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The present paradigm of psoriasis pathogenesis revolves around the IL-23/IL-17A axis.

Dual-secreting Th17 T cells presumably are the predominant sources of the psoriasis

phenotype-driving cytokines, IL-17A and IL-22. We thus conducted a meta-analysis of

independently acquired RNA-seq psoriasis datasets to explore the relationship between

the expression of IL17A and IL22. This analysis failed to support the existence of dual

secreting IL-17A/IL-22 Th17 cells as amajor source of these cytokines. However, variable

relationships amongst the expression of psoriasis susceptibility genes and of IL17A, IL22,

and IL23A were identified. Additionally, to shed light on gene expression relationships

in psoriasis, we applied a machine learning nonlinear dimensionality reduction strategy

(t-SNE) to display the entire psoriasis transcriptome as a 2-dimensonal image. This

analysis revealed a variety of gene clusters, relevant to psoriasis pathophysiology but

failed to support a relationship between IL17A and IL22. These results support existing

theories on alternative sources of IL-17A and IL-22 in psoriasis such as a Th22 cells and

non-T cell populations.
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INTRODUCTION

Psoriasis is a chronic inflammatory skin condition with nail and systemic manifestations that
affects ∼3% of the general United States population. It is commonly associated with psoriatic
arthritis and is likely linked to other comorbidities, such as cardiovascular disease and metabolic
syndrome (1–4).

Of the many clinical variants, plaque psoriasis (psoriasis vulgaris) is the most common,
accounting for ∼80–90% of cases (1, 5). It is also the most well-characterized histologically and
genetically. Plaque psoriasis was initially proposed to be driven by hyperproliferative keratinocytes.
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However, in 1890, neutrophil involvement was suggested after
histologic evaluation revealed early neutrophil accumulation
within the dermis and epidermis (i.e., microabscesses of Munro
and pustules of Kogoj, respectively) (6).

Despite the clear existence of neutrophils in lesional skin, the
role of the adaptive immune system in psoriasis pathophysiology
became the main focus of the field after the T cell-targeting
agent, cyclosporine, was shown to be an effective treatment (7–
9). Thus, psoriasis researchers became very quickly focused on
characterizing CD4+ and CD8+ T cell responses in normal
and diseased human skin (10–12). Subsequently, experiments
performed in animal models were also developed that supported
the T cell-centric view of psoriasis. For example, it was
demonstrated that a psoriasis-like phenotype could be induced
following adoptive transfer of dysregulated CD4+ T cells
(13). With this knowledge came the development of the next
generation of T cell-targeting therapeutics (alefacept, efalizumab)
(14–17), which further corroborated the essential role of T cells
in psoriasis pathophysiology.

FIGURE 1 | (A) The expression of IL17A does not strongly correlate with the expression of IL22 (rs = 0.04). (B) Meta-analysis of four datasets further supports that

IL17A and IL22 expression do not strongly correlate [rs = 0.18, with a confidence interval that crosses 0 (−0.05, 0.41)].

At the time T cells became the focus of psoriasis, adaptive
immune responses were typically divided into two types, T helper
type 1 (Th1) and T helper type 2 (Th2) responses. In psoriasis,
the absence of Th2-defining cytokines [interleukin (IL)-4, IL-
5, and IL-10] (18) and the increased presence of Th1 cytokines
(interferon gamma (IFN-γ), tumor necrosis factor (TNF) and IL-
12) prompted researchers to classify psoriasis as a Th1-mediated
disease (18). Soon thereafter, however, it became increasingly
apparent that IL-17-secreting T cells (Th17 cells) played a major
role in disease pathogenesis, not only in psoriasis, but also across
a wide spectrum of animal models of autoimmunity (19–22).

