
MEDICAL IMAGING AND DIAGNOSTIC RADIOLOGY

Received 21 November 2019; revised 26 March 2020; accepted 15 April 2020.
Date of publication 24 April 2020; date of current version 26 May 2020.

Digital Object Identifier 10.1109/JTEHM.2020.2989390

3D Motion Estimation of Left Ventricular
Dynamics Using MRI and Track-to-Track Fusion

KUMARADEVAN PUNITHAKUMAR 1,2,3, (Senior Member, IEEE),
ISMAIL BEN AYED 4, (Member, IEEE), ABRAAM S. SOLIMAN5,

AASHISH GOELA6, ALI ISLAM7, SHUO LI 6, (Senior Member, IEEE),
AND MICHELLE NOGA1,2

1Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 2R3, Canada
2Servier Virtual Cardiac Centre, Mazankowski Alberta Heart Institute, Edmonton, AB T6G 2B7, Canada

3Department of Computing Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
4École de Technologie Supérieure (ÉTS), Montreal, QC H3C 1K3, Canada

5MR R&D, Philips Healthcare, 5684 PC Best, The Netherlands
6Department of Medical Imaging, Western University, London, ON N6A 3K7, Canada

7St. Joseph’s Health Care London, London, ON N6A 4V2, Canada

CORRESPONDING AUTHOR: K. PUNITHAKUMAR (punithak@ualberta.ca)

This work was supported in part by an NSERC Discovery Grant, in part by a grant from Servier Canada Inc., in part by the Heart and Stroke
Foundation of Alberta, NWT, and Nunavut, through the Research Leadership Fund, and in part by the Mazankowski Alberta Heart Institute.

This article has supplementary downloadable material available at http://ieeexplore.ieee.org, provided by the author.

ABSTRACT Objective: This study investigates the estimation of three dimensional (3D) left ventricular (LV)
motion using the fusion of different two dimensional (2D) cine magnetic resonance (CMR) sequences
acquired during routine imaging sessions. Although standard clinical cine CMR data is inherently 2D,
the actual underlying LV dynamics lies in 3D space and cannot be captured entirely using single 2D CMR
image sequences. By utilizing the image information from various short-axis and long-axis image sequences,
the proposed method intends to estimate the dynamic state vectors consisting of the position and velocity
information of the myocardial borders in 3D space. Method: The proposed method comprises two main
components: tracking myocardial points in 2D CMR sequences and fusion of multiple trajectories correspond
to the tracked points. The tracking which yields the set of corresponding temporal points representing the
myocardial points is performed using a diffeomorphic nonrigid image registration approach. The trajectories
obtained from each cine CMR sequence is then fused with the corresponding trajectories from other
CMR views using an unscented Kalman smoother (UKS) and a track-to-track fusion algorithm. Results:
We evaluated the proposed method by comparing the results against CMR imaging with myocardial tagging.
We report a quantitative performance analysis by projecting the state vector estimates we obtained onto
2D tagged CMR images acquired from the same subjects and comparing them against harmonic phase
estimates. The proposed algorithm yielded a competitive performance with a mean root mean square error
of 1.3±0.5 pixels (1.8±0.6 mm) evaluated over 118 image sequences acquired from 30 subjects. Conclusion:
This study demonstrates that fusing the information from short and long-axis views of CMR improves the
accuracy of cardiac tissue motion estimation. Clinical Impact: The proposed method demonstrates that the
fusion of tissue tracking information from long and short-axis views improves the binary classification of
the automated regional function assessment.

INDEX TERMS Multiview fusion, cardiac motion estimation, magnetic resonance imaging, nonlinear
dynamic state estimation, regional wall motion abnormality.

I. INTRODUCTION
The assessment of the regional left ventricular (LV) function
plays an important role in the diagnosis of coronary heart

disease [1]–[4]. Cardiac magnetic resonance (CMR) imaging
offers a non-invasive solution to capture the LV function.
Manual assessment of the LV function over numerous images
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produced by the CMR is tedious, time-consuming and expen-
sive.Many automatedmethods to quantitatively assess the LV
regional function have been proposed in the literature [1]–[4].
However, existing methods utilized only two-dimensional
(2D) short-axis sequences of the CMR in generating regional
function measurements. Due to high inter-slice distance1

between the short-axis sequences acquired along multiple
positions of the LV, these 2D sequences do not entirely
capture the LV dynamics that lie in 3D space and consist
of a complex combination of movements. Due to lack of
through-plane information, standard single view 2D CMR
sequences are inadequate for estimating the LV dynamics
in 3D space. One can overcome this limitation by exploiting
the data from other image sequences that are orthogonal to
obtain 3D dynamics and an accurate assessment of the LV
function.

