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Abstract
This study proposed the use of satellite hyperspectral imagery to support tick-borne infec-

tious diseases surveillance based on monitoring the variation in amplifier hosts food

sources. To verify this strategy, we used the data of the human rickettsiosis occurrences in

southeastern Brazil, region in which the emergence of this disease is associated with the

rising capybara population. Spatio-temporal analysis based on Monte Carlo simulations

was used to identify risk areas of human rickettsiosis and hyperspectral moderate-resolu-

tion imagery was used to identify the increment and expansion of sugarcane crops, main

food source of capybaras. In general, a pixel abundance associated with increment of sug-

arcane crops was detected in risk areas of human rickettsiosis. Thus, the hypothesis that

there is a spatio-temporal relationship between the occurrence of human rickettsiosis and

the sugarcane crops increment was verified. Therefore, due to the difficulty of monitoring

locally the distribution of infectious agents, vectors and animal host’s, satellite hyperspectral

imagery can be used as a complementary tool for the surveillance of tick-borne infectious

diseases and potentially of other vector-borne diseases.

Introduction
Active disease surveillance, which involves searching for evidence of disease through routine
and monitoring in endemic areas, could help prevent an outbreak, or slow transmission at an
earlier stage of an epidemic [1]. Recently, due to the spatial expansion of emerging vector-
borne diseases and the difficulty to monitor locally the presence of infectious agents, their vec-
tors and their hosts, epidemiologists are adopting new remote sensing techniques to predict
vector habitats based on the identification, characterization and management of environmental
variables such as temperature, humidity and land cover type [1, 2]. Based on this strategy, satel-
lite imagery such as those from Advanced Spaceborne Thermal Emission and Reflection Radi-
ometer (ASTER), Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and
Advanced Very High Resolution Radiometer (AVHRR), have been used to propose preventive
strategies for mosquito-borne diseases [3–7]. Ticks are obligatory parasites of vertebrate hosts
and depending on their hosts for movement over large distances. Consequently, tick-borne
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infectious diseases can be spread over geographical areas by the movement of tick hosts carry-
ing either infected ticks or transmitting diseases to susceptible ticks in neighboring locations.
In this paper we proposed the use of satellite imagery to support tick-borne infectious diseases
surveillance based on the expansion of amplifier host’s food sources.

Rickettsia rickettsii is the etiological agent of the most severe form of rickettsiosis, referred
to as Brazilian spotted fever (BSF) in Brazil. The disease also occurs in the United States,
Mexico, Costa Rica, Panama, Colombia, and Argentina. In South America, the tick
Amblyomma cajennense sensu lato (s.l.) is the main vector, but other tick species, such as Rhipi-
cephalus sanguineus and Amblyomma aureolatum, are also involved in more restricted areas
[8]. R. rickettsii is partially pathogenic to ticks so the infection rate drops in the tick population
with each tick generation [9]. Furthermore, less than 50% of A. cajennense s.l. maintain transo-
varial and transestadial infections and are unable to keep the infection by R. rickettsii efficiently
in successive generations [10]. Thus the participation of amplifier hosts for the maintenance of
the bacteria becomes essential to guarantee a constant development of new generations of
infected ticks [9, 11]. In South America, it was recently found that the capybara Hydrochoerus
hydrochaeris acts as the amplifier host of R. rickettsii infection for the tick A. cajennense s.l. [12,
13]. Once infected, the capybara keeps the R. rickettsii in the bloodstream for 7 to 10 days,
when the infection of susceptible ticks that feed on it may occur [13], generating new cohorts
of infected ticks. In addition capybaras are prolific, producing a mean of six pups per female
per year [14], generating a constant introduction of susceptible animals. In North America,
where Dermacentor spp. ticks are main vectors of R. rickettsii, several small rodent species such
Microtus pennsylvanicus,Microtus pinetorum, Peromyscus leucopus and Sigmodon hispidus can
also maintained the R. rickettsii infection between ticks [15].

In Brazil, there may be a causal relationship between the rising capybara population and the
re-emergence of the disease, since both capybara populations and the number of BSF occur-
rences have increased significantly over the last three decades [1, 16]. Between the years 1989
and 2008, there were recorded 737 cases of Brazilian spotted fever with laboratory confirma-
tion, of which 80.2% were in the southeastern region with a lethality of 31.4% [16]. In the state
of São Paulo, southeastern Brazil, there were 555 confirmed cases between the years 1985–
2012, with a lethality of 40.5% [17]. Additionally, in endemic areas for BSF in the state of São
Paulo, population densities of capybaras have reached numbers up to 40 times higher than
those recorded in natural environments such as the Amazon and Pantanal [18]. In this region,
the constant availability of water resources (S1 Fig), is essential for establishment of capybara
populations, since this is a semiaquatic vertebrate species that depends on water source for
thermic regulation, reproduction (capybaras mate only in water), and predator protection [19].
On the other hand, the increase of capybara populations in these areas should depend primar-
ily on availability of food sources, as typically known for rodents such as capybaras [19]. Sugar
cane is well known as one of the most appreciated food by capybaras, and the economic impact
of capybara on damage to sugarcane crops is a reality in the state of São Paulo [20]. In the state
of São Paulo, sugar cane is indeed the most common farming [21, 22]. Because sugar cane
farming occurs throughout the year, regardless of season, it represents the main food source
for capybaras in many areas [18]. Thereby, the increase in the availability of food sources, near
watercourses, increases the habitat carrying capacity for capybaras, resulting in population
growth of susceptible animals. The carrying capacity represents the maximum number of indi-
viduals that the environment can sustain indefinitely given the availability of vital resources
(i.e. water, food, habitat) [23]. This in turn could modulate the transmission of diseases carried
by these animals.