Psoriasis is now thought to be a predominantly Th17-driven
disease (23, 24) that is maintained by the key Th-17-supporting
cytokine, IL-23 (25, 26). The dominant role of the IL-23/IL-
17A axis in psoriasis is also evident by the overwhelming
clinical success of newly developed IL-23/IL-17A axis-targeting
biologics, which could induce near complete resolution of
psoriasis, even in the most severely affected individuals (27–29).
IL-22 is also a highly investigated cytokine involved in psoriasis
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pathophysiology. It is thought to be the primary promoter of
keratinocyte hyperproliferation (30, 31). The predominant view
is that this cytokine is secreted by IL-17A/IL-22 dual-secreting
Th17 cells (32).

However, the observed pathogenicity of IL-17A/IL-22 dual-
secreting Th17 cells has never been formally demonstrated in
vivo. In fact, the vast majority of evidence in support of these cells
have come from animal studies and in vitro analysis of human
T cells cultured under extreme polarizing conditions (32–35).
Even when studied directly ex vivo, the dual secretion is usually
seen only after non-physiologic T cell stimulation (36, 37). Since
naturally processed autoimmune epitopes are difficult to identify
(38), it is challenging to study cytokine secretion using more
physiologic stimuli.

Thus, we sought evidence for the existence of dual secreting
IL-17A/IL-22 Th17 cells within the psoriasis transcriptome.
Weighted gene co-expression networks analysis (WGCNA) (39)
have previously been used to analyze gene-gene correlations
within RNA-Seq datasets. While this strategy has certain
advantages, it is not ideally suited to explore gene relationships

across multiple RNA-Seq datasets. Herein, we conduct meta-
analyses of RNA-seq datasets to directly evaluate the current
hypothesis that dual-secreting IL-17A/IL-22 Th17 cells are the
dominant effector population in psoriasis. We also used this
strategy to correlate the expression of IL17A, IL22, and IL23A
with genes linked to psoriasis susceptibility identified through
genome-wide association studies (GWAS). Finally, to explore the
gene expression profile of IL17A, IL22, and IL23A in relation to
other genes expressed in psoriatic plaques, we utilized a machine
learning nonlinear dimensionality reduction strategy to visualize
the entire psoriasis transcriptome as a 2-dimensional (2D) image.
This allowed us to clearly visualize the relationship between
IL17A, IL22, and IL23A and all other genes that are expressed in
psoriatic skin.

MATERIALS AND METHODS

Human RNA-Seq
RNA-Seq FASTQ files of human normal and psoriasis lesional
skin were downloaded from the NCBI Sequence Read Archive

FIGURE 2 | (A) IL22 gene expression does not correlate with IL23A (rs = 0.11). (B) Meta-analysis confirms that IL22 and IL23A do not strongly correlate [rs = 0.13,

with a confidence interval that crosses 0 (−0.03, 0.29)].
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(http://www.ncbi.nlm.nih.gov/Traces/sra). Four total datasets
were used: Three datasets (Accession numbers: SRP165679,
SRP026042, SRP057087) and one dataset comprised of two
combined experimental datasets published by the same research
group (Accession numbers: SRP035988, SRP050971) (40–42).

Correlations
Correlation analyses of gene expressions were performed on
read counts of each identified gene normalized with DESeq2
package (43). Values were subsequently log transformed and
winsorized when necessary. Spearman’s correlation coefficients
were calculated (rs) using the cor.test function in R (44). P values
of the correlations were estimated by algorithm AS 89.

2D Visualization of the Psoriasis
Transcriptome
We computed the gene pairwise distance using a formula,
1-r2, where r represents Pearson’s correlation. A visual
representation of the gene co-expression network was created
using a dimensionality reduction technique, t-Distributed

Stochastic Neighbor Embedding (t-SNE), calculated with Rtsne
package (45).

Gene Selection
A Pubmed search was performed to identify genes linked to
psoriasis through GWAS.

Genes selected for mapping included: BTK, CD3E, CD4,
CD8a, CD8b, CD19, CTSG, CXCL1, CXCL2, CXCL5, ELANE,
ICAM1, IGH, IGK, IGL, IL1B, IL8, IL17A, IL22, IL23A, IL36A,
IL36B, IL36G, IFNG, ITK, MPO, MS4A1 (CD20), TNF, TRA
(TCRα), TRB (TCRβ), TRD (TCRδ) TRG (TCRγ).