FIGURE 1. The overall system diagram showing the components of the
proposed 3D motion estimation algorithm that fuses information from
short-axis and long-axis CMR sequences.

This study proposes a novel approach to fuse motion infor-
mation available in multiple 2D image views, thereby, uti-
lizing the information available in different CMR short-axis
sequences as well as long-axis sequences such as 2-chamber,
3-chamber and 4-chamber views. Fig. 1 depicts the over-
all system diagram of the proposed method which consists
of a preprocessing component and a track-to-track fusion
algorithm. The multiview fusion approach proposed in this
study differs fundamentally from the earlier methods in the
literature which, among others, are based on 3D harmonic
phase [5], deformable models [6], [7], incompressible mod-
els [8] or image registration of short-axis and long-axis
sequences [9]. One of the primary benefits of the proposed
method is that it uses only anatomical cine sequences that
are commonly used in standard clinical examinations due to
their shorter processing times. In contrast, previous meth-
ods relied on scanning protocols such as myocardial tagging
[5], [6] that require longer scan times, or displacement encod-
ing with stimulated echoes (DENSE) CMR images [7] that
are not available in routine clinical scans.

The proposed approach first generates a trajectory for each
point on the myocardial boundary using a diffeomorphic
moving mesh algorithm [10] within each 2D scan, long-axis
and short-axis, given delineation of the myocardium on the
first frame. The temporal smoothness of the trajectories is

1Typically the slice distance is 8 – 10 mm in standard clinical acquisitions.

obtained by incorporating the prior information corresponds
to the LV dynamics via an extension of the nonlinear dynamic
state transition model proposed in [11] to 3D. A nonlin-
ear recursive Bayesian framework known as the unscented
Kalman smoother (UKS) is proposed to obtain the mean and
covariant matrix correspond to each state vector representing
the position and velocity of a myocardial point over a cardiac
cycle.

The following summarizes the contributions of the current
study.

1) A nonlinear state transition model with an augmented
dynamic angular frequency component in the state
vector is derived by generalizing the model proposed
in [12]. We further extend the model to 3D and use the
UKS for state estimation.

2) A track-to-track fusion algorithm that is based on
maximum-likelihood approach is proposed for com-
bining multiple trajectories. These trajectories are
obtained using the UKS from several short-axis and
long-axis 2D sequences. To the best of authors’ knowl-
edge, this is the first application of the track-to-track
fusion in medical imaging.

3) We conducted two independent comprehensive eval-
uations in cardiac image analysis to demonstrate the
advantages of the proposed fusion: (a) Comparing the
state estimates obtained with the proposed method
using anatomical cine CMR to those obtained with
the well-known harmonic phase (HARP) analysis tech-
nique [13], which is the most common method for
tagged CMR image analysis; (b) Applying the pro-
posed approach to detect regional LVmotion abnormal-
ity following the 17-segment model recommended by
the American Heart Association [14], and evaluating
the automated classification results with the assess-
ments by expert radiologists.

In the first experiment, the HARP was implemented as
described by Osman et al. in [13]. The HARP algorithm
utilizes the Fourier domain analysis of the taggedMR images
as opposed to their spatial domain. Previous works on esti-
mating cardiac 3D motion from tagged images using the
HARP concept were reported in [5], [15], [16]. In this paper,
we evaluate the results of the proposed algorithm quantita-
tively by projecting 3D state vectors onto 2D tagged CMR
images acquired from the same subjects.