Among A. cajennense s.l. populations that are sustained by capybara hosts, it has been pro-
posed that the maintenance of R. rickettsii depends primarily on a constant introduction of
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susceptible animals (i.e., newborn capybaras), which will act as amplifier hosts and will guaran-
tee the constant creation of new cohorts of infected ticks [8, 10, 11]. Hence, the approach
adopted in this paper is based on the premise that the expansion of cultivated sugarcane areas
would translate into an increase of the population density of capybaras (i.e., higher reproduc-
tion index), and consequently on the higher exposure of humans to R. rickettsii-infected ticks
(i.e., higher number of BSF cases). In this way, to support the BSF surveillance, we suggest a
methodology based on the spatio-temporal monitoring of the increment and expansion of sug-
arcane crops, main food source for capybaras in the state of São Paulo, southeastern Brazil.

Materials and Methods

Study area
To verify if is possible to anticipate the occurrence of tick-borne infectious diseases using the
satellite hyperspectral methodology proposed, which is based on monitoring the variation in
amplifier hosts food sources, we used the data of the BSF occurrences in the state of São Paulo,
southeastern Brazil, region in which the emergence of this disease is associated with the rising
capybara population. This study area located at coordinates 19°440 S to 24°280 S 44°050 W to
53°310 W, covering an area of 248 808 km2. With 43,663,669 inhabitants and 625 territorial
divisions, São Paulo is the most populous state of Brazil. The topography is characterized
largely as a plateau (90%), with altitudes that vary from 300 m to 900 m. The region has a tropi-
cal climate, with a hot and humid summer (October to February) and dry winter (June to
August).

Brazilian Spotted Fever occurrence
Data collection. The occurrence of Brazilian spotted fever in the state of São Paulo from

2000 to 2012 were obtained from the web site of the São Paulo State Center of Epidemiologic
Surveillance [24]. We considered only the BSF cases that occurred in areas of transmission by
A. cajennense s.l., as previously determined [25]. The human population of each São Paulo ter-
ritorial division was obtained from the website of the Brazilian Institute of Geography and Sta-
tistics [26].

Retrospective Spatial analysis. A retrospective high rate spatio-temporal statistic based
on a discrete Poisson distribution, implemented in a software SaTScan, was used for the identi-
fication of spatial clusters and risk areas for BSF occurrence. This method produced a set of
clusters, the relative risk in the different clusters, and a corresponding p—value for each cluster
based on Monte-Carlo simulations.

The statistic uses a circular window of variable radius that moves across the map. For each
circle a likelihood ratio statistic is computed based on the number of observed and expected
cases within and outside the circle and compared with the likelihood, L0[27]. We used a likeli-
hood function under the alternative hypothesis assuming Poisson distributed cases propor-
tional to:

g
EðgÞ

� �g N � g
N � EðgÞ

� �N�g

IðÞ ð1Þ

where γ and E(γ) represent the observed and expected number of cases in a circle and N − γ
and N − E(γ) the observed and expected number of cases outside the circle. N is the total num-
ber of cases. The indicator function I() is equal to 1 if the observed number of cases within the
circle is larger than the expected number of cases given the null hypothesis and 0 otherwise
[27]. The circles with the highest likelihood ratio values are identified as potential clusters. An
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associated p-value, based on 999 Monte Carlo simulations, was computed and used to evaluate
whether the cases are randomly distributed in space or otherwise. We included only primary
clusters, as long as their corresponding p-values were less than 0.05.

Hyperspectral / multitemporal analysis
Satellite imagery obtaining. To detect increment and expansion of sugarcane crops we

used time series from the Enhanced Vegetation Index (EVI) for the entire state of São Paulo
from 2000 to 2012. The EVI imagery were obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor on board the Terra satellite of the National Aeronautics
and Space Administration (NASA) [28]. The gathered images fromMODIS, including 176
spectral bands with 250m (red, near-infrared), 500m (mid-infrared) and 1000m (thermal infra-
red) spatial resolutions. The vegetation spectrum typically absorbs in the red and blue wave-
lengths, reflects in the green wavelength, strongly reflects in the near infrared wavelength, and
displays strong absorption features in wavelengths where atmospheric water is present [29, 30].
These hyperspectral images spans the time period from 2000 to 2012 in 16 day increments. To
prepare the images for the analysis, we created a mask to disregard screen brightness values
equal to 0 and 255 to rule out specific areas, such as water, in our analyses. All procedures
using satellite images were executed using the software ENVI 5.2.

Principal Component Analysis. The principal component analysis was used to transform
the original hyperspectral image data, highly correlated, into a new set of uncorrelated variables
called principal components. By rotating the coordinate system to align with orthogonal
dimensions of uncorrelated variance, any location-specific pixel time series Pxt contained in a
N image time series can be represented as a linear combination of temporal patterns, F, and
their location-specific components, C, as:

Pxt ¼
XN
i¼1

CixFit ð2Þ

where Cix is the spatial Principal Component (PC), Fit is the corresponding temporal Empirical
Orthogonal Function (EOF) and i is the dimension [31–35]. The EOF’s are the eigenvectors of
the covariance matrix that represent uncorrelated temporal patterns of variability within the
data [31]. Thus, the principal components can be determined by computing the eigenvectors
and eigenvalues of the covariance matrix.