Genes selected for meta-analysis included: B3GNT2, CARD14,
CARM1, CDKAL1, CTSG, CXCL1, CXCL5, CXCR2, DDX58,
DEFB4A, ELANE, FBXL19, GJB2, HLAC, IFIH1, IL12B, IL17A,
IL22, IL23A, IL36RN, IL4R, KLF4, KRT1, KRT5, KRT6A,
KRT6B, KRT6C, KRT10, KRT14, KRT16, KRT17, KRT37, LCE3A,
LCE3B, LCE3D, MPO, NFKBIA, NOS2, NOS3, PTPN22, RELB,
RUNX3, SOCS1, STAT3, STAT5A, TNFAIP3, TNFRSF9, TNIP1,
TRAF3IP2, TYK2, UBE2L3, VDR, VEGFA, VEGFB.

FIGURE 3 | (A) A significant Spearman correlation (rs = 0.23, p = 0.017) is seen between IL17A and IL23A gene expression. (B) Meta-analysis supports a strong

correlation between IL17A and IL23A [rs = 0.31, (0.12, 0.51); p = 0.0014].
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Meta-Analysis
Meta-analysis was completed using the R package “metafor”
(46). A weighted random-effects model was used to estimate
a summary effect size. To estimate between-study variance,
a restricted maximum-likelihood estimator was applied. A
weighted estimation with inverse-variance weights was used to
fit the model.

RESULTS

The Expression of IL17A and IL22 Do Not
Strongly Correlate With One Another in
Psoriatic Plaques
We hypothesized that if a significant amount of IL-17A and
IL-22 is produced by IL-17A/IL-22 dual secreting Th17 cells in
psoriasis, then the gene expression of these two cytokines should
correlate with one another. In theory, their expression would be
directly linked to the number of dual-secreting Th17 cells in a

psoriasis plaque. Their gene expression should also correlate with
IL23A, which activates and maintains Th17 cells.

To test this hypothesis, gene expression of IL17A vs. IL22

was graphed and the Spearman’s correlation coefficient (rs) was
calculated (Figure 1A). These correlative studies demonstrated

that the expression of IL22 does not strongly correlate with
the expression of IL17A (rs = 0.04, p = 0.67). To obtain a
weighted average across all four independently acquired psoriasis
datasets, a meta-analysis was performed and the resulting
Forest plot (Figure 1B) demonstrated again that IL17A and
IL22 do not strongly correlate with one another [rs = 0.18,
with a confidence interval that crosses 0 (−0.05, 0.41)]
(Supplemental Figure 1).

Similarly, IL22 gene expression did not correlate well with
IL23A (Figures 2A,B). In contrast, the expression of IL17A
did correlate very well with IL23A (Figure 3A), a result that
was consistent amongst a majority of datasets. The weighted
average of this correlation across all psoriasis datasets was
highly significant, [rs = 0.31 (0.12, 0.51); p = 0.0014], with no

FIGURE 4 | 2D gene coexpression network illustrates gene expression relationships of the psoriasis plaque. Points closer together represent genes that have higher

correlation coefficients, while genes at further distances generally do not correlate well. Gene clusters appear to correspond to neutrophil-recruiting cytokines,

neutrophil effector molecules, T cell, B-cell, and psoriasis-associated genes in lesional psoriatic skin.
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FIGURE 5 | IL22 is located at a relatively great distance away from IL17A and IL23A in the psoriasis transcriptome, as illustrated in the 2D gene expression network

map of psoriasis. These results suggest that IL22 is not highly linked to either IL17A or IL23A in psoriasis pathophysiology.

evidence (p = 0.33) of any substantial residual heterogeneity
(i.e., there was no remaining variability in effect sizes that
was unexplained) (Figure 3B). Our data confirms the well-
characterized dependency of IL-17A on IL-23A. However, IL-22
was not found to have a similar dependency on IL-23A, casting
doubt on the theory that IL-17A and IL-22 are secreted mainly
by the same dual-secreting cell.

