indi-
viduals in this subgroup. Finally, we attempted to identify
whether vaccination modulated the host responses to influen-
za challenge. No significant difference in the temporal re-
sponse to influenza was seen between vaccinees and controls
on limma analysis.

Discussion

The results of this study highlight the value of combining
genome-wide gene expression profiling with clinical observa-
tions in order to improve the biological classification of
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influenza challenge studies and assist with clinical diagnostic
testing.

Using the principal components generated from the
genome-wide gene expression profiles, we were able to iden-
tify four LCI samples taken 48 h post-challenge that clustered
separately from the other samples. Upon further investigation,
we discovered a pattern of predominately upregulated gene
expression that is not observed in the remaining samples,
including LCI cases with mild symptoms according to the
clinical trial protocol. The signature correlates with the clinical

observations, and therefore, setting an arbitrary symptom
score threshold to classify LCI may not be the most informa-
tive end result of an influenza challenge study. Instead, this
gene signature may assist with redefining the symptom score
threshold or could be used in combination with the symptom
score to better classify moderate/severe LCI.

The informativeness of differentially expressed genes at
48 h post-challenge are likely to reflect the observed peak
in influenza A viral titres that have been reported at this
time for experimentally infected adults which has been
shown to be closely mirrored by changes in innate im-
mune response notably type 1 interferon levels [31, 32].
From the list of probes that we found are differentially
expressed in the four moderate/severe LCI cases 48 h
post-challenge, pathway analysis identified a number of
pathways which are enriched within the dataset. Many of
these pathways are involved in the anti-viral response
illustrating that these four individuals show a different
immune response to those with mild LCI. Similar path-
ways, and in particular, those regulated by interferon, have
previously been identified in a number of other studies;

�Fig. 4 Pathway analysis of differential expression in LCI. The
differentially expressed probes between the four moderate/severe LCI
samples 48 h post-challenge and the remaining samples were used to
determine pathway enrichment with IPA. a Pathways with significant
enrichment based on Benjamini-Hochberg (B-H) multiple testing
corrected p value <0.01 are shown. The blue bars show the −log(p
value). Differentially expressed genes are plotted for each enriched
pathway (red upregulated in moderate/severe LCI individuals, green
downregulated) with numbers of enriched genes shown in brackets
below x-axis labels. b The most significantly enriched pathway,
interferon signalling, is shown with enriched genes shaded in colour

Table 1 Gene signature validation. Data from the 17 subjects described by Huang et al. [11] were used to validate the predictive power of the six genes
CCL2, SEPT4, LAMP3, RTP4, MT1G and OAS3

Huang I.D. Huang phenotype Individual sample predications by pamr Group predicted

Baseline sample 0 h 45 h 53 h 60 h 69 h

1 Sx n n S S n n YES

2 Asx n n n n n n YES

3 Asx n n n n n n YES

4 Asx n n n n n n YES

5 Sx n n S S S S YES

6 Sx n n S S S S YES

7 Sx n n S S S n YES

8 Sx n n n n S S YES

9 Asx n n n n n n YES

10 Sx n n n n n S YES

11 Asx n n n n n n YES

12 Sx n n S S S S YES

13 Sx – n n n S S YES

14 Asx n n n n n n YES

15 Sx n n n n n n NO

16 Asx n n n n n n YES

17 Asx n n n n n n YES

The subject number and clinical status of each subject is listed: Sx indicates that the subject was symptomatic and Asx indicates that the subject was
asymptomatic. For each subject, samples were tested at six different time points. Two pre-challenge samples were tested to demonstrate that the changes
in gene expression only occurred post-challenge. Four consecutive post-challenge samples were tested to cover the range over which volunteers became
symptomatic. An S indicates that the test set sample would be classified within the moderate/severe FLU002 samples, and an n indicates that the samples
would be classified as either a pre-challenge sample or having none/mild symptoms. With the exception of subject 15, all symptomatic subjects were
correctly identified in at least one post-challenge sample
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however, few have focused on the human in vivo re-
sponse [33–35].