In the second experiment, the proposed algorithm is evalu-
ated in terms of its classification ability to detect the regional
left ventricular functional abnormality. The evaluation was
performed over 480 segments obtained from twenty nor-
mal subjects and ten patients with abnormal heart function.
The classifier used in the experiment was built based on
Shannon’s differential entropy (SDE) values of two features:
normalized radial distance and segment-wise volume/area.
Quantitative evaluations were performed for classifier with
and without fusion in terms of area-under-the-curve (AUC)
values of receiver operating characteristic (ROC) curves, and
the Bhattacharyya distance metric [17].
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II. PREPROCESSING
A. DEFORMABLE IMAGE REGISTRATION
The objective of the deformable registration is to obtain the
point correspondence between two adjacent images Tk and
Tk+1 (for k = 1, 2 . . . ,K − 1) defined over � ⊂ R2

where k and K denote the frame number and the total number
of images in a CMR sequence, respectively. Finding the
point correspondence between these pair of images can be
expressed as the optimization problem given below.

φ̂ = arg opt
φ

EL2(Tk ,Tk+1, φ(x)) (1)

where x ∈ � is the pixel location, φ : �→ � is a transfor-
mation function, and EL2(·) is an L2-norm based similarity
metric. The optimization problem in (1) generally does not
lead to a unique solution without additional constraints which
can be added by introducing a deformation field with the
continuous monitor function µ : � → R and curl of end
velocity field γ : �→ R as described below.

1) MOVING MESH GENERATION
The continuous monitor function µ(x) constrained by∫

�

µ = |�| (2)

The objective is to obtain a transformation φ that meets the
following condition.

Jφ(x) = µ(x) (3)

A transformation function φ that satisfies the condition in (3)
can be defined as follows.
Step 1: Generate a vector field ρ(x) which satisfies the

following div-curl system{
div ρ(x) = µ(x)− 1 (4a)

curl ρ(x) = γ (x) (4b)

with Dirichlet boundary condition ρ(x) = 0∀ x ∈ ∂�.
Step 2: Construct a velocity vector field using ρ(x):

νt (x) =
ρ(x)

t + (1− t)µ(x)
, t ∈ [0, 1], (5)

where t is an artificial time.
Step 3: By introducing a diffeomorphic function ψ(x, t),

solving the following ordinary differential equation

dψ(x, t)
dt

= νt (ψ(x, t)), t ∈ [0, 1], ψ(x, t = 0) = x, (6)

and setting φ(x) = ψ(x, t = 1), we can obtain the trans-
formation function. We refer the reader to [10] and [18] for
the graphic processor and the central processing unit based
implementations and other algorithm details of the moving
mesh based nonrigid registration algorithm.

B. IMAGE COORDINATE TRANSFORMATION
In order to combine cardiac motion information from differ-
ent image planes such as short-axis and long-axis sequences,
we first need to transform image coordinate based location
information into a 3D reference space. We compute the ref-
erence coordinate system using the following equation: x

y
z

 =
Xx1i Yx1j Sx
Xy1i Yy1j Sy
Xz1i Yz1j Sz

 i
j
1

 (7)

where:
(x, y, z) 3D coordinates of the pixel location (i, j) in

the image plane in units of mm.
Sxyz Image Position (Patient) attribute elements.
Xxyz The elements of the row direction cosine of

the Image Orientation (Patient) attribute.
Yxyz The elements of the column direction cosine

of the Image Orientation (Patient) attribute.
(i, j) Column and row indices to the image plane

with zero-indexing.
(1i,1j) Pixel Spacing in column and row directions

in mm.
The attributes such as Image Position, Image Orientation,

and Pixel Spacing are obtained from digital imaging and
communications in medicine (DICOM) headers.

C. TEMPORAL SMOOTHING OF THE DATASET
1) STATE TRANSITION MODEL FOR CYCLIC DYNAMICS
Let (x, y, z) be a myocardial point on the 3D reference coor-
dinate system. The point (x, y, z) corresponds to (i, j) in the
image coordinate system and is computed using (7). Let us
define a state vector s = [x̄ x ẋ ȳ y ẏ z̄ z ż ω]T that
describes dynamics of the corresponding myocardial point.
Elements x̄ and ẋ denote, respectively, the mean position
and the instantaneous velocity over a single heart beat in the
x co-ordinate direction. Similar elements in the y and z
co-ordinate directions are defined by ȳ, ẏ, z̄ and ż. The
parameter ω denotes the angular frequency.
We exploit heart’s cyclic dynamic property in deriving

the state transition model. The discrete-time state transition
equation corresponds to the periodic LV tissue dynamics at
image frame k + 1 is given by:

sk+1 = fk (sk )+ vk (8)

where fk (sk ) = blkdiag(Fk ,Fk ,Fk , 1), blkdiag(·) denotes the
block diagonal matrix, and