2D Visualization of the Psoriasis
Transcriptome Reveals T Cell, B Cell,
Inflammatory Cytokines,
Neutrophil-Recruiting, and Neutrophil
Gene Clusters
To determine how genes expressed in psoriatic plaques are
related to one another, correlation coefficients were calculated
for all pairwise comparisons. The distances between each
gene pair was calculated as described in the methods. The
resulting distance matrix was then used to construct a 2D image
using t-SNE.

In the 2D plot (Figure 4), genes that highly correlate
with one another tend to be located in the same

region, known as a cluster. Genes that do not cluster
near each other do not correlate well. Figure 4 clearly
demonstrates that genes associated with B cells [BTK,
CD19, IGH, IGK, IGL, MS4A1 (CD20)], T cells (CD3E,
CD4, CD8a, CD8b, ICAM1, ITK, TRA TRB, TRD, TRG),
neutrophils (CTSG, ELANE, MPO), neutrophil-recruiting
(CXCL1, CXCL2, CXCL5, IL8), and psoriasis-associated
inflammatory cytokines (IL1B, IL17A, IL23A, IL36A, IL36B,
IL36G) cluster well together in distinct groups, which
supports this method as a means to visualize the entire
psoriasis transcriptome.

IL22 Does Not Cluster With Other
Inflammatory Cytokines Involved in
Psoriasis, Including IL17A
With respect to other cytokines and chemokines involved in
psoriasis pathophysiology, IL22 is located peripherally at a
relatively great distance away on the 2D plot of the psoriasis
transcriptome (Figure 5). This supports our results from the
meta-analyses and suggests that IL22 does not correlate well
with IL23A. Interestingly, IL22 does not cluster well with
any of the most commonly implicated cytokines in psoriasis
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FIGURE 6 | Correlative studies demonstrate that IL22 strongly correlates with

commonly psoriasis-associated keratin genes (KRT6A, KRT6B, KRT6C,

KRT16, KRT17), a finding that was not true for IL17A.

pathophysiology. In contrast, IL17A clusters together with
IL23A and the other cytokines thought to be involved in
psoriasis pathophysiology.

IL22 Correlates With Keratins
Several studies have demonstrated that IL-22 stimulates
keratinocytes. There is a variety of evidence, including data
obtained from in vitro studies with skin-like organoid cultures,
that support IL-22 as themain cytokine responsible for epidermal
hyperplasia, a hallmark of psoriasis (47, 48).

Because IL22 failed to strongly correlate with IL17A and
IL23A (Figures 1A, 2A), the relationships between IL22 and
keratin genes were explored across the four independently
acquired RNA-Seq psoriasis datasets. Again, Spearman’s
correlation coefficients (rs) were calculated for each keratin
gene’s relationship with IL17A, IL22, and IL23A. These
correlative studies demonstrate that the expression of IL22 did
indeed strongly correlate with the expression of the different
keratin genes (Figure 6), especially KRT6C (keratin 6C)
(rs = 0.32, p = 0.0011). To obtain a weighted average across
all four independent psoriasis datasets, a meta-analysis was
performed and the resulting Forest plots (Figure 7) confirm
the close relationship between IL22 expression and keratin
gene expression [KRT6C: rs = 0.34, with a confidence interval
that did not cross 0 (0.18–0.50)]. The weighted average of this
correlation across all psoriasis datasets was highly significant
(p = 0.000025), with no evidence (p = 0.56) of any substantial
residual heterogeneity (i.e., there was no remaining variability
in effect sizes that was unexplained). Additional genes that were
found to positively correlate with IL22 expression are listed in
Supplemental Figure 2.

In contrast to IL22’s relationship with keratin gene expression,
IL17A did not correlate well with the keratins (Figure 6), a
finding that was confirmed by a meta-analysis across all four
RNA-Seq datasets.

