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SUMMARY

This protocol describes the application of the ‘‘omnigenic’’ model of the genetic
architecture of complex traits to identify novel ‘‘core’’ genes influencing a dis-
ease-associated phenotype. Core genes are hypothesized to directly regulate
disease and may serve as therapeutic targets. This protocol leverages GWAS
data, a co-expression network, and publicly available data, including the GTEx
database and the International Mouse Phenotyping Consortium Database, to
identify modules enriched for genes with ‘‘core-like’’ characteristics.
For complete details on the use and execution of this protocol, please refer to
Sabik et al. (2020).

BEFORE YOU BEGIN

Download the vignette demonstrating the protocol

Timing: 0.25 h

1. An Rmarkdown notebook and htmlmarkdown document walking through the steps described in this

protocol are available on github at https://github.com/Farber-Lab/STAR_protocols_core_modules.

2. From this github repository, either download the file star_protocols_vignette.html and open

it in your browser to view the code and output, or clone the repository, open star_protocols_

vignette.Rmd in RStudio to run the code locally. If you clone the repo and run the code locally,

set your working directory accordingly and all of the paths will resolve.

Identify a GWAS study with available summary statistics related to your trait of interest

Timing: 0.5–1 h

3. Search the GWAS catalog for a study with summary statistics related to your trait of interest or use

the results of an internally run GWAS study

This protocols requires GWAS summary statistics as an input. Users can either bring their own GWAS

study, or search theGWAS catalog. GWAS catalog contains 1376 published studies with available sum-

mary statistics across hundreds of phenotypes (Buniello et al., 2019). You can search the catalog in or-

der to identify a study with sufficient data to support the downstream analyses in this protocol, namely
STAR Protocols 2, 100768, September 17, 2021 ª 2021 The Authors.
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that the summary statistics are available. It is possible to execute portions of this protocol without full

summary statistics; however, you will not be able to use colocalization methods to relate the GWAS re-