Linear Spectral Unmixing Analysis. The relative abundance of sugarcane crops was
depicted in the hyperspectral imagery based on the endmembers spectral characteristics, using
linear spectral unmixing. Endmembers are a collection of constituent spectra corresponding to
distinct ground substances [36]. Each location-specific (x) pixel Pxt in an N image time series
can be represented as a linear combination of D0 temporal endmembers, Eit, and a residual
component, ε, as:

Pxt ¼
XD0

i¼1

fixEit þ ε ð3Þ

where the pixel-specific fractions fix may represent either the areal fraction of the pixel exhibit-
ing the temporal pattern of the corresponding endmember, or more generally, the Euclidean
proximity of that pixel to the corresponding endmember in the temporal feature space. In a
temporal unmixing model, each pixel is the linear combination of different temporal endmem-
bers and corresponding fractions [31]. The result is a set of fraction maps representing the
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spatial distribution of different endmember abundances so, the pixel values indicate the frac-
tion of the pixel that contains the endmember material corresponding to that image.

Results
The distribution of BSF cases in areas of transmission by A. cajennense s.l. and the São Paulo
population density are shown in Fig 1. In São Paulo, from 2000 to 2012 there were reported
386 cases of BSF with an incidence of 0.4 year−1 for each 100 000 persons. The retrospective
space-time analysis scanning for clusters with high rates using the discrete Poisson model and
999 Monte Carlo simulations detected four spatio-temporal clusters (p<0.05) demarcated in
two periods: 2000 to 2006 and 2007 to 2012 as shown in Fig 1. Because of these two temporal
clusters found, all following analysis will be presented considering these two periods. Respec-
tively, the number of cases were 178 and 208. The relative risk of the spatial cluster concerning
the first period was 8.54 and the relative risk of the three spatial clusters concerning the second
period were 1.64, 3.44 and 9.39 as is also shown in Fig 1.

Using principal component analysis, we quantify the spectral dimensionality of the global
composite and render the mixing space to select the endmembers. The eigenvalues that derive
the amount of variation accounted by each principal component within the feature space, show
that nearly 95% of the information within this feature space was found in the first six principal
components (66.3% in channel 1, 11.9% in channel 2, 6.3% in channel 3, 4.4% in channel 4,
3.4% in channel 5, 2.4% in channel 6) and for this reason the following analysis considers only
the first six principal components. After rendering the mixing space from the six low order
principal components we identify three endmembers corresponding to Atlantic vegetation,
sugarcane crops and substrates. Substrates includes rock, sediment, soil and non-photosyn-
thetic vegetation and in the case of São Paulo some rivers are also detected as substrates due to
the high contamination of water sources. The first four principal components have an annual
or biannual frequency change that represents the main vegetation phenology changes over the
area. In contrast, the other principal components exhibit poorly expressed annual frequency
variability because the corresponding phases stem from noise or substrate, or only represent
phenology in small areas. S2 Fig is shown the spectral reflectance information for each end-
member selected through the study period. It is shown that the Atlantic vegetation is

Fig 1. Population density and Rickettsiosis occurrence in areas of transmission by Amblyomma cajennense sensu lato in the state of São Paulo.
High population density is represented with a higher gray tone and low population density with a lower gray tone. (A) Cases reported and cluster detected
from 2000 to 2006. (B) Cases reported and clusters detected from 2007 to 2012.

doi:10.1371/journal.pone.0143736.g001
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characterized by an annual cycle, the crop-vegetation by a biannual cycle and the substrate by a
poorly annual frequency variability.

Fig 2 represents the pixel abundance of the endmembers selected from the state of São
Paulo, using the linear unmixing model. The linear unmixing model yields per pixel endmem-
ber fractions which can be interpreted as quantitative estimates of the areal abundance of the
specific endmembers (Atlantic vegetation, sugarcane crops and substrates) contributing to the
mixed pixel. Thus, in Fig 2 each pixel obtain information of the single mixing fraction that
minimize the summed square of the mismatch for all bands using the least square solution. In
general, the biannual cycle endmember abundance consistent with sugarcane crops, repre-
sented in red, is detected in the cluster areas for rickettsiosis occurrence in both periods. S3 Fig
is shown the error map correspondent for each period obtain from the Root Mean Square
(RMS) difference between the observed and modeled mixtures. The RMS was used to quantify
model misfit and the effects of endmember variability. The RSM mean value for the pixels was
0.318. Black colors indicate that the endmembers chosen for the analysis are well characterized
and correspond with the most surface of the state of São Paulo and white colors represent mis-
fit values. Low RMS misfit supports the statistical validity of the linear mixing model but does
not guarantee accurate or physically meaningful results. Thus, we verify and confirm the geo-
graphical pattern of the sugarcane endmember obtained from joint principal component and
linear spectral unmixing analysis with the information of the distribution and expansion of
sugarcane crops from previous studies from the state of São Paulo [21, 22] and from the Cana-
sat-Area Project of the Brazilian National Institute for Space Research [37], which mapping the
sugarcane distribution of the state of São Paulo once a year using remote sensing imagery
acquired by the Landsat, CBERS and Resourcesat-I satellites [37].