IL23A Correlates With Other Genes
Besides IL17A
IL-23A is known for its ability to support Th17T cells but it
likely has a variety of functions independent of this role. To
investigate this, IL23A’s ability to independently correlate with
other immune-relevant genes was explored. Figure 8 reveals
that IL23A correlates with several genes unrelated to IL17A, a
finding confirmed by meta-analyses across all psoriasis RNA-Seq
datasets. Included in the analysis were genes identified by GWAS
to be linked to psoriasis. Of these genes, CARM1, KRT14, KRT37,
TNFAIP3, UBE2L3 are elevated in psoriasis plaques compared
to control healthy skin (Table 1). Thus, IL23A appears to be
linked to other genes putatively involved in the pathophysiology
of psoriasis that are unrelated to IL17A.

IL17A, IL22, and IL23A Expression
Correlates With Psoriasis Susceptibility
Genes
A variety of genes have been linked to psoriasis susceptibility
through GWAS (49–55). Table 2 demonstrates that many
of these genes are differentially regulated in the setting of
psoriasis. We thus sought to determine how the expression
of genes located at psoriasis susceptibility loci correlated with
the expression of IL17A, IL22, and IL23A, genes known to be
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FIGURE 7 | Meta-analysis confirms a close relationship between IL22 expression and keratin (KRT6A, KRT6B, KRT6C, KRT16, KRT17) expression.

linked to the pathophysiology of psoriasis. For this analysis, the
expression of IL17A, IL22, and IL23A was plotted against the
expression of each of the genes identified through GWAS studies.
Spearman’s correlation coefficients (rs) were then calculated,
which demonstrated a variety of significant correlations (Table 2)
between GWAS-identified genes and IL17A, IL22, and IL23A.
Correlation values between atopic dermatitis GWAS-identified
genes and IL17A, IL22 and IL23A expression in psoriasis samples
were also obtained for comparison (Table 3). To obtain a
weighted average across all four independent psoriasis data
sets, meta-analysis was performed. The resulting Forest plots
are depicted in Figure 9, which confirm the close relationship
between IL17A, IL22, and IL23A and the different genes linked
to psoriasis susceptibility. These results support a direct or
indirect link between IL17A, IL22, and IL23A and these genes.
Of note, the genes that significantly correlated with IL17A, IL22,
and IL23A varied for each cytokine. These results will hopefully
help investigators better understand the pathophysiology
of psoriasis.

DISCUSSION

Investigators have employed numerous genetic strategies to
characterize the immune response in the setting of psoriasis.
Microarray and RNA-Seq have provided insight into the
psoriatic transcriptome, identifying thousands of differentially
expressed genes (40). However, differential expression alone
does not necessarily mean that the gene is involved in
psoriasis pathogenesis. For example, a gene that is normally
downregulated in psoriatic T cells may actually appear falsely
upregulated in psoriasis simply because there are more T cells
in a psoriatic plaque. With the rising popularity of single cell
sequencing, investigators are now focused on re-characterizing
the psoriasis transcriptome at a greater cellular resolution,
not previously obtained with whole tissue transcriptomics.

However, single cell sequencing is also not without its drawbacks.
Purifying immune cell populations from skin biopsy specimens
can alter their transcriptome, especially for cells isolated by
positive selection or flow cytometry. Furthermore, immune cells
within the skin will undoubtedly have different purification
yields. T cells in particular are especially difficult to analyze
because once purified, they require additional non-physiologic in
vitro stimulation with lectins or anti-CD3/anti-CD28 antibodies
to identify their cytokine secretion profiles. How closely the
garnered information from these studies will relate to in vivo
cellular function remains unclear. Although each technique will
yield important discoveries, none can perfectly decipher the in
vivo pathogenic immune response.

With these limitations in mind, we have focused on
developing new methods to characterize immune responses
from whole tissue RNA-Seq (12, 62). We view this strategy to be
an important complement to work currently being conducted by
other investigators. The main advantage being that the data is not
subject to experimentally-induced changes in gene expression.
Its main disadvantage, however, is that it cannot discriminate
between direct or indirect correlations between genes
of interest.