Fk =

 1 0 0
1− cos(ωkT ) cos(ωkT ) 1

ωk
sin(ωkT )

ωk sin(ωkT ) −ωk sin(ωkT ) cos(ωkT )

(9)
The parameter T is the time interval between two adjacent
frames, and the proposed approach relied on the heart rate
information from the DICOM header and the number of
cardiac frames in computing T . The noise sequence {vk} is
assumed to be normal distributed with zero-mean and covari-
anceQk . Dynamic model (8) is an extended version of the 2D
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model proposed in [12] to 3D space. Further, the state vector
is augmented by introducing a dynamic angular frequency
componentω to accommodate the time-varying cyclicmotion
property of the underlying tissue motion. The measurement
equation is given by:

zk = Hksk + ηk (10)

whereHk = blkdiag(h, h, h, 1), h = [0 1 0], {ηk} is normally
distributed with zero-mean noise sequence with covariance
Rk = diag([r r r]), diag(·) denoting the diagonal matrix. The
measurement equation describes the relationship between the
hidden state-space vector s and the observable parameters,
which in this study, are the 3D locations of the endocar-
dial or tag intersection points estimated on the CMR images.
The sequence of observations zk = [zk,x zk,y zk,z]T for
k = 1 : K corresponding to the point (i, j) on the image
coordinate system is obtained by applying the transformation
function φ̂ to (i, j) and mapping them into patient-based
coordinate system using (7).

FIGURE 2. An example to illustrate the conceptual difference between
filtering and fixed-interval smoothing. The primary difference is that the
filtering estimates rely only on past observations at any given time
whereas fixed-interval smoothing estimates are based on observations
from both past and future which lead to more accurate results.

2) UNSCENTED KALMAN SMOOTHER (UKS)
The state transition model in (8) is nonlinear and, therefore,
we employ the UKS [19] to estimate the state vector sk (for
each k = 1, 2, . . . ,K ). The LV trajectories are estimated
as postprocessing which allows for utilizing measurements
retrospectively in the estimation algorithm. The UKS used in
this study is a retrodiction or smoothing counterpart of the
prediction algorithm, unscented Kalman filter (UKF) [20].
In the UKF approach, second-order properties of the underly-
ing probability distributions of the state vector are propagated
using a small number of deterministically-selected sample
points. This allows for a low computational cost comparable
to the extended Kalman filter [21] while providing sufficient
estimation accuracy for many nonlinear filtering applications.
The primary procedural difference between UKS and UKF is
that the UKF uses only the set of observations z1:k to estimate
the state sk at frame k while UKS utilizes both z1:k and zk+1:K
to get the state estimate, whereK is the total number of frames
in the CMR sequence. The performance of the filtering algo-
rithm is improved by the smoothing step that utilizes addi-
tional measurement in the UKS. There are several variants of
smoothing approach, and in this study, we used fixed-interval
smoothing, themost common type. The conceptual difference
between filtering and fixed-interval smoothing is presented
in Fig. 2.

III. TRACK-TO-TRACK FUSION
The objective of track-to-track fusion is to fuse the state
estimates ss and sl corresponding to the same tissue obtained
from short- and long-axis image sequences using UKS,
respectively. The state estimates obtained using the UKS con-
sist of the mean and the associated covariance values. In this
study, we propose to use a maximum likelihood criterion for
the track-to-track fusion [22]. Given ss and sl , the likelihood
function can be defined as follows.

L(s) = − ln p(ss, sl |s)

∝

([
ss

sl

]
−

[
I
I

]
s
)T

6−1
([

ss

sl

]
−

[
I
I

]
s
)
(11)

where the covariance 6 is given by

6 =

[
6s 6sl

6ls 6l

]
(12)

The maximum likelihood solution

sML = argmax
s
L(s), (13)

is then computed by solving ∇sL(s) = 0. This yields:

sML =
(
[I I ]6−1

[
I
I

])−1
[I I ]6−1

[
ss

sl

]
(14)

Define U = 6s, V = 6sl andW = 6l . Apply inversion of a
partitioned matrix:

6−1 =

[
U V
VT W

]−1
=

[
Q R
RT S

]
(15)

where

Q = (U − VW−1VT )−1 (16)

R = −QVW−1 (17)

S = W−1 +W−1VTQVW−1 (18)

Substitute for 6−1 in (14):

sML = (Q+RT
+R+ S)−1(Q+RT )ss

+(Q+RT
+R+ S)−1(R+ S)sl (19)

Substitute Q, R and S from (16)-(18) and apply matrix
inversion lemma:

sML = (C − BT )(U + P − V − VT )−1ss

+(U − V)(U +W − V − VT )−1sl (20)

Substitute 6s, 6sl and 6l in (20):

sML = (6l
−6ls)(6s

+6l
−6sl

−6ls)−1ss

+(6s
−6sl)(6s

+6l
−6sl

−6ls)−1sl (21)

We can simplify (21) using the assumption that cross-
covariance values 6sl and 6ls between short-axis and long-
axis observations are equal to zero:

sML = 6l(6s
+6l)−1ss +6s(6s

+6l)−1sl (22)
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TABLE 1. Comparison of the overall RMSE (mean and standard deviation) for the methods with and without (i.e., using only the short-axis (SA)
or long-axis (LA) view) track-to-track fusion. The RMSE was computed by projecting the state estimates onto SA and LA tagged CMR images and
comparing them against harmonic phase estimates. The p-values for unpaired t-tests are also reported. The proposed multiview fusion method achieved
an RMSE of 1.3 pixels in comparison with the HARP estimates.

IV. RESULTS
We performed two independent comprehensive experimen-
tal studies to prove the benefits of the proposed fusion
approach. In the first experiment, we report a quantitative
performance analysis by projecting the state vector estimates
we obtained onto 2D tagged CMR images acquired from the
same subjects and comparing them against harmonic phase
estimates. In the second experiment, we applied to the pro-
posed method to detect regional LV functional abnormality
following the 17-segment model recommended by the Amer-
ican Heart Association [14] and compared the results with
ground truth classifications by expert radiologists.

A. COMPARISONS WITH TAGGED CMR
The data consists of 350 cine and 118 tagged CMR image
sequences acquired from 30 subjects (22 males, 8 females;
mean age: 55.4± 14.4 years; age range: 15 to 78 years). The
subjects had various underlying cardiac conditions includ-
ing dilated cardiomyopathy, aortic valve regurgitation, apical
aneurysm, myocardial infarction, atrial fibrillation, cardiac
sarcoidosis, myocarditis and pericarditis. The images are two
dimensional, and they were acquired on various 1.5T CMR
scanners using steady-state free precession, such as True-
FISP, protocols. The following parameters are used for the
acquisition: echo time = 1.15 − 1.58 ms; repetition time =
28.0 − 53.2 ms; image size = (150 × 192) − (256 × 248);
in-plane pixel spacing = (1.09× 1.09)− (1.98× 1.98) mm;
flip angle= 50◦−69◦. Fig. 3 shows representative samples of
the fusion results at the end-diastolic and end-systolic phases
of the cardiac cycle plotted against 2-chamber, 3-chamber and
4-chamber cine CMR sequences.

FIGURE 3. Representative examples showing fusion estimates by the
proposed approach plotted against long-axis CMR images.

We used the root mean squared error (RMSE) to com-
pare the estimates by the proposed method using cine CMR

sequences and the estimates by the HARP using the tagged
CMR sequences. The estimates using the proposed method
were three dimensional and, therefore, we had to re-project
the estimates onto the corresponding tagged CMR images
when calculating the RMSE. We used only the first half of
the cardiac cycle since the quality of the tag lines becomes
poor in the second half of the cardiac cycle, and produces less
reliable HARP estimates in our comparison. Further, we used
the middle point of the endocardial and epicardial boundary
points for comparison as HARP provides more accurate esti-
mates inside the myocardium rather than the boundary.

FIGURE 4. Comparison of the proposed and HARP estimates at
end-systolic and end-diastolic phases of the cardiac cycle in 2-chamber
view. Green, red and yellow markers, respectively, denote the epicardium,
endocardium and corresponding middle points of the projected estimates
obtained using the proposed method and cine CMR images; Blue markers
indicate the HARP estimates based on tagged CMR images.