To verify if the increment of the sugarcane crops was associated with the presence of BSF,
the pixel abundance mean values were compared in the four risk areas for BSF occurrence
between both periods. Fig 3 shows the sugarcane crops pixel abundance difference between the
2007–2012 and 2000–2006 periods. To confirm this difference, the sugarcane crops pixel abun-
dance mean values of the clusters was compared between the 2000–2006 and the 2007–2012
periods. It was found that the sugarcane crops pixel abundance mean (124.37) of the three clus-
ters detected from 2007 to 2012 was higher than the pixel abundance mean (88.16) of this
zones from 2000 to 2006 (p< 0.05). The sugarcane crops pixel abundance mean (136.81) of the

Fig 2. Linear unmixingmodel result showing the pixel abundance of the endmembers selected from the state of São Paulo. (A) 2000–2006. (B)
2007–2012. Atlantic vegetation is represented in green, sugarcane crops in red and substrates in the blue channel.

doi:10.1371/journal.pone.0143736.g002
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cluster detected from 2000 to 2006 was higher than the sugarcane crops pixel abundance mean
(120.13) of this zone from 2007 to 2012, nevertheless this difference was not statistically signifi-
cant. Consistently, the sugarcane crops pixel abundance mean was 1.4 times higher in the risk
zones for BSF occurrence. This indicate that the increment and expansion of sugarcane crops
coincide with BSF risk areas. Nevertheless, the reduction of the sugarcane crops not necessarily
corresponds with the disappearance of a BSF risk zones.

Discussion
Spatial epidemiology aims to investigate the spatial distribution of diseases in order to identify
risk areas, determine ecological risk factors for disease transmission and strategically guide dis-
ease control actions [38, 39]. In our study, four significant high-risk regions for BSF were iden-
tified by the spatio-temporal scan statistic approach for two delimited time periods: 2000 to
2006 and 2007 to 2012. The circular scan statistic used in this study has been proved to be use-
ful for many studies [40–43]. Gaudart et al (2005) compared the oblique decision tree model, a
complex statistical technique with the Kulldorff’s SaTScan cluster technique, which was used
in this study. They produced similar results using both methods in a village in West Africa to
identify malaria risk clusters [43]. The circular isotopic technique of the Kulldorff’s SaTScan
makes it a useful tool to detect clusters but has limitations when detecting irregular shaped
clusters due to its fixed scan window [44, 45].

The suitability of an area for vector-borne disease transmission depends on environmental
variables such as temperature, humidity and land cover type. Because these factors can be mon-
itored using remote sensing, it is possible to construct models that predict regions and periods
favorable for the presence of the vectors, their hosts and the diseases carried by these. In addi-
tion to satellite-derived climate variables, many recent epidemiological studies have made use
of the link between vegetation amount and vector populations via the application of normal-
ized difference vegetation index (NDVI) imagery [46]. Due to the essential involvement of the
capybaras in the BSF transmission, we used the MODIS enhanced vegetation index (EVI),
which offers improvements over the NDVI, to identify sugarcane crops increment and subse-
quently link this increment with the occurrence of BSF, since we rely on the premisse that

Fig 3. Sugarcane crops pixel abundance difference between the 2007–2012 and 2000–2006 periods.
Negative (blue) values indicate that the pixel abundance was higher at 2000–2006 period and positive (red)
values indicate that the pixel abundance value was higher at the 2007–2012 period.

doi:10.1371/journal.pone.0143736.g003
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higher food availability increases capybara reproduction index, and consequently, higher num-
ber of R. rickettsii-infected ticks [8, 10, 11]. Many remote sensing approaches have been devel-
oped to identify cropping practices, such as crop type and cropping intensity, across large
spatial and temporal scales [47–50]. Studies have used mainly Landsat data to assess crop type
and cropping intensity. However, the accuracy of the Landsat method depends on several dif-
ferent factors such Landsat image availability for the appropriate time period during crop
growth cycles [51]. The low temporal resolution of Landsat and its susceptibility to missing val-
ues, and the coverage required to assess crop type and cropping intensity is not assured in most
agricultural regions, particularly in the tropics where there are often periods of intense cloud
covering [52]. High-temporal resolution data fromMODIS are of great relevance for modeling
the transmission of vector-borne disease since they fill these gaps and allow an assessment of
vector and disease distribution and their potential spread.

Studies have been conducted with remote sensing to identify landscapes linked to a higher
risk of emerging vector-borne diseases [53, 54]. These studies showed that many factors influ-
ence the distribution of ticks and tick-borne diseases, including changes in human activities,
biotopes, animal abundance and animal distribution. Therefore, to identify populations,
regions or periods at risk for tick-borne diseases, forecasting models must account for many
parameters [55]. We demonstrated that areas of BSF occurrence matched significantly with the
areas of increment of sugarcane crops, main food source for capybaras, amplifier host for R.
rickettsii. In the state of São Paulo, this single parameter remains constant throughout the year
and because of this we do not considered other external factors. In the United States a reduc-
tion in the biodiversity due to deforestation and forest fragmentation lead to an increase in the
density of white-tailed deer and white-footed mouse and their attendant ticks, leading to the
emergence of Lyme disease over the last several decades [4, 6, 56–58].

Our study shows that it is possible to detect high-risk areas for BSF through hyperspectral
satellite imagery. We suggest that such analyses will be beneficial by enabling surveillance strat-
egies to be focused on the highest risk regions for BSF. However, several factors need to be con-
sidered for these technologies to be routinely adopted for public health management such as,
the availability of resources for gathering, processing, and modeling geospatial data, training of
personnel on the proper interpretation of results and the continuous availability of remote
sensing data in a timely manner [1]. We believe the method could have similar benefits if
applied to other vector-borne data collected from other regions and could thus help to improve
national surveillance networks for human rickettsiosis.

While our data suggest that the increment in sugarcane crops, observed in Brazil in recent
decades had a spatio-temporal relationship with to the occurrence of BSF, our study cannot
rule out that other factors that are correlated with the risk of R rickettsii infection are also causal
for the observed association. Indeed this ecological study does not provide individual-level
analysis.