In our current study, we utilize a machine-learning 2D
visualization strategy, t-SNE, to characterize IL17A, IL22, and
IL23A gene expression in the context of the entire psoriatic
transcriptome. The 2D map of the psoriatic transcriptome
revealed distinct gene clusters corresponding to common
immune cell types (e.g., B cells, T cells, neutrophils).

Our data did not support the existence of a dual-secreting
IL-17A/IL-22 Th17 cell as the major source of these cytokines
in psoriasis. In fact, in the 2D model, these genes are located
far from one another. As such, IL22 correlated with several
genes that did not appear to have a relationship with IL17A.
In addition, a set of genes identified to be involved in psoriasis
pathophysiology (CARD14, CXCL5, CXCR2, DDX58, IFIH,
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FIGURE 8 | Spearman correlations reveal that IL23A correlates with several

genes that do not seem to be strongly related to IL17A.

PTPN22, and TNFRSF9) correlated with IL17A and IL23A, but
did not correlate with IL22.

Though, IL-22 is commonly considered a hallmark Th17
cytokine (63), our results are in line with studies demonstrating

TABLE 1 | Expression of genes linked to psoriasis identified through GWAS and

associated IL23A Spearman correlation and p-value and fold change increase in

lesional skin and p-value.

Gene IL23A

Spearman

correlation

IL23A

Spearman

P-value

Fold change

increase in

lesional skin

Fold change

increase

P-value

B3GNT2 −0.16 0.10537 1.001155781 0.979956721

CARD14 0.27 0.00682 2.389097546 1.33E−47

CARM1 0.26 0.00968 1.141422929 0.000834388

CDKAL1 −0.21 0.03518 0.8683625 3.52E−08

CTSG −0.16 0.10656 0.655654701 4.50E-13

CXCL1 0.46 1.30E−06 83.27818074 2.62E−212

CXCL5 0.34 0.00056 26.29025755 2.84E−33

CXCR2 0.52 6.60E−08 6.492199066 1.40E−239

DDX58 0.33 0.00092 2.797571851 1.14E−69

DEFB4A 0.35 0.00034 1901.591548 2.62E−271

ELANE −0.0041 0.96819 0.491347624 6.77E−10

FBXL19 0.34 0.00062 1.85489088 5.24E−28

GJB2 0.48 4.30E−07 20.36794869 0

HLAC 0.18 0.07342 1.194566942 0.001439986

IFIH1 0.42 1.40E−05 3.162866511 7.72E−104

IL12B 0.29 0.00397 29.88723345 3.40E−57

IL17A 0.24 0.01769 439.3348171 1.25E−65

IL22 0.1 0.31571 63.88350813 3.46E−30

IL23A 1 < 2E−16 3.760844628 8.35E−45

IL36RN 0.48 4.90E−07 7.305421524 1.16E−230

IL4R 0.51 6.60E−08 3.093054089 8.95E−181

KLF4 0.012 0.90338 0.667068955 3.81E−15

KRT1 −0.012 0.90464 1.206311292 0.001401592

KRT10 −0.062 0.54239 1.110563157 0.047606741

KRT14 0.22 0.02787 1.536561931 1.27E−11

KRT16 0.27 0.00767 45.90558693 0

KRT17 0.39 6.00E−05 4.076992497 2.38E−54

KRT37 0.3 0.00255 5.231342887 2.43E−46

KRT5 0.094 0.35243 1.303825713 1.61E−07

KRT6A 0.39 8.30E−05 24.37406248 0

KRT6B 0.29 0.00374 8.511861588 5.34E−107

KRT6C 0.25 0.01245 117.818558 3.29E−294

LCE3A 0.39 6.50E−05 184.4450577 6.18E−144

