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Abstract

Fruit is essential for plant reproduction and is responsible for protection and dispersal of

seeds. The development and maturation of fruit is tightly regulated by numerous genetic fac-

tors that respond to environmental and internal stimulation. In this study, we attempted to

identify novel fruit-related genes in a model organism, Arabidopsis thaliana, using a compu-

tational method. Based on validated fruit-related genes, the random walk with restart (RWR)

algorithm was applied on a protein-protein interaction (PPI) network using these genes as

seeds. The identified genes with high probabilities were filtered by the permutation test and

linkage tests. In the permutation test, the genes that were selected due to the structure of

the PPI network were discarded. In the linkage tests, the importance of each candidate

gene was measured from two aspects: (1) its functional associations with validated genes

and (2) its similarity with validated genes on gene ontology (GO) terms and KEGG path-

ways. Finally, 255 inferred genes were obtained, subsequent extensive analysis of impor-

tant genes revealed that they mainly contribute to ubiquitination (UBQ9, UBQ8, UBQ11,

UBQ10), serine hydroxymethyl transfer (SHM7, SHM5, SHM6) or glycol-metabolism

(HXKL2_ARATH, CSY5, GAPCP1), suggesting essential roles during the development and

maturation of fruit in Arabidopsis thaliana.

Introduction

Fruit, as specialized seed-bearing structures, are designed to protect the reproductive organs of

plants [1]. During the development and maturation of seeds, fruit has been confirmed to play

a specific role. Based on recent publications, there are two main functions of fruit that may

contribute to the reproductive processes of plants [2]. First, fruits protect seeds. For most

angiosperms, fruits serve as a solid physical barrier between seeds and the external environ-

ment, providing a reliable shelter for seed development and maturation [2, 3]. Second, some

fruits may contribute to the dispersal of mature seeds. Not all mature seeds of a plant can

grow into fertile plants. During the germination and growing processes of a mature seed, the
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surrounding environment is highly significant [4, 5]. During transfer of the seed to a proper

environment for further germination and growth, fruits play a crucial role [5]. Take coffee as

an example. The solid fruit of coffee berries protect the seed inside from the diverse external

environment [6, 7]. Digestion by a specific civet cat (Paradoxurus hermaphroditus) can destroy

the fruit and expose the seeds, which also may complete the dispersal process [8]. Considering

fruit is crucial for the plant reproduction, it is important to identify fruit-associated regulatory

factors. Among such factors, specific intrinsic factors, especially genetic factors, have been con-

firmed to play an irreplaceable role during the development and maturation of fruit.

Arabidopsis thaliana is an annual plant native to Eurasia, and has a height of 20–25 cm [9].

First described in 1577 by Johannes Thal, Arabidopsis thaliana has unique advantages for use

as a model plant. At first, Arabidopsis thaliana has an appropriate size (7–40 cm), which not

only is suitable for morphologic observation but also enables large-scale indoor cultivation

[10]. Furthermore, the reproductive capacity of Arabidopsis is robust, enabling scientists to

obtain many plant seedlings within a short time [10]. Further, as a self-pollinated plant, the fer-

tilization process of Arabidopsis thaliana can be easily interfered with and controlled to meet

the needs of biological experiments, avoiding other external environmental factors and making

it a perfect model organism for genetics research [11]. Finally, the whole genome of Arabidop-
sis thaliana, the smallest among cruciferous plants, only contains five chromosomes and 100

million base pairs that have been completely sequenced [12]. Considering these advantages,

Arabidopsis thaliana is an optimal model organism and has contributed greater understanding

in genetics and botany.

As we have analyzed above, fruit associated biological processes are regulated by multiple

internal and external regulatory factors in multiple plant subtypes, including Arabidopsis thali-
ana, among which genetic factors play a specific critical role. Considering the advantages of

Arabidopsis thaliana as a typical model plant, as we have analyzed above, it is reasonable to

take such plant as a model for further study on fruit associated genes. In Arabidopsis thaliana,

a self-pollinated plant, various genes contribute to regulation of fruit development. For exam-

ple, KANADI1 and KANADI2 participate in the development of lateral organs [13]. However,

it is expensive and time-consuming to identify functional fruit-associated genes in Arabidopsis
thaliana by traditional experimental methods. On the other hand, with the development of

computer technology and its successful application in the fields of biology, medicine [14–19],

it becomes possible to develop reliable computational methods for the identification of fruit-

associated genes.