Conclusion
Our initial hypothesis, that there is a relationship between the sugarcane crops increment and
the occurrence of BSF, was objectively reinforced in this paper. In this way, in order to antici-
pate the occurrence of BSF in the state of São Paulo, we suggest a methodology based on the
monitoring of the increment and expansion of sugarcane crops, main food source for the R.
rickettsii amplifier host. Thus, when facing difficulty in monitoring locally the presence of R.
rickettsii, their vectors or their hosts, the remote sensing could help to associate the presence of
the disease with environmental changes. The methodology proposed can guide epidemiological
surveillance programs in hotspot areas.
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Supporting Information
S1 Fig. Hydrography of the State of São Paulo. The uniform distribution of water sources is
evident throughout the state.
(TIF)

S2 Fig. Spectral reflectance information for the endmembers selected. Spectral reflectance
for the Atlantic vegetation (green line), sugarcane crops (red line) and substrates (blue line)
endmembers.
(TIFF)

S3 Fig. Root mean square (RMS) difference map between the observed and predicted mix-
tures.White colors represents misfit values and black colors indicate that the endmembers
chosen are well characterize.
(TIFF)

Acknowledgments
The authors would like to thank Carlos Mera Acosta from Institute of Physics of University of
São Paulo for the explanations and the discussions fundamental for the development of the
article. The authors also would like to thank Prof. Christopher Small from Lamont-Doherty
Earth Observatory of Columbia University since the satellite imagery methodology here
described was developed based on his lectures at the University of São Paulo. Finally, we thank
Prof. Marcos Amaku and Prof. Francisco Chiaravalotti for their suggested changes to improve
the article.

Author Contributions
Conceived and designed the experiments: GP. Performed the experiments: GP. Analyzed the
data: GP MBL FF. Contributed reagents/materials/analysis tools: GP FF. Wrote the paper: GP
MBL FF.

References
1. Kalluri S, Gilruth P, Rogers D, Szczur M. Surveillance of Arthropod Vector-Borne Infectious Diseases

Using Remote Sensing Techniques: A Review. PLoS Pathogens. 2007 Oct; 3(10):e116. doi: 10.1371/
journal.ppat.0030116

2. Garni R, Tran A, Guis H, Baldet T, Benallal K, Boubidi S, et al. Remote sensing, land cover changes,
and vector-borne diseases: use of high spatial resolution satellite imagery to map the risk of occurrence
of cutaneous leishmaniasis in Ghardaia, Algeria. Infection, genetics and evolution: Journal of Molecular
Epidemiology and Evolutionary Genetics in Infectious Diseases. 2014 Dec; 28:725–734. doi: 10.1016/j.
meegid.2014.09.036 PMID: 25305006

3. Beck LR, Rodriguez MH, Dister SW, Rodriguez AD, Washino RK, Roberts DR, et al. Assessment of a
remote sensing-based model for predicting malaria transmission risk in villages of Chiapas, Mexico.
The American Journal of Tropical Medicine and Hygiene. 1997 Jan; 56(1):99–106. PMID: 9063370

4. Estrada-Peña A. Increasing habitat suitability in the United States for the tick that transmits Lyme dis-
ease: a remote sensing approach. Environmental Health Perspectives. 2002 Jul; 110(7):635–640.
PMID: 12117639

5. Liu H, Weng Q. Enhancing temporal resolution of satellite imagery for public health studies: A case
study of West Nile Virus outbreak in Los Angeles in 2007. Remote Sensing of Environment. 2012 Feb;
117(0):57–71. doi: 10.1016/j.rse.2011.06.023

6. Allan BF, Keesing F, Ostfeld RS. Effect of Forest Fragmentation on Lyme Disease Risk. Conservation
Biology. 2003; 17(1):267–272. doi: 10.1046/j.1523-1739.2003.01260.x

7. Winters AM, Eisen RJ, Lozano-Fuentes S, Moore CG, PapeWJ, Eisen L. Predictive spatial models for
risk of West Nile virus exposure in eastern and western Colorado. The American Journal of Tropical
Medicine and Hygiene. 2008 Oct; 79(4):581–590. PMID: 18840749

Satellite Imagery to Support Tick-Borne Diseases Surveillance

PLOS ONE | DOI:10.1371/journal.pone.0143736 November 24, 2015 9 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143736.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143736.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143736.s003
http://dx.doi.org/10.1371/journal.ppat.0030116
http://dx.doi.org/10.1371/journal.ppat.0030116
http://dx.doi.org/10.1016/j.meegid.2014.09.036
http://dx.doi.org/10.1016/j.meegid.2014.09.036
http://www.ncbi.nlm.nih.gov/pubmed/25305006
http://www.ncbi.nlm.nih.gov/pubmed/9063370
http://www.ncbi.nlm.nih.gov/pubmed/12117639
http://dx.doi.org/10.1016/j.rse.2011.06.023
http://dx.doi.org/10.1046/j.1523-1739.2003.01260.x
http://www.ncbi.nlm.nih.gov/pubmed/18840749


8. Labruna MB. Ecology of rickettsia in South America. Annals of the New York Academy of Sciences.
2009; 1166(1):156–166. doi: 10.1111/j.1749-6632.2009.04516.x PMID: 19538276

9. Niebylski ML, Peacock MG, Schwan TG. Lethal Effect of Rickettsia rickettsii on Its Tick Vector (Derma-
centor andersoni). Applied and Environmental Microbiology. 1999 Feb; 65(2):773–778. PMID:
9925615

10. Soares JF, Soares HS, Barbieri AM, Labruna MB. Experimental infection of the tick Amblyomma cajen-
nense, Cayenne tick, with Rickettsia rickettsii, the agent of Rocky Mountain spotted fever. Medical and
Veterinary Entomology. 2012; 26(2):139–151. doi: 10.1111/j.1365-2915.2011.00982.x PMID:
22007869

11. Labruna MB. Brazilian spotted fever: the role of capybaras. In: Capybara. Springer New York; 2013. p.
371–383.

12. Krawczak FS, Nieri-bastos FA, Nunes FP, Soares JaF, Moraes-filho J. Rickettsial infection in
Amblyomma cajennense ticks and capybaras (Hydrochoerus hydrochaeris) in a Brazilian spotted
fever-endemic area. Parasites & Vectors. 2014; 7:1–7.