LCE3B 0.2 0.04403 67.28771597 2.14E−38

LCE3D 0.31 0.00208 36.65620978 0

MPO −0.24 0.01605 1.474609904 0.0051495

NFKBIA 0.31 0.00184 1.194928571 6.14E−07

NOS2 0.64 1.20E−12 45.89643372 5.06E−181

NOS3 −0.024 0.81219 1.120615697 0.065873995

PTPN22 0.09 0.38043 2.512943835 2.58E−45

RELB 0.3 0.0023 1.63227558 3.66E−17

RUNX3 0.073 0.47497 0.879564111 0.003653355

SOCS1 0.41 3.10E−05 1.851306719 1.98E−17

STAT3 0.51 6.50E−08 2.199106208 7.64E−127

STAT5A 0.012 0.90974 0.825113995 1.27E−08

TNFAIP3 0.825113995 1.27E−08 1.053151539 0.237418045

TNFRSF9 0.24 0.01749 6.76780515 2.64E−126

TNIP1 0.4 4.20E−05 1.591537669 1.52E−33

TRAF3IP2 0.28 0.00626 1.27943256 1.21E−23

TYK2 0.084 0.41131 1.10633692 0.027521096

UBE2L3 0.22 0.03143 1.247192396 1.13E−20

VDR 0.36 0.00025 1.010394091 0.770645743

VEGFA 0.092 0.36524 1.300943308 1.11E−08

VEGFB −0.12 0.22006 0.640896258 1.01E−36
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TABLE 2 | Correlation (R-values) of IL17A, IL22, and IL23A with genes linked to

psoriasis susceptibility through genome-wide association studies.

R-value

Gene IL17A IL22 IL23A

CARD14 0.18 0.16 0.3

CARM1 −0.08 0.1 0.26

CDKAL1 −0.2 −0.15 –0.21

DDX58 0.35 0.06 0.28

DEFB4A 0.32 0.3 0.4

GJB2 0.54 0.39 0.48

HLAC −0.07 −0.05 0.02

IFIH1 0.37 −0.02 0.34

IL12B 0.47 0.28 0.32

IL17A 1 0.18 0.31

IL22 0.18 1 0.13

IL23A 0.31 0.13 1

IL36RN 0.5 0.4 0.35

IL4R 0.37 0.36 0.49

KLF4 –0.36 −0.03 0

LCE3A 0.21 0.26 0.26

LCE3B −0.03 0.2 0.17

LCE3D 0.08 0.21 0.32

NOS2 0.49 0.31 0.47

NOS3 0.04 0.08 0.1

PTPN22 0.49 0.09 0.22

RELB 0.03 0.2 0.35

RUNX3 –0.18 −0.04 0.13

SOCS1 0.37 0.24 0.36

STAT3 0.32 0.45 0.35

TNFAIP3 −0.04 0.03 0.21

TNFRSF9 0.35 0.02 0.3

TNIP1 0.23 0.18 0.37

TRAF3IP2 0.07 0.28 0.24

TYK2 0 0.06 0.14

UBE2L3 0.18 0.06 0.17

VDR 0.07 0.17 0.4

VEGFA 0.01 0.23 0.2

VEGFB −0.25 −0.18 −0.21

Bolded cells p < 0.05.

the existence of uniquely secreting IL-17 and IL-22 T cells or
the existence of other cytokine-secreting phenotypes (48, 64–69),
although these other studies usually relied upon non-physiologic
ex vivo T cell stimulation. Another possibility is that other cell
types, such as γδ T cells or mast cells, contribute to the IL-
22 production in psoriasis (48, 65, 70). Even neutrophils have
been implicated as major producers of IL-22 and IL-17A (71)
and recent animal models have re-explored their role as effector
cells in psoriasis pathophysiology (22, 72, 73). Indeed, there
are numerous studies supporting a key function of these cells
(71, 74–78). Single cell sequencing may provide information
to verify the relationship between IL17A and IL22 expression.
Although it is possible that dual-secreting IL-17A/IL-22 Th17

TABLE 3 | Correlation (R-values) of IL17A, IL22 and IL23A in psoriasis with genes

linked to atopic dermatitis susceptibility through genome-wide association studies

(56–61).