Fig. 4 shows representative sample comparisons between
the proposed and HARP estimates on a 2-chamber long-
axis sequence. Green, red and yellow markers, respectively,
denote the epicardium, endocardium, and corresponding
middle points of the projected estimates obtained using
the proposed method and cine CMR images; Blue mark-
ers denote the HARP estimates based on tagged CMR
images. A similar comparison on the short-axis images at
apical, mid-cavity and basal slices are given in Fig. 5. The
RMSE over N number of points is given by, RMSE =√

1
N
∑N

i=1 (ξ̂i − ξ̃i)2 + (φ̂i − φ̃i)2,where (ξ̂i, φ̂i) is the projec-
tion of a point on the 2D image coordinate estimated using
the proposed method and (ξ̃i, φ̃i) is the corresponding point
by the HARP using tagged CMR images. Table 1 reports
the mean and standard deviation of the overall RMSE of
the proposed method and the methods without fusion using
only short or long axis images, over 114 image sequences.
These RMSE values are calculated based on projections
onto short as well as long axis tagged CMR images. The
p-values for unpaired t-tests are also reported in the table.
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TABLE 2. Comparisons of the RMSE (mean and standard deviation) for the methods with and without (i.e., using only the short-axis (SA) or long-axis (LA)
view) track-to-track fusion. The RMSE is computed separately by projecting the state estimates onto short (first row) and long (second row) axis tagged
CMR images and comparing them against harmonic phase estimates. The p-values for unpaired t-tests are also reported. The proposed method yielded
better estimates than the methods without fusion in comparisons to both short and long axes tagged CMR sequences.

FIGURE 5. Comparison of the proposed and HARP estimates at
end-systolic and end-diastolic phases of the cardiac cycle in apical,
mid-cavity and basal short-axis views. Green, red and yellow markers,
respectively, denote the epicardium, endocardium and corresponding
middle points of the projected estimates obtained using the proposed
method and cine CMR images; Blue markers indicate the HARP estimates
based on tagged CMR images.

The mean RMSE for the proposed method is equal to
1.3 pixels (1.8 mm).

Table 2 reports the RMSE errors evaluated by projecting
onto short-axis and long-axis tagged CMR images separately
in first and second rows, respectively, as well as the corre-
sponding p-values for unpaired t-tests. Table 2 demonstrate
that the proposed method yielded better estimates than the
methods without fusion in comparisons to both short and long
axes tagged CMR sequences.

B. REGIONAL ABNORMALITY ANALYSIS
The regional abnormality analysis was performed over
datasets acquired from 30 subjects (20 males, 10 females;
mean age: 48.7 ± 15.9 years; age range: 16 − 77 years).
The study population composed of 20 normal subjects and
10 patients with abnormal heart function, who had various
cardiac diseases including myocardial infarction, ventricular

tachycardia, LV pseudoaneurysm, apical aneurysm, cardiac
perforation, ascending aortic aneurysm and pericardial effu-
sion. The images were acquired using 1.5T CMR scan-
ners using fast imaging employing steady state acquisition
(FIESTA) protocol. The following parameters are used for
the acquisitions: echo time = 0.98 − 1.90 ms; repetition
time = 2.69− 4.49 ms; image size = (256× 256); in-plane
spacing = (0.66 × 0.66) − (1.56 × 1.56) mm; flip angle =
45◦ − 55◦. Three representative slices were selected from
apical, mid-cavity and basal segments of the LV and the eval-
uationwas performed over 30×3 short-axis image sequences.
The regional endocardial borders were automatically seg-
mented following the 17-segmented model recommended by
the AHA [14], given the anatomical landmarks, i.e., insertion
points denoting the septal wall, on the first frame. A repre-
sentative example showing the regional segmentation results
from apical, mid-cavity and basal short-axis images is given
in Fig. 6(a), (b) and (c). In total 480 myocardial segments
were analyzed and the classification results correspond to
the automated methods were compared with ground truth
classifications by radiologists. The manual ground truth clas-
sification was built by two experienced radiologists who
annotated different portions of the dataset. Binary classifica-
tion of the motion was used in the evaluation, and a segment
was classified as abnormal if the segment is hypokinetic,
akinetic, or dyskinetic.