Here, based on the validated fruit-related genes in Arabidopsis thaliana, we tried to identify

novel fruit-related genes using computational techniques. Up to now, several network meth-

ods have been developed to identify novel disease genes [15, 20–25]. Some of these methods

employed the classic network algorithms, such as random walk with restart (RWR) algorithm

[26, 27] and shortest path algorithm [28]. These algorithms gave novel directions for identifi-

cation of functional fruit-associated genes. Recently, Zhu et al. built a method that used the

shortest path algorithm as the basic search algorithm to identify novel fruit-associated genes

in Arabidopsis thaliana [29]. In this study, we adopted the RWR algorithm to construct the

method. In detail, it was executed on a protein-protein interaction (PPI) network, which was

constructed using PPI information in STRING [30], with validated genes as seed nodes. Genes

with high probabilities were selected. To identify false positives, the permutation test and

linkage tests were built to screen out essential genes. The permutation test can discard genes

selected due to the structure of the PPI network. In the linkage tests, we measured the impor-

tance of each candidate gene from two points: (1) its functional associations with validated

genes and (2) its similarity with validated genes on gene ontology (GO) terms [31] and Kyoto

encyclopedia of genes and genomes (KEGG) pathways [32]. A group of inferred genes were
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accessed, some of which were extensively analyzed. Our results indicate that these genes may

participate in fruit-associated biological processes of Arabidopsis thaliana.

Materials and methods

Dataset

To obtain the validated fruit-related genes in Arabidopsis thaliana, we first accessed fruit-

related PO terms. A file named plant_ontology.obo (accessed on March 24, 2005) was down-

loaded from Plant Ontology (PO, http://www.plantontology.org/download) [33]. This file pro-

vided easy-to-retrieve structures of PO terms. Terms containing fruit (PO: 0009001) and its

children terms (PO: 0004707, PO: 0008001, PO: 0004536, PO: 0004535, PO: 0008002, PO:

0025268, PO: 0000033, PO: 0008003, PO: 0009087, and PO: 0009084) were extracted and

regarded as fruit-related PO terms. The descriptions of these PO terms are listed in Table 1.

Accordingly, 994 genes annotated by these PO terms were accessed and considered as the vali-

dated fruit-related genes. The IDs of these 994 genes are provided in S1 Table.

PPI network

Because the functions of proteins need some factors to regulate, intercellular and intracellular

proteins rarely execute their functions alone. Thus, the PPIs were essential for the normal

metabolism of organisms. Some computational methods have been developed to identify

novel PPIs [34–37], which can yield more abundant PPIs to investigate related problems. The

accumulated information of PPIs can be used to construct a large PPI network, which is help-

ful to investigate different properties of proteins, such as protein functions [38–40], relation-

ship with different diseases [21, 22, 41–45].

In this study, we used the PPIs of Arabidopsis thaliana reported in STRING [30] (http://

string-db.org/, Version 9.1), a well-known public database collecting PPIs of several organ-

isms, to construct the PPI network. PPIs in STRING are derived from genomic context, high

throughput experiments, (conserved) co-expression, and previous knowledge, indicating they

can measure both the direct (physical) and indirect (functional) associations between proteins.

To retrieve the PPIs of Arabidopsis thaliana, a file ‘protein.links.v9.1.txt.gz’ was downloaded

from STRING, which contains PPIs of 1,133 organisms covering 5,214,234 proteins. Because

‘3702’ is the organism code of Arabidopsis thaliana in STRING, lines starting with ‘3702’ in the

obtained file were extracted, obtaining 3,123,482 PPIs covering 25,123 proteins of Arabidopsis
thaliana. In each PPI, there are two Ensembl IDs and a score ranging between 150 and 999.

Table 1. The information of fruit-related PO terms.

PO term ID Description

PO:0009001 fruit

PO:0004707 fruit dehiscence zone

PO:0008001 fruit distal end

PO:0004536 fruit pedicel

PO:0004535 fruit placenta

PO:0008002 fruit proximal end

PO:0025268 fruit septum

PO:0000033 fruit valve

PO:0008003 fruit vascular system

PO:0009087 mesocarp

PO:0009084 pericarp

https://doi.org/10.1371/journal.pone.0177017.t001
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For formulation, the score of a PPI with proteins pa and pb was denoted by SI(pa, pb). The con-

structed PPI network G defined 25,123 proteins as nodes and each edge represented one PPI,

i.e., two nodes were adjacent if and only if their corresponding proteins can constitute a PPI.

In addition, the score of each interaction was assigned to the corresponding edge as its weight.

