
BioMed CentralBMC Proceedings

ss
Open AcceProceedings
Impact of marker density on the accuracy of association mapping
Weihua Zhang*†1,4, Winston Lau†2, Cheng Hu3 and Tai-Yue Kuo2

Address: 1Section of Cancer Genetics, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK, 2Human 
Genetics Division, Duthie Building (Mailpoint 808), Southampton General Hospital, University of Southampton, School of Medicine, Tremona 
Road, Southampton, SO16 6YD, UK, 3Shanghai Diabetes Institute, Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, People's 
Republic of China and 4Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UB1 3HW, UK

Email: Weihua Zhang* - weihua.zhang@eht.nhs.uk; Winston Lau - wwsl@soton.ac.uk; Cheng Hu - alfredhc@sjtu.edu.cn; Tai-
Yue Kuo - kuotaiyu@soton.ac.uk

* Corresponding author    †Equal contributors

Abstract
We studied the impact of marker density on the accuracy of association mapping using Genetic
Analysis Workshop 15 simulated dense single-nucleotide polymorphism (SNP) data on
chromosome 6. A total of 1500 cases and 2000 unaffected controls genotyped for 17,820 SNPs
were analyzed. We applied the approach that combines information from multiple SNPs under the
framework of the Malecot model and composite likelihood to non-overlapping regions of the
chromosome. We successfully detected the associations with disease Loci C and D and predicted
their locations as small as zero distance to Locus C when it was "typed" and 112 kb from the
untyped rare Locus D. Reducing marker density decreased the accuracy of location estimates.
However, the predicted locations were robust to variations in the number of SNPs. Generally, the
linkage disequilibrium (LD) map reflecting distances between markers in relation to LD produced
higher accuracy than the physical map. We also demonstrated that SNP selection based on equal
LD distance outperforms that based on equal physical distance or SNP tagging. Furthermore,
ignoring rare SNPs diminished the ability to detect rare causal variants.
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Background
As the cost of genotyping decreases, genome-wide associ-
ation (GWA) mapping of the predisposition genes for
complex diseases is becoming a common study design in
genetic epidemiology. As the huge number of single-
nucleotide polymorphisms (SNPs) in the human genome
is still prohibitive for exhaustive investigation, subsets of
SNPs have often been selected for large scale studies. Mor-
ton et al. developed a novel GWA mapping approach
based on the Malecot model and composite likelihood
combining multiple marker information from non-over-
lapping genomic regions to predict the locations of dis-
ease variants [1]. We applied this approach to the Genetic
Analysis Workshop (GAW) 15 Problem 3 simulated dense
chromosome 6 data with the knowledge of the answers
and we studied the effect of SNP density on the accuracy
of association mapping.

Methods
Data
The simulated data set contained 1500 families with a sib
pair affected with rheumatoid arthritis (RA) and a random
sample of 2000 unrelated and unaffected individuals. To
form a case-control study, we selected the first sibling per
family as a case. A total of 1500 cases and 2000 controls
from Replicate 1 were analyzed. There are three simulated
disease loci. HLA-DR is at the same location of 32484.648
kb as Locus C, where a SNP denseSNP6_3437 lies, so we
considered this SNP the disease variant C. Locus D is at
37233.784 kb, in very weak linkage disequilibrium (LD)
with Locus C. The minor allele frequency (MAF) for the C
allele was 0.4055 in control samples. The D allele has a
population frequency of 0.0083, but the variant was not
typed.

Genotype data were composed of 17,820 SNPs on chro-
mosome 6, mimicking a 300 K GWA scan with no missing
values. Fifty-eight SNPs showing departure from Hardy-
Weinberg equilibrium (HWE) in control samples (χ2

1 ≥
10 for either Pearson's or likelihood ratio chi-square tests)
were discarded [2]. Following convention, 2061 rare SNPs
with MAF < 5% were further removed except when other-
wise indicated. The main data set (1) was thus composed
of a total number of 15,701 SNPs. In another experiment
we retained all SNPs but removed 26 SNPs showing
departure from HWE by the likelihood-ratio test and this
generated 17,794 SNPs (data set 2).