We were able to reduce the 48 h time point gene expression
signature to just six genes (CCL2, SEPT4, LAMP3, RTP4,
MT1G and OAS3). This enabled us to classify our samples
into two distinct groups (symptomatic and asymptomatic)
with 100 % accuracy providing a potentially convenient, cost
effective and quantitative method for determining post-
challenge outcome during vaccine and challenge trials. The
reproducibility of this gene set has been demonstrated using
samples from an independent vaccine study [17] with a high
level of accuracy (100 % for asymptomatic and 89 % for
symptomatic volunteers). To our knowledge, the only other
transcriptomics analysis involving an H3N2 influenza chal-
lenge study was for 17 adults, described by Huang, Zaas,
Woods and colleagues [10, 11, 17]. Woods et al. have also
published data on H1N1 challenge [10]. They found the gene
expression signatures induced by these two strains to be
highly similar, with 88 % overlap between the most differen-
tially expressed genes. Four of our six genes (CCL2, LAMP3,
RTP4 andOAS3) are represented in the list of the top 50 genes
from this H1N1 study. Two studies in 2013 examined
genome-wide gene expression in patients with influenza ac-
quired in the community. While none of these six genes were
amongst the best discriminators of respiratory syncytial virus
(RSV) from influenza, four of the six genes (OAS3, SEPT4,
LAMP3 and RPT4) were represented in a gene list of 161
interferon-related differentially expressed genes [6]. In a sep-
arate study, Herberg et al. [5] reported genome-wide gene
expression in 19 children with H1N1 infection. Of the 50
probes which were most significantly upregulated, four of
our six genes were represented (OAS3, LAMP3, SEPT4 and
MT1G).

The OAS3 gene product is an enzyme that functions to
resist viral infection via the destruction of intracellular RNA
[29].CCL2 encodes a chemokine that attracts monocytes. The
clinical significance of CCL2/MCP1 in influenza disease has
been suggested by studies that have associated elevated CCL2
levels with a poor prognosis in H1N1 infected Chinese pa-
tients [36] and a small interfering RNA (siRNA) screen show-
ing effects on vaccinia virus infection [37]. While CCL2
attracts monocytes, receptor transporter protein 4 (RTP4)
and the metallothionein isoform MT1G can be expressed by
monocytes [38, 39]. RTP4 is known to be induced by type I
interferons and have targeted anti-viral actions [40]. A high-
throughput siRNA screen in primary lung cells showed that
RPT4 was a key determinant of influenza virus replication
[35]. SEPT4 encodes a member of the septin family of nucle-
otide binding proteins, and Septin 5 was reported to be upreg-
ulated in chicken brain following H5N1 infection [41]. The
lysosomal-associated membrane protein 3 (LAMP3) is
expressed by activated DCs [42] and is significantly induced
in human lung epithelial cells (A549 cells) following

influenza infection in vitro [43]. Our network analysis and
the published evidence described here links these genes to the
immune and specifically anti-viral response but shows that
they are not involved in the same biological pathways. By
representing different biological pathways, these six genes
may succinctly describe a complex pattern of gene expression.

The Huang dataset illustrates the variability that can be
seen between individuals in response to influenza challenge.
For the eight samples that we successfully predicted as being
symptomatic using the panel of six genes, there is no one
single time point at which all eight samples are predicted as
symptomatic. This suggests that the window for symptomatic
classification can vary from individual to individual over a
number of hours. Further work may be required to optimise
the panel of genes used dependent on the specific time win-
dow post-challenge used to measure gene expression.

Fewer vaccinated volunteers were expected to develop LCI
and experience moderate/severe symptoms less frequently
compared to unvaccinated volunteers. We did not detect a
difference in the gene expression profile between vaccinated
and unvaccinated individuals in this study. This is perhaps not
surprising as initial samples were taken 30 days after vacci-
nation, and previous studies [44] with viral-vectored vaccines
have shown differential gene expression to be undetectable at
7 days post-vaccination. Further studies will be needed to
confirm the preliminary evidence of vaccine efficacy, and
these will be facilitated by the use of gene expression data to
allow objective classification of outcomes.

This analysis gives further insight into host-pathogen inter-
actions which could be beneficial for early detection of influ-
enza. However, the major value is in the clinical trial setting.
Current biological phenotyping methods often show inconsis-
tency, but this work illustrates the use of a more quantitative
method. The ability to better classify symptomatic individuals
post influenza challenge will help accelerate future influenza
vaccine efficacy studies.
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