FIGURE 6. Representative example showing the results of the regional
myocardial segmentation using the proposed approach. Following the
recommendation by AHA [14], the myocardium was delineated into four,
six and six regional segments for apical, mid-cavity and basal slices,
respectively.

Two independent criteria were used in the evaluation of
the discriminative power of each classifier features: 1) the
ROC curves [23] with corresponding AUC [24] values; and
2) Bhattacharyya measure [17]. We also measured the per-
formance of the classifier features using accuracy, sensitivity
and specificity. We utilized a leave-one-subject-out method
in the evaluation.
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FIGURE 7. Receiver operating characteristic curves of classifier features
for the methods with and without (short-axis sequences only) fusion. The
proposed method based on fusion demonstrated better classification
ability in both classifier features.

TABLE 3. Comparison of the classification accuracy for the methods with
and without track-to-track multiview fusion using a
leaving-one-subject-out approach. The method without fusion relied only
on short-axis image sequences [11]. With fusion, the proposed method
outperformed the earlier approach and yielded an overall classification
accuracy of 91.9%.

TABLE 4. Comparison of the classification ability of the methods with
and without fusion assessed in terms of the area under the ROC curve
and Bhattacharyya distance metric. The method without fusion relied
only on short-axis image sequences [11]. With fusion, the proposed
approach demonstrated improved classification ability in detecting LV
functional abnormality.

1) ROC AND AUC
Fig. 7(a) and (b) shows the ROC curves for classifier feature
SDE values of segment area/volume and radial distance,
respectively. The corresponding AUC values are reported
in Table 4. The evaluations based on the ROC curves and
the corresponding AUC values for regional cardiac func-
tion show that the proposed fusion approach significantly
enhances the discriminative ability of each classifier feature
over the method that relies only on short-axis sequences in
distinguishing the abnormal function from normal function.

2) Bhattacharyya MEASURE
We used Bhattacharyya distance metric to evaluate the over-
lap between the normal and abnormal functions for each clas-
sifier feature. The Bhattacharyya distance metric between

the distributions fN and fA correspond to the normal func-
tion and the abnormal function, respectively, is computed as
follows.

B =
√
1−

∑
r∈R

√
fN (r)fA(r), (23)

A higher B indicates the better discriminative ability of the
classifier as it is associated with lesser overlap between the
distributions. Table 4 also reports the Bhattacharyya distance
metric values for each classifier feature, which demonstrate
the proposed fusion approach leads to improved classification
ability for each classifier feature in comparison to the method
that relies only on short-axis image sequences.

FIGURE 8. The decision boundaries computed using a Bayesian classifier
to detect the normal and abnormal regional myocardial functions based
on classifier features. The boundaries were computed separately for
apical, mid-cavity and basal slices.

3) CLASSIFICATION PERFORMANCE
We constructed a nonlinear classification boundary using
a naive Bayes classifier approach [25] to utilize the SDE
values of both classifier features, the segment area/volume
and normalized radial distance in distinguishing normal and
abnormal regional heart functions. Fig. 8 depicts the separate
decision boundaries corresponds to regional segments from
apical, mid-cavity and basal slices. The blue circles and red
triangles denote the normal and abnormal regional functions,
respectively. The classification performance was measured in
term of accuracy, sensitivity and specificity using a leaving-
one-subject-out strategy. Table 3 reports the classification
performance results correspond to the proposed method and
the method that uses only short-axis images [11].

The proposed method with multiview fusion yielded an
overall accuracy of 91.9%, a sensitivity of 96.5%, and a
specificity of 90.5%,whereas themethod that uses only short-
axis image sequences [11] yielded an accuracy of 90.8%,
a sensitivity of 94.5%, and a specificity of 90.0%. The evalu-
ation demonstrates the proposed fusion method improves the
regional function classification accuracy significantly.

The proposed method took an average of 145 seconds
to produce the results for a typical dataset with 10 short-
axis and 3 long-axis sequences on an Intel Core i7 CPU
with 16GB random access memory. The proposed method
requires manual delineation of the LV on the first frame in
each sequence, and no other manual intervention is needed.
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V. DISCUSSION
With images obtained at different views and times, one of the
leading challenges in CMR image analysis is the fusion of
information. Most of the current methods [3], [4], [26], [27]
overlook information fusion, an approach that can be much
more informative than what is obtained from individual input
images. The proposed Bayesian track-to-track fusion pro-
vides a solution to fuse information from multiple sources by
analyzing the reliability of each source. To the best of authors
knowledge, this is the first attempt to fuse cine CMR images
acquired from short and long axes sequences to advance the
regional assessment of the left ventricular functional assess-
ment. There are few studies on 3D cardiac motion estima-
tion [28], [29], they relied on tagged MR sequences and not
on the standard anatomical cine CMR, the most widely used
clinical CMR sequence for LV functional assessment.