LD map
The physical map length was 170,813 kb. LD maps
expressed in LD units (LDUs) were constructed based on
pair-wise LD for multiple markers in control samples [3].
LDU is the product of ε and kb distance for an interval of
two adjacent SNPs and is additive, where ε represents the
exponential decline of LD with distance for that interval.

We used the LDMAP-cluster, a parallel version of LDMAP
program that rapidly constructs the maps of equally
divided chromosome segments
http:www.som.soton.ac.uk/research/geneticsdiv/
epidemiol ogy/ldmap/[3]. For each segment, an overall ε
value was also estimated. The LD map length was
1311.225 LDUs for the main data set and 1237.923 LDUs
for data set 2. SNPs can have the same LDU if they are in
an LD block. Therefore, we also made tilted LD maps by
reassigning LDU locations for the SNPs with the same
LDU by linear interpolation.

Association mapping
A chromosome is divided into non-overlapping consecu-
tive regions of a minimum number of 30 SNPs and a min-
imum length of 10 LDUs by default without breaking LD
blocks. Each genomic region was then analyzed sepa-
rately. Association between SNP alleles and disease status
in the Malecot model is a function of several parameters.
Composite likelihood combines information of all
marker-disease association in a genomic region. The
parameters were estimated through fitting the model to
the data with a map in LDU or kilobases and by minimiz-
ing -2 natural log composite likelihood (denoted as Λ)
[1]. The estimated location S of the disease locus is con-
verted to a kilobase scale. The significance test is per-
formed by contrasting two hierarchical models. Model A
assumes no association with the disease, therefore S is not
estimated. Model D assumes an association with the dis-
ease and S and two other parameters are estimated and ε
is specified. The difference in Λ between models A and D
(ΛA - ΛD) is monotonic to the magnitude of chi-square
with three degrees of freedom (χ2

3). Permutation by shuf-
fling case-control status for each region was performed to
obtain empirical p-values [1]. The algorithms were imple-
mented in the CHROMSCAN program. A parallel version,
CHROMSCAN-cluster, deployed on a local Beowulf clus-
ter http://www.som.soton.ac.uk/research/geneticsdiv/epi
demiology/chromscan/ was used for computing 1000
replicates.

The values of ε were obtained by averaging over eight seg-
ments in LD map construction, which were 1.14472 and
0.00568 for LD and kilobase maps, respectively, for the
main data set, and 1.14386 and 0.00544 over nine seg-
ments for data set 2. Theoretically, a more accurate ε may
be obtained by fitting the maps to the whole chromosome
data, but the extensive computing power required for the
task is impractical to implement and beyond the current
computing resource. Also, slightly altered ε values did not
appear to have an appreciable effect (data not shown).

For comparison, a single SNP χ2
1 was obtained by the 2 ×

2 allelic count table and the most significant SNP
(msSNP) showing maximal χ2

1 in each region was identi-
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fied. Location error (in kilobases) was defined as the dif-
ference between S or the location of the msSNP and the
true location of disease variant. Accuracy refers to the pre-
cision of the predicted location S. The smaller the error,
the higher the accuracy.

SNP density
To generate different SNP density, we selected every ith

SNP (i = 2, 3, ..., 20, 25, 30) in the order of their physical
locations from the full data set, representing 1/i the
number of SNPs in the original set. For a candidate region
spanning Loci C and D with rare SNPs included, we used
Tagger implemented in the Haploview software to select
tagging SNPs that optimally capture allelic variation
among SNPs at a given r2 threshold based on pairwise LD
in control samples [4]. For comparison, we selected the
same number of SNPs as Tagger but in equal LDU or kilo-
base distance. To do this we used the tilted LD map in
which every SNP had a unique LDU location. We also
studied the impact of region length and sample size.

Results and discussion
Association mapping of disease loci in full data set
Fourteen out of 126 regions showed nominal significant
association with RA (p < 0.05), among which eight con-
secutive regions spanned Loci C and D (Table 1). Five
regions remained significant after Bonferroni correction,
among which four surrounded or spanned Locus C, and
one covered Locus D (Table 1). Locus C was inside the
most significant region 29. Therefore, the three regions
surrounding Locus C with less significance levels must be
the result of LD between variant C and other SNPs. The
discontinuity of significance surrounding region 32 indi-
cated that this region harbored another disease locus and
indeed, this was where Locus D lies. Therefore, we success-
fully detected Loci C and D in the initial analysis. The low-
est p for the rest of the regions was 0.0064. Given that
there were no other disease loci, the approach had a right
type I error rate (6/118 = 0.05). A lesson learned was that
when there was long-range LD, consecutive regions show-

ing association may reflect one instead of several disease
loci. As an alternative to merging regions, we studied the
impact of region length on accuracy (see below).