R-value

Gene IL17A IL22 IL23A

ADAMTS10 −0.16 −0.05 −0.10

C11orf30 0.16 −0.07 −0.03

LRRC32 −0.18 −0.04 −0.11

CARD11 0.10 0.05 0.15

CCDC80 −0.24 −0.05 –0.22

CLEC16A 0 0.12 0.38

CYP24A1 0.32 0.14 0.32

FLG −0.28 –0.16 –0.36

GLB1 −0.14 −0.02 −0.02

GPSM3 −0.04 0 0.06

IL18R1 0.23 −0.05 0.02

IL18RAP 0.23 0.05 0.27

IL2 0.09 0.01 0.04

IL6R −0.03 −0.10 0.11

KIF3A 0.14 −0.02 −0.01

IL13 0 0.26 0.06

NLRP10 −0.17 −0.11 –0.19

OR10A3 0.08 −0.08 0.08

OVOL1 0.32 0.28 0.32

PFDN4 0.01 −0.12 −0.06

PRR5L 0.28 −0.05 −0.06

RAD50 0.20 0.13 −0.01

TMEM232 0 0.11 −0.06

SLC25A46 0.06 0.03 −0.07

TNFRSF6B −0.06 0.14 0.28

ZGPAT 0.03 0.12 0.18

ZNF652 −0.38 –0.19 –0.42

Bolded cells p < 0.05.

cells exist, our results suggest that they are not a major source
of IL-22.

Although we did not find evidence for a strong link between
IL22 with IL17A or IL23A, our results do support a strong
correlation between the expression of IL22 and the keratin
genes, such as KRT6A, KRT6B, KRT6C, KRT16, KRT17, a
finding in accord with IL-22’s ability to induce epidermal
hyperproliferation (48). IL-22 is clearly a major cytokine involved
in psoriasis pathophysiology. In animal models, it has been
demonstrated to simulate psoriasis-like epidermal changes (47,
79) and elevated levels of IL-22 positively correlate with disease
severity in humans, as measured by Psoriasis Area Severity Index
(PASI) scores (80–83).

CONCLUSION

Although dual-secreting T cells may exist, our results
demonstrate that it is unlikely that the classical Th17 cells
(IL-17A/ IL-22 dual-secreting T cells) play a universal role in
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FIGURE 9 | Psoriasis susceptibility genes that positively correlate across IL17A, IL22, and IL23A, supporting a link between these cytokines and genes that have

been linked to psoriasis through GWAS.
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psoriasis pathophysiology. RNA-Seq analysis revealed that the
expression of these cytokines seems to be largely unrelated
to one another in the psoriasis transcriptome. However, the
expression of IL17A did correlate with IL23A but, interestingly,
unique relationships between IL23A and genes unrelated to
IL17A were also established, supporting a broad function
of IL-23.

Taken together, these results do not support the current
dogma that IL-17A/IL-22 dual-secreting Th17T cells are the
major driver of psoriasis pathophysiology. In addition, our results
support unique functions of IL-23 that are unrelated to its known
role in supporting Th17 responses. Finally, we demonstrate that
the expression of genes linked to psoriasis susceptibility also
correlate with expression of either IL17A, IL22, or IL23. This
supports the aforementioned cytokines’ involvement in multiple
avenues of psoriasis susceptibility.

2D mapping of inflammatory transcriptomes is an exciting
innovative modality that may help us visualize relationships
of all genes expressed in a disease process. When applied
to gene expression relationships in psoriatic lesional skin,
distinct clusters of cell lineage genes could be identified,
supporting the presence of a complex crosstalk among separate
cell lines in disease development. In the near future, single
cell transcriptome analysis will provide additional insight into
psoriasis pathogenesis. Identifying the cells responsible for the
psoriasis phenotype will bring us one step closer to developing
a cure for psoriasis.
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