13. Souza CE, Moraes-Filho J, Ogrzewalska M, Uchoa FC, Horta MC, Souza SSL, et al. Experimental
infection of capybaras Hydrochoerus hydrochaeris by Rickettsia rickettsii and evaluation of the trans-
mission of the infection to ticks Amblyomma cajennense. Veterinary Parasitology. 2009; 161(1):116–
121. doi: 10.1016/j.vetpar.2008.12.010 PMID: 19147293

14. Ojasti J. Estudio biológico del chigüire o capibara. Fondo Nacional de Investigaciones Agropecuarias;
1973.

15. Burgdorfer W. Ecological and epidemiological considerations of Rocky Mountain spotted fever and
scrub typhus. Biology of Rickettsial Diseases. 1988; 1:33–50.

16. Del Fiol F, Junqueira F, Miranda C, Maria T, Filho B. A febre maculosa no Brasil. Revista Panamericana
de Salud Pública. 2010; 27(10):461–466. doi: 10.1590/S1020-49892010000600008

17. Sao-Paulo. Distribuição dos casos confirmados de febre maculosa, segundo municipio de infecção no
Estado de São Paulo, 1998 2013. Centro de Vigilância Epidemiológica. Secretaria da Saúde do Estado
de São Paulo; 2013.

18. Ferraz K, De Barros Ferraz S, Moreira J, Couto H, Verdade L. Capybara (Hydrochoerus hydrochaeris)
distribution in agroecosystems: a cross-scale habitat analysis. Journal of Biogeography. 2007; 34
(2):223–230. doi: 10.1111/j.1365-2699.2006.01568.x

19. Moreira J, Alvarez M, Tarifa T, Pacheco V, Taber A, Tirira D, et al. Taxonomy, Natural History and Dis-
tribution of the Capybara. In: Capybara. Springer New York; 2013. p. 3–37.

20. Felix G, Almeida P, Piovezan U, Garcia R, Lima K, Naas I, et al. Feeding behavior and crop damage
caused by capybaras (Hydrochoerus hydrochaeris) in an agricultural landscape. Brazilian Journal of
Biology. 2014; 74(4):779–786. doi: 10.1590/1519-6984.02113

21. Rudorff BFT, de Aguiar DA, da Silva WF, Sugawara LM, Adami M, Moreira MA. Studies on the rapid
expansion of sugarcane for ethanol production in Sao Paulo state (Brazil) using Landsat data. Remote
Sensing. 2010; 2:1057–1076. doi: 10.3390/rs2041057

22. Vicente LE, Gomesdaniel D, Victoria DDC, Garçon EAM, Bolf EL, Andrade RG, et al. Séries temporais
de NDVI do sensor SPOT Vegetation e algoritmo SAM aplicados ao mapeamento de cana-de-açúcar.
Pesquisa Agropecuaria Brasileira. 2012; 47(1):1337–1345. doi: 10.1590/S0100-204X2012000900019

23. Allman E, Rhodes J. Dynamic Modeling with Difference Equations. In: Mathematical Models in Biology
An Introduction. Cambridge University Press; 2004. p. 371–383.

24. CVE-SES. Centro de Vigilância Epidemiológica. Distribuição dos casos confirmados de Febre Macu-
losa Brasileira, segundo município de infecção no Estado de São Paulo, 1998–2012. http://
wwwcvesaudespgovbr/htm/zoo/fmlpihtm. 2013;.

25. Pinter A, Franca A, Souza C, Sabbo C, Mendes E, Pereira F, et al. Febre Maculosa Brasileira. BEPA
Suplemento. 2011; 8:19–24.

26. IBGE. Brazilian Institute of Geography and Statistics. Censo 2010. Estado de São Paulo. http://
downloadsibgegovbr/. 2010;.

27. Kulldorff M. A spatial scan statistic. Communications in Statistics—Theory and Methods. 1997 Jan; 26
(6):1481–1496. doi: 10.1080/03610929708831995

28. NASA. National Aeronautics and Space Administration. Moderate Resolution Imaging Spectroradi-
ometer. http://modisgsfcnasagov/. 2014;.

29. Thenkabail P, Smith R, De Pauw E. Hyperspectral Vegetation Indices and Their Relationships with
Agricultural Crop Characteristics. Remote Sensing of Environment. 2000; 71(2):158–182. doi: 10.1016/
S0034-4257(99)00067-X