RWR algorithm

The RWR algorithm [46, 47] is a classic ranking algorithm. This algorithm stimulates a walker

that starts from a seed node or some seed nodes and randomly moves in a network. Here, 994

fruit-related genes were deemed as seed nodes, and the RWR algorithm was applied on the

PPI network G to discover possible novel fruit-related genes.

Before executing the RWR algorithm on G, an initialization vector P0 was constructed con-

taining 25,123 components that corresponded to 25,123 nodes in the PPI network G. In P0, the

component corresponding to the validated fruit-related genes was set to 1/994 and others were

set to zero. The RWR algorithm repeatedly updates this vector and denotes Pi as the vector

after the i-th round has been done. The updating rule is as follows:

Piþ1 ¼ ATPi þ cP0 ð1Þ

where A is the column normalized adjacency matrix (the sum of members in each column

equals to one) of the PPI network G and c is the restart probability (it was set to 0.8 in this

study). The updating procedure stops until the vector Pi becomes stable, which is measured by

the condition of || Pi+1 –Pi || L1 < 10−6. The vector Pi+1 is outputted, which indicates the proba-

bilities of all nodes (genes) to be fruit-related genes.

Clearly, genes receiving larger probabilities are more likely to be the potential fruit-related

genes. To avoid omitting too many potential genes, we set a threshold of 10−5, which was used

in another study [24] to select possible genes, i.e., genes with probabilities larger than 10−5

were selected for further analysis and were called RWR genes for convenience.

Permutation test

In Section “RWR algorithm”, the RWR algorithm was applied on the PPI network G using val-

idated fruit-related genes as seed nodes, producing some RWR genes. However, not all these

genes are tightly associated with the fruits of Arabidopsis thaliana. Some RWR genes were

selected because of the structure of the PPI network, i.e., the structure of the network can influ-

ence the utility of the RWR algorithm. To discard these genes, the permutation test [43, 48–50]

was designed as follows.

1. 1,000 node sets, formulated as S1, S2, S3. . ., S1000, were randomly constructed, and each set

contained 994 nodes in the PPI network G;

2. For each set, the RWR algorithm was applied on the PPI network G using nodes in the set

as seed nodes;

3. For each RWR gene, there were 1,000 probabilities produced by S1, S2, S3,. . ., S1000 and one

probability yielded by validated fruit-related genes. Accordingly, a P-value was calculated

for each RWR gene g, which was defined as

P � valueðgÞ ¼ Y=1000 ð2Þ

where Θ is the number of node sets on which the probabilities of g were larger than that on

validated fruit-related genes. Clearly, a RWR gene with a high P-value indicates that it is

not specific for fruit because several randomly produced sets can discover it. Thus, we
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should select RWR genes with low P-values. Because 0.05 is always selected as a cutoff of

the significance level of statistical tests, it was set to be the threshold of the P-value. Thus,

RWR genes with P-values less than 0.05 were selected, and the selected genes were called

candidate genes for convenience.

Linkage tests

As described in Section “Permutation test”, some candidate genes with P-values less than 0.05

were selected. These genes are deemed to have more or less associations with the fruit of Arabi-
dopsis thaliana. This section built two linkage tests that can identify candidate genes with close

relation to the fruit of Arabidopsis thaliana.

It is known that proteins that can form a PPI are often share similar functions or located in

same signal pathways [39, 40, 51, 52]. Accordingly, candidate genes that can interact with at

least one validated fruit-related gene are more likely to be novel fruit-related genes. Further-

more, each interaction was assigned a score ranging between 150 and 999 to indicate its

strength. Thus, we can further consider this score to measure the functional associations

between candidate genes and validated fruit-related genes. For each candidate gene g, a mea-

surement, called maximum interaction score (MIS), was calculated, which is defined as:

MISðgÞ ¼ maxfSIðg; g
0Þ : g 0 is a validated fruit � related geneg ð3Þ

Clearly, a larger MIS for a candidate gene indicate tight interaction with at least one validated

gene, and thus has a high likelihood to be a novel fruit-related gene. In the STRING database,

900 is the threshold of the highest confidence level of PPIs. Thus, this value was adopted as the

threshold of MIS to screen out important candidate genes.