S for Locus C was reasonably accurate (55 kb apart from
true location using LD map). However, the location error
was 542 kb for Locus D and the 95% confidence interval
did not include Locus D. Removing 10 SNPs showing sig-
nificant LD with variant C did not change the results. We
then divided region 32 into two or three sub-regions.
Again, we did not detect significant association in the
middle part where Locus D lies, although we detected the
associations in the first and third sub-regions where two
clusters of highly significant SNPs lay. Because Locus D is
rare, the removal of rare SNPs may have had an effect. We
then added rare SNPs and used the corresponding LD
map and ε values, and the location accuracy was markedly
improved for Locus D (Table 2). Among the added rare
SNPs, three were highly associated with the disease:
denseSNP6_3931, _3933, and SNP6_162 (χ2

1 = 118, 116,
and 116, respectively). It is therefore a mistake to remove
rare SNPs (MAF < 0.05) in association analysis. This was
in contrast to the HapMap project in which the focus was
on common SNPs. However, inclusion of rare SNPs
resulted in higher location error for common disease
Locus C (Table 2).

Occasionally or under high marker density, the kilobase
map performed better than the LD map, presumably
because every SNP has a unique physical location,
whereas several SNPs could have the same LDU location
in LD blocks. The tilted LD map improved the location
accuracy for Locus C, although not for Locus D (Table 2).

In practice, the phenomenon in this simulated data set
may be too extreme. On the other hand, it is possible that
several disease loci can be closely located. To distinguish
such loci is a challenge to genetic epidemiologists. Under
this circumstance, single SNP association plus a gene
functional study may be useful.

Table 1: Association mapping of disease Loci C and D on chromosome 6

Regiona No. SNPs S (kb) ΛA - ΛD χ2
3 P Pc

26 128 24882 68 14 0.002471 0.311346
27 239 26121 793 40 <10-7 0.000001
28 348 31299 5176 128 <10-12 <0.000001
29 176 32540 33058 322 <10-12 <0.000001
30 153 33962 295 25 0.000017 0.002129
31 134 35638 103 15 0.001929 0.243096
32 127 37776 141 27 0.000007 0.000926
33 147 39432 50 13 0.005554 0.699754

aA segment of consecutive regions of 10 LDUs showing nominal significant association with RA (p < 0.05). See Methods for the meaning of other 
symbols. Loci C and D were in regions 29 and 32 at locations of 32485 and 37234 kb, respectively.
bPc is Bonferroni corrected p-value for multiple tests of 126 regions (p × 126).
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SNP density based on the order
As density decreases, location error increases whether
using single or multi-SNP approaches when the disease
variant was not "typed" (Table 3). There was an improve-
ment in accuracy when the disease variant was included.
In most cases, using the LD map resulted in greater accu-
racy than using the kilobase map, especially when the
marker density was low. We also selected SNPs on the
scale of one to the hundredth or even the thousandth. As
long as there was one SNP highly associated with the dis-
ease (e.g., χ2

1 = 27), the association was detectable, but
much compromised by precision as a result of low SNP
density. These data are unusual in that the association of
Locus C is extremely significant and probably would not
be observed in the real data.

Although mapping accuracy decreases with marker den-
sity, even with 1/30 the number of SNPs, corresponding
to a 10 K GWA scan, we could still detect Locus C (Table
3). Single SNP tests depend heavily on whether the dis-
ease variant is typed. It has less predictive value for accu-
racy because the SNP with maximal χ2 is not necessarily
the closest SNP to the disease variant. In contrast, meth-

ods that combine information from multiple markers pre-
dict the location of the disease variant better than single
SNP tests because the location is less influenced by any
single SNP effects. A multi-marker approach may there-
fore be more robust to genotyping errors.