The RMSE values reported in tables 1 and 2 demonstrate
that the proposed fusion approach has a better agreement
with tag intersection estimates by the HARP method than the
methods that rely only on short or long-axis. The p-values
reported in Table 2 demonstrate that the proposed method
performs significantly better than methods that rely only on
short or long-axis when evaluated on a different view. This is
due to the fact that the methods rely on a single view are inca-
pable of estimating the through-plane motion, which leads
to poor performance, whereas the proposed method com-
bines information from different views and incorporates both
in-plane and through-plane motions in the motion estimation.

Automated regional assessment of the LV is a challenging
problem. Suinesiaputra et al. report an accuracy of 63.7%
(base), 67.4% (mid-cavity), and 66.7% (apical) for their
method when a binary classification of the visual wall motion
scoring was used as a reference [3]. Afshin et al. report an
accuracy of 84.0% (base), 85.7% (mid-cavity) and 89.8%
(apical) for their method for similar classification prob-
lem [4]. The proposed method with fusion achieved an accu-
racy of 89.4% (base), 95.0% (mid-cavity) and 90.8% (apical)
when binary visual wall motion scoring is used as a
reference.

Tracking the normal functioning LV is more challenging
due to large deformations and high variations in velocity
values than the ventricle with reduced function. However,
abnormal motions such as ventricular dyssynchrony might
affect the performance of the proposed tracking algorithm due
to variations in motion parameters within the cardiac cycle.
The datasets used in our study consisted of only three short-
axis taggedMRI sequences acquired from a patient with atrial
fibrillation, and the proposed method yielded an RMSE of
1.3 ± 0.4 mm. Further studies are warranted to assess the
performance of the proposed algorithm on specific cases with
severe motion abnormalities.

The proposed method was evaluated against CMR tag-
ging only in terms of RMSE. The proposed approach fuses
the motion information from short and long-axis sequences,
and therefore, could be used for tracking both endocardial
and epicardial boundaries. Future studies will rely on these

boundary tracking to compute the regional strain values to
compare them against the CMR tagging-based values.

The proposed method applied for regional function
assessment classified the cardiac motion as only normal
and abnormal (hypokinetic, akinetic and dyskinetic). Out
of 480 regional segments used in this study, the normal,
hypokinetic, akinetic and dyskinetic motions were observed
in 367, 84, 18, and 11 segments, respectively. Due to the
low number of available cases for akinetic and dyskinetic
motions, the proposed study did not attempt to classify the
motion into specific abnormal motions. Future studies will
focus on overcoming the class imbalance problem by adding
more cases for under-represented classes and attempt to clas-
sify the abnormal motions further.

One of the limitations of the proposed approach is that it
assumes the patients have not moved between the short and
long axes CMR acquisitions. Visual assessments confirmed
that this assumption was held for the majority of the patients.
In future, we plan to investigate registration approaches to
resolve the problem of aligning short-axis and long-axis CMR
acquisitions when patients move during the scans.

VI. CONCLUSION
In this study, we proposed a track-to-track fusion approach
obtain 3D LV motion estimates from different orthogonal 2D
image sequences. The proposed approach uses a deformable
image registration method as a preprocessing step to obtain
initial trajectories for each myocardial point, given the delin-
eation of the LV on the first frame. Then, a UKS based
recursive Bayesian framework was utilized to obtain con-
sistency across the temporal frames in each sequence. The
proposed approach was evaluated by projecting the 3D state
vector on to 2D tagged CMR images. Our method yielded a
competitive performance with a mean RMSE of 1.3 pixels
in comparison to well-known HARP estimates. In another
independent experimental evaluation, we demonstrated the
proposed fusion approach could be used to improve the binary
classification of the regional LV function in comparison to
earlier methods that do not use fusion and relies only on short-
axis CMR sequences.
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