The GO terms [31] and KEGG pathways [32] are always utilized to elucidate and describe

molecular functions, cellular components, biological and signal processes of genes. Each gene

can be annotated by some GO terms or KEGG pathways. If a candidate gene exhibits similar

GO terms or KEGG pathways with some validated fruit-related genes, it is more likely to be a

novel fruit-related gene. To measure the similarity of candidate genes and validated genes on

GO terms and KEGG pathways, the enrichment theory of GO terms and KEGG pathways was

employed, based on which the relationship between a gene and GO terms or KEGG pathways

can be formulated as a numeric vector [53–57]. For formulation, the vector yielded by the

enrichment theory for a gene g was denoted by V(g). The similarity of two genes g and g0 on

GO terms and KEGG pathways can be measured by the proximity of their corresponding vec-

tors, which was computed by

Gðg; g 0Þ ¼
VðgÞ � Vðg 0Þ
kVðgÞk � kVðg 0Þk

ð4Þ

Obviously, a high outcome of Eq 4 indicates a close relationship between g and g 0. Like Eq 3,

we can calculate a measurement, called maximum function score (MFS), for each candidate

gene g, which was defined as

MFSðgÞ ¼ maxfGðg; g 0Þ : g 0 is a validated fruit � related geneg ð5Þ

A large MFS for a given candidate gene implies significant overlap of GO terms or KEGG path-

ways with at least one validated fruit-related gene. 0.9 was set to be the threshold of MFS in this

study, i.e., candidate genes with MFSs larger than 0.9 were selected.

Eventually, by considering these two linkage tests, candidate genes with MISs no less than

900 and MFSs larger than 0.9 were selected as the putative genes in this study.
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Results

A flowchart (Fig 1) illustrates the entire method used for identifying novel fruit-related genes.

This chart also shows the results yielded by each procedure.

Our method first applied the RWR algorithm to the PPI network constructed in Section

“PPI network” using validated fruit-related genes as seed nodes. Each gene in the network

received a probability that indicated the possibility of it being a novel fruit-related gene. To

reduce the searching scope, we selected genes with probabilities larger than 10−5, obtaining

6,310 RWR genes. These genes and their probabilities yielded by the RWR algorithm are listed

in S2 Table.

Among the 6,310 RWR genes, not all are related to the fruit of Arabidopsis thaliana. As

mentioned in Section “Permutation test”, some were selected due to the structure of the PPI

network but had no relationship with the fruit of Arabidopsis thaliana. Thus, a permutation

test was adopted to filter these types of RWR genes. A P-value was assigned to each RWR gene,

which is also provided in S2 Table. Because 0.05 was selected as the criterion for statistical sig-

nificance, we selected RWR genes with P-values less than 0.05, resulting in 1,879 candidate

genes. These genes are available in S2 Table.

To further select essential fruit-related genes among the 1,879 candidate genes, two linkage

tests were executed. Each candidate gene was assigned an MIS and an MFS, which are also

available in S2 Table. The strict thresholds 900 and 0.9 for MIS and MFS were applied. 255

Fig 1. The flowchart of the method for identifying novel fruit-related genes.

https://doi.org/10.1371/journal.pone.0177017.g001
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genes remained, which are listed in S3 Table. These genes were deemed to be significant to

fruit of Arabidopsis thaliana. For convenience, they were called putative genes in this study.

Discussion

Based on our computational method, we identified a group of putative genes (255 genes) that

may directly or indirectly contribute to the development and maturation of the fruit in Arabi-
dopsis thaliana. In another study, Zhu et al. adopted the shortest path algorithm to search pos-

sible fruit-related genes in Arabidopsis thaliana [29]. In fact, the shortest path algorithm always

identifies possible genes using a pair of validated genes and collects all identified possible

genes together as the candidate genes. Its principle is quite different from the RWR algorithm

because RWR algorithm tries to search possible genes using the validated genes as a whole and

diffusing the probabilities on validated genes to other possible genes. It is anticipated that the

candidate genes obtained by these two algorithms are quite different. To prove this claim, we

downloaded the identified genes in Zhu et al.’s study, totally 517 candidate genes. Of the 255

putative genes obtained in this study, 44 genes were also identified in Zhu et al.’s study and

211 genes were exclusively reported in our study (see S3 Table for detailed information). Less

than one-fifth putative genes were identified in Zhu et al.’s study, which further proves the dif-

ferent influence of the shortest path algorithm and RWR algorithm for identifying possible

fruit-related genes in Arabidopsis thaliana. Thus, the putative genes reported in this study can

be an important supplement for the complete identification of fruit-related genes in Arabidop-
sis thaliana.