We expect that the mapping accuracy will be improved
further in maps with higher marker density than that
assessed in this paper, such as the commercially available
500 K or more genotyping platforms for GWA studies.

SNP density based on tagging or equidistance
For the 15,805.710 kb candidate region spanning both
Loci C and D, we compared location accuracy using SNPs
selected with Tagger or by equidistance of LDU or kilo-
bases (Table 4). SNPs based on equal LDU provided
higher location accuracy than those based on equal kilo-
base distance. Equidistance generally provided higher
accuracy than tagging SNP selection. Again, reducing SNP
density decreases the prediction accuracy of disease Loci C
and D, but this was minimally affected by selection based
on equal LD distance (Table 4).

Table 3: Density and accuracy for Locus C – SNP selection by order

msSNP Location error by the composite likelihood approach

Causal SNP out Causal SNP in

SNP density (kb/SNP) No. SNPs No. regions χ2
1 Location error LD kb LD kb

Full (11) 15701 126 2324 153 57 13 55 14
1/2 (22) 7850 125 1762 -2 5 -19 5 -20
1/3 (33) 5233 118 2324 153 153 40 6 40
1/4 (44) 3925 106 1762 -2 -65 -56 -57 -53
1/5 (54) 3140 94 2274 42 -24 -35 -15 -36
1/6 (65) 2616 82 1285 20 20 20 10 15
1/8 (87) 1962 64 1601 65 -58 -64 -47 -58
1/10 (109) 1570 52 726 -106 -55 -59 -24 -46
1/15 (163) 1046 34 486 -887 294 26 0 3
1/20 (217) 785 26 726 -106 -97 -160 -26 -43
1/25 (272) 628 20 348 -9 69 -120 60 -79
1/30 (326) 523 17 229 188 362 -25 0 -25

Disease variant C (χ2
1 = 1916) was not present except in the full data set or specified.

Table 2: Candidate regions of disease Loci C and D with rare SNPs included

Location error with rare SNPs

Locus Map S (kb) ΛA - ΛD χ2
3 p Included Removed

C LD 32557 30693 360 <10-12 72 55
LD, tilt 32518 30799 197 <10-12 34 21
kb 32506 28632 496 <10-12 22 14

D LD 37358 154 22 0.000017 124 542
LD, tilt 37368 156 28 0.000003 130 546
kb 37368 148 17 0.000666 130 954
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Sample size and region length
We analyzed different sample sizes based on the combina-
tion of 500, 1000, 1500, and 2000 cases or controls.
Despite variations in location errors for Locus C, there was
no clear trend to draw any meaningful conclusion. For
Locus D, however, a high degree of accuracy appeared to
be maintained when the data sets had over 1000 cases and
1500 controls. Therefore, large samples are needed for
detecting rare disease loci.

With Locus C being centred, we studied region lengths
from 0.2 up to 30 LDUs, with the latter starting in region
27 and ending in region 30. The location error was rela-
tively stable but extremely small or large LDU lengths
resulted in increased error. The region lengths in LDUs
(location errors in kilobases) were 0.2 (107), 1 (5), 2 (82),
4 (5), 6 (5), 8 (5), 10 (5), 12 (-10), 14 (-10), 16 (-13), 18
(-14), 20 (-14), and 30 (-68). We therefore recommend
10-LDU for the maximal length while maintaining mini-
mal error. Increasing the number of SNPs also linearly
increases the computing load [3].

Fixing region length had no appreciable impact on loca-
tion accuracy at high density, but the errors were greater
than let-the-program-decide regions at low density (data
not shown).

Conclusion
We successfully detected disease Loci C and D in the sim-
ulated dense chromosome 6 data using the Malecot
model and composite likelihood approach. Decreasing
SNP density compromises accuracy of association map-
ping. This multi-marker approach has many advantages.
Firstly, it markedly decreases the number of tests in GWA
studies, avoiding heavy penalty for multiple testing. Sec-
ondly, it predicts the disease loci more accurately than sin-
gle SNP association tests. We also demonstrated that SNP
selection by equal LD distance outperforms that by tag-
ging or equal kilobase distance in the accuracy of associa-
tion mapping. Finally, we conclude that excluding rare

SNPs significantly decreases the power and accuracy in
mapping rare disease loci.
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