Satellite Imagery to Support Tick-Borne Diseases Surveillance

PLOS ONE | DOI:10.1371/journal.pone.0143736 November 24, 2015 10 / 12

http://dx.doi.org/10.1111/j.1749-6632.2009.04516.x
http://www.ncbi.nlm.nih.gov/pubmed/19538276
http://www.ncbi.nlm.nih.gov/pubmed/9925615
http://dx.doi.org/10.1111/j.1365-2915.2011.00982.x
http://www.ncbi.nlm.nih.gov/pubmed/22007869
http://dx.doi.org/10.1016/j.vetpar.2008.12.010
http://www.ncbi.nlm.nih.gov/pubmed/19147293
http://dx.doi.org/10.1590/S1020-49892010000600008
http://dx.doi.org/10.1111/j.1365-2699.2006.01568.x
http://dx.doi.org/10.1590/1519-6984.02113
http://dx.doi.org/10.3390/rs2041057
http://dx.doi.org/10.1590/S0100-204X2012000900019
http://wwwcvesaudespgovbr/htm/zoo/fmlpihtm
http://wwwcvesaudespgovbr/htm/zoo/fmlpihtm
http://downloadsibgegovbr/
http://downloadsibgegovbr/
http://dx.doi.org/10.1080/03610929708831995
http://modisgsfcnasagov/
http://dx.doi.org/10.1016/S0034-4257(99)00067-X
http://dx.doi.org/10.1016/S0034-4257(99)00067-X


30. Thenkabail P, Lyon J, Huete A. In: Hyperspectral Remote Sensing of Vegetation. Taylor and Francis
Group; 2012.

31. Small C. Spatiotemporal dimensionality and Time-Space characterization of multitemporal imagery.
Remote Sensing of Environment. 2012 Sep; 124:793–809. doi: 10.1016/j.rse.2012.05.031

32. Rodarmel C, Shan J. Principal Component Analysis for Hyperspectral Image Classification. Surveying
and Land Information Systems. 2002; 62(2):115–000.

33. Green A, Berman M, Switzer P, Craig MD. A transformation for ordering multispectral data in terms of
image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote
Sensing. 1988; 26(1):65–74. doi: 10.1109/36.3001

34. Lee JB, Woodyatt AS, Berman M. Enhancement of high spectral resolution remote-sensing data by a
noise-adjusted principal components transform. Geoscience and Remote Sensing, IEEE Transactions
on. 1990; 28(3):295–304. doi: 10.1109/36.54356

35. Singh A, Harrison A. Standardized principal components. International Journal of Remote Sensing.
1985 Jun; 6(6):883–896. doi: 10.1080/01431168508948511

36. Keshava N, Mustard JF. Spectral unmixing. Signal Processing Magazine, IEEE. 2002; 19(1):44–57.
doi: 10.1109/79.974727

37. INPE. Instituto de Pesquisas Espaciais. CanaSat: monitoramento da cana-de-açúcar. http://
wwwdsrinpebr/laf/canasat/en/). 2013;.

38. Polo G, Acosta CM, Dias RA. Spatial accessibility to vaccination sites in a campaign against rabies in
São Paulo city, Brazil. Preventive Veterinary Medicine. 2013;.

39. Polo G, Acosta CM, Ferreira F, Dias RA. Location-Allocation and Accessibility Models for Improving the
Spatial Planning of Public Health Services. PLoS ONE. 2015 Mar; 10(3):e0119190. doi: 10.1371/
journal.pone.0119190 PMID: 25775411

40. Cousens S, Smith PG, Ward H, Everington D, Knight RS, Zeidler M, et al. Geographical distribution of
variant Creutzfeldt-Jakob disease in Great Britain, 1994–2000. Lancet. 2001; 357(9261):1002–1007.
doi: 10.1016/S0140-6736(00)04236-7 PMID: 11293592

41. Fèvre EM, Coleman PG, Odiit M, Magona JW, Welburn SC, Woolhouse MEJ. The origins of a new Try-
panosoma brucei rhodesiense sleeping sickness outbreak in eastern Uganda. Lancet. 2001; 358
(9282):625–628. doi: 10.1016/S0140-6736(01)05778-6 PMID: 11530149

42. Mostashari F, Kulldorff M, Hartman JJ, Miller JR, Kulasekera V. Dead bird clusters as an early warning
system for West Nile virus activity. Emerging Infectious Diseases. 2003; 9(6):641–646. doi: 10.3201/
eid0906.020794 PMID: 12781002

43. Gaudart J, Poudiougou B, Ranque S, Doumbo O. Oblique decision trees for spatial pattern detection:
optimal algorithm and application to malaria risk. BMCMedical Research Methodology. 2005; 5(1):22.
doi: 10.1186/1471-2288-5-22 PMID: 16026612

44. Aamodt G, Samuelsen SO, Skrondal A. A simulation study of three methods for detecting disease clus-
ters. International Journal of Health Geographics. 2006; 5:15. doi: 10.1186/1476-072X-5-15 PMID:
16608532

45. Patil GP, Taillie C. Geographic and Network Surveillance via Scan Statistics for Critical Area Detection.
Statistical Science. 2003; p. 457–465. doi: 10.1214/ss/1081443229

46. Tatem AJ, Noor AM, Hay SI. Defining approaches to settlement mapping for public health management
in Kenya using medium spatial resolution satellite imagery. Remote Sensing of Environment. 2004 Oct;
93(1–2):42–52. doi: 10.1016/j.rse.2004.06.014 PMID: 22581984

47. Jain M, Mondal P, DeFries RS, Small C, Galford GL. Mapping cropping intensity of smallholder farms:
A comparison of methods using multiple sensors. Remote Sensing of Environment. 2013 Jul; 134
(0):210–223. doi: 10.1016/j.rse.2013.02.029

48. Biradar CM, Xiao X. Quantifying the area and spatial distribution of double- and triple-cropping crop-
lands in India with multi-temporal MODIS imagery in 2005. International Journal of Remote Sensing.
2011 Feb; 32(2):367–386. doi: 10.1080/01431160903464179