Among the 255 putative genes, 211 genes were identified in our study and not predicted in

Zhu et al.’ study. Of these 211 genes, some of these can be validated based upon results

reported in recent publications, reflecting the accuracy and efficacy of our method. At this

point in our investigation, we selected ten important putative genes (see Table 2), to analyze

their relationship with the development and maturation of Arabidopsis fruit. The linkages

between these ten putative genes and validated genes are illustrated in Fig 2. Intuitively, they

all have strong associations with validated fruit-related genes, thereby inducing their close rela-

tionships with the development and maturation of the fruit in Arabidopsis thaliana.

Among the putative genes, various ubiquitin associated genes appear to contribute to fruit-

associated biological processes. UBQ9, which is also known as AT5G37640 in Arabidopsis
thaliana, has been mainly reported to contribute to the response to certain cytokines and the

ubiquitin-dependent protein catabolic processes [58, 59]. Ubiquitin exists either attached to

another protein or unanchored. Depending on the specific Lys site ubiquitin linked, anchored

proteins have many specific functions, including lysosomal degradation, endocytosis and

Table 2. The detailed information of ten important putative genes.

Ensembl ID Gene Name Protein name Probability P-value MIS MFS

AT5G37640 UBQ9 Polyubiquitin 9 7.47E-05 <0.001 946 0.999

AT3G09790 UBQ8 Polyubiquitin 8 7.49E-05 <0.001 946 0.999

AT4G05050 UBQ11 Polyubiquitin 11 8.00E-05 <0.001 946 0.999

AT4G05320 UBQ10 Polyubiquitin 10 8.37E-05 <0.001 940 0.999

AT1G36370 SHM7 Serine hydroxymethyltransferase 7 2.82E-05 0.001 994 0.997

AT4G13890 SHM5 Serine hydroxymethyltransferase 5 3.11E-05 0.001 995 0.997

AT1G22020 SHM6 Serine hydroxymethyltransferase 6 3.10E-05 <0.001 994 0.997

AT4G37840 HXKL2_ARATH Probable hexokinase-like 2 protein 3.08E-05 0.007 966 0.997

AT3G60100 CSY5 Citrate synthase 5 2.94E-05 <0.001 980 0.997

AT1G79530 GAPCP1 Glyceraldehyde-3-phosphate dehydrogenase 2.98E-05 0.001 998 0.997

https://doi.org/10.1371/journal.pone.0177017.t002
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DNA damage response [60–62]. Ubiquitin-dependent proteins have been widely reported to

contribute to the development and maturation of fruits in various plants, such as tomatoes,

bananas and our model plant, Arabidopsis thaliana [63–65]. Recent publications confirmed

that UBQ9 interacts with various core components of ubiquitin-dependent protein catabolic

processes [58]. Therefore, the putative gene UBQ9 may contribute to the specific fruit-associ-

ated biological processes. Another putative gene, UBQ8, is known as AT3G09790 in Arabidop-
sis thaliana. It is the homologue of UBQ9. As mentioned above, ubiquitin-dependent proteins

may mediate the degradation of specific target proteins, such as HOS1, MdCOP1, and ETO1,

which may further promote the development and maturation of fruit in Arabidopsis thaliana
[63–66]. Therefore, such genes may, such as its homologue UBQ9, contribute to specific fruit-

associated metabolic processes. UBQ11, also known as AT4G05050, has also been confirmed

as one of the poly-ubiquitin families which contribute to ERAD (endoplasmic reticulum-asso-

ciated degradation) [67]. Recent publications confirm that, at least in rice, ERAD-associated

biological processes may be directly related to the development and maturation of the fruit,

implying its specific role in plant fruiting [68]. Considering that recent publications also

identified ERAD-associated biological processes as a crucial regulator for reproduction

(including fruits) of Arabidopsis thaliana, it is reasonable to regard the putative gene UBQ11

Fig 2. The linkages between ten important putative genes and validated fruit-related genes that were

extracted from the PPI network. Red nodes represent validated fruit-related genes. Blue nodes represent

putative genes.

https://doi.org/10.1371/journal.pone.0177017.g002
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as a candidate fruit-associated gene [69]. The putative gene UBQ10 encodes another specific

ubiquitin-associated protein, also known as AT4G05320, involving ubiquitin-dependent pro-

tein catabolism, which we have analyzed above and confirmed its association with fruiting

[70].

Apart from the ubiquitin genes analyzed above, we also obtained a group of functional

enzymes. Three of them encode subtypes of serine hydroxy methyltransferases. SHM7, also

known as AT1G36370, encodes the specific serine hydroxy methyltransferase 7, which further

contributes to catalyzing the interconversion of serine and glycine [71]. Recent publications

confirm that the main function of SHM7, pyridoxal phosphate binding, may contribute to the

development and maturation of fruit in citrus, implying its potential role in various plant sub-

types [72, 73]. Furthermore, a specific mutant screening of Arabidopsis thaliana, based on

high-throughput HPLC-MS/MS assay has confirmed that, together with another enzyme thre-

onine aldolase, the serine hydroxy methyltransferase may play a specific role during the devel-

opment and maturation of fruit, affecting seed nutritional quality [74]. SHM5 (AT4G13890),

another crucial serine hydroxy methyltransferase, has also been predicted to be a candidate

fruit-related gene in Arabidopsis thaliana [74]. Similar to SHM7 analyzed above, SHM5 has

also been confirmed to interact with specific endogenous compounds in plants, such as

5-Methyltetrahydrofolate and 5-formyltetrahydrofolate, in one-carbon metabolism.

Thus, SHM5 may further participate in the maturation of fruits in Arabidopsis thaliana, vali-

dating the specific relationship between this gene and fruit development [75–77]. SHM6

(AT1G22020) also encodes a specific subtype of serine hydroxy methyltransferases. Although

no publications confirmed that such genes contribute to the development or maturation of

fruits, considering the crucial regulatory role of serine hydroxy methyltransferases in Arabi-
dopsis thaliana, and validated interactions in this study, it is reasonable to regard SHM6 as a

candidate functional fruit-related gene [78, 79].

Apart from such serine hydroxy methyltransferases, we also identified specific hexokinase-

associated genes HXKL2_ARATH (probable hexokinase-like 2 protein) and HXL3 (hexoki-

nase like 3), also known as AT4G37840. Recent publications have confirmed the complex

functions of such genes in plants. Expression in citrus guard cells regulates specific sugar-sens-

ing functions during fruit development and maturation, at least in citrus [80]. An earlier explo-

ration confirmed that such genes may contribute to AtRGS1-medated sugar signaling in

Arabidopsis thaliana [81]. Considering that sugar signaling contributes to the nutrient accu-

mulation and freezing tolerance of fruit, and may affect the longevity of seeds, it is reasonable

to conclude that as a functional sugar metabolism regulator, AT4G37840 may contribute to

fruit- associated biological processes in Arabidopsis thaliana [2, 82, 83]. Another gene, CSY5,

also known as AT3G60100, contribute to fruit-associated biological processes. Recent publica-

tions not only revealed the potential functions of citrate synthase during seed germination but

also suggests a crucial role of in fruit development, especially at low temperature [84, 85].

Expressed in fruit and seedlings of Arabidopsis thaliana, the putative gene CSY5 may contrib-

ute to fruit associated biological processes [84]. GAPCP1 (glyceraldehyde-3-phosphate dehy-

drogenase), also known as AT1G79530, is a candidate fruit-related gene in Arabidopsis
thaliana. Involved in the plastid glycolytic pathway, this gene may contribute to the production

of glycolytic energy in non-photosynthetic tissues, especially in fruits [86, 87]. Considering

that the glycolytic energy in fruits is important in cellular metabolism and seed oil accumula-

tion in the fruit of Arabidopsis thaliana, the putative gene GAPCP1 may be a crucial fruit-

related gene.

As we have analyzed above, ten putative genes have been validated to participate in fruit

associated biological processes of Arabidopsis thaliana. Based on recent publications and our

analysis, we identified two crucial biological processes: ubiquitin- associated biological
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processes and serine hydroxy methyltransferase-associated biological processes that may con-

tribute to the development and maturation of fruit in Arabidopsis thaliana. The typical enrich-

ment of some putative genes in such biological processes implies the role and underlying

mechanisms of them for fruit development and maturation. The remaining putative genes are

not discussed here but, may also be related to fruit-associated biological processes of Arabidop-
sis thaliana. We hope that other investigators will test this hypothesis.

Conclusions

In this study, we utilized powerful computational techniques for identifying novel fruit-related

genes in Arabidopsis thaliana, yielding 255 inferred genes. These genes may provide new direc-

tions to investigate the biological processes associated with fruiting in Arabidopsis thaliana.

Furthermore, we believe that this method can be further applied to the recognition of various

functional genes/proteins of multiple species, such as DNA-binding protein prediction [88],

promoting the development of large-scale gene/protein function prediction and identification.
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