49. Quarmby N, Townshend J, Settle J, White K, Milnes M, Hindle T, et al. Linear mixture modelling applied
to AVHRR data for crop area estimation. International Journal of Remote Sensing. 1992 Feb; 13
(3):415–425. doi: 10.1080/01431169208904046

50. Xiao X, Boles S, Liu J, Zhuang D, Frolking S, Li C, et al. Mapping paddy rice agriculture in southern
China using multi-temporal MODIS images. Remote Sensing of Environment. 2005 Apr; 95(4):480–
492. doi: 10.1016/j.rse.2004.12.009

51. Martínez-Casasnovas JA, Martín-Montero A, Auxiliadora Casterad M. Mapping multi-year cropping
patterns in small irrigation districts from time-series analysis of Landsat TM images. European Journal
of Agronomy. 2005 Sep; 23(2):159–169. doi: 10.1016/j.eja.2004.11.004

Satellite Imagery to Support Tick-Borne Diseases Surveillance

PLOS ONE | DOI:10.1371/journal.pone.0143736 November 24, 2015 11 / 12

http://dx.doi.org/10.1016/j.rse.2012.05.031
http://dx.doi.org/10.1109/36.3001
http://dx.doi.org/10.1109/36.54356
http://dx.doi.org/10.1080/01431168508948511
http://dx.doi.org/10.1109/79.974727
http://wwwdsrinpebr/laf/canasat/en/
http://wwwdsrinpebr/laf/canasat/en/
http://dx.doi.org/10.1371/journal.pone.0119190
http://dx.doi.org/10.1371/journal.pone.0119190
http://www.ncbi.nlm.nih.gov/pubmed/25775411
http://dx.doi.org/10.1016/S0140-6736(00)04236-7
http://www.ncbi.nlm.nih.gov/pubmed/11293592
http://dx.doi.org/10.1016/S0140-6736(01)05778-6
http://www.ncbi.nlm.nih.gov/pubmed/11530149
http://dx.doi.org/10.3201/eid0906.020794
http://dx.doi.org/10.3201/eid0906.020794
http://www.ncbi.nlm.nih.gov/pubmed/12781002
http://dx.doi.org/10.1186/1471-2288-5-22
http://www.ncbi.nlm.nih.gov/pubmed/16026612
http://dx.doi.org/10.1186/1476-072X-5-15
http://www.ncbi.nlm.nih.gov/pubmed/16608532
http://dx.doi.org/10.1214/ss/1081443229
http://dx.doi.org/10.1016/j.rse.2004.06.014
http://www.ncbi.nlm.nih.gov/pubmed/22581984
http://dx.doi.org/10.1016/j.rse.2013.02.029
http://dx.doi.org/10.1080/01431160903464179
http://dx.doi.org/10.1080/01431169208904046
http://dx.doi.org/10.1016/j.rse.2004.12.009
http://dx.doi.org/10.1016/j.eja.2004.11.004


52. Fang H, Wu B, Liu H, Huang X. Using NOAA AVHRR and Landsat TM to estimate rice area year-by-
year. International Journal of Remote Sensing. 1998 Jan; 19(3):521–525. doi: 10.1080/
014311698216134

53. James M, Bowman A, Forbes K, Lewis F, J M, Gilbert L. Environmental determinants of Ixodes ricinus
ticks and the incidence of Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in Scotland.
Parasitology. 2013; 140:237–246. doi: 10.1017/S003118201200145X PMID: 23036286

54. Wolfe N, Daszak P, Kilpatrick M, Burke D. Bushmeat Hunting, Deforestation, and Prediction of Zoonotic
Disease. Emerging Infectious Diseases. 2005; 11(12):1822–1827. doi: 10.3201/eid1112.040789
PMID: 16485465

55. Lambin E, Tran A, Vanwambeke S, Linard C, Soti V. Pathogenic landscapes: Interactions between
land, people, disease vectors, and their animal hosts. International Journal of Health Geographics.
2010; 9(1):54. doi: 10.1186/1476-072X-9-54 PMID: 20979609

56. Glass G, Amerasinghe F, Morgan J, Scott T. Predicting Ixodes scapularis abundance on white-tailed
deer using geographic information systems. The American Journal of Tropical Medicince and Hygiene.
1994 Nov; 51(5):538–544.

57. Wood C, Lafferty K. Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease
transmission. Trends in Ecology and Evolution. 2013; 28:239–247. doi: 10.1016/j.tree.2012.10.011
PMID: 23182683

58. Simon JA, Marrotte RR, Desrosiers N, Fiset J, Gaitan J, Gonzalez A, et al. Climate change and habitat
fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeast-
ern limit of its distribution. Evolutionary Applications. 2014; 7(7):750–764. doi: 10.1111/eva.12165
PMID: 25469157

Satellite Imagery to Support Tick-Borne Diseases Surveillance

PLOS ONE | DOI:10.1371/journal.pone.0143736 November 24, 2015 12 / 12

http://dx.doi.org/10.1080/014311698216134
http://dx.doi.org/10.1080/014311698216134
http://dx.doi.org/10.1017/S003118201200145X
http://www.ncbi.nlm.nih.gov/pubmed/23036286
http://dx.doi.org/10.3201/eid1112.040789
http://www.ncbi.nlm.nih.gov/pubmed/16485465
http://dx.doi.org/10.1186/1476-072X-9-54
http://www.ncbi.nlm.nih.gov/pubmed/20979609
http://dx.doi.org/10.1016/j.tree.2012.10.011
http://www.ncbi.nlm.nih.gov/pubmed/23182683
http://dx.doi.org/10.1111/eva.12165
http://www.ncbi.nlm.nih.gov/pubmed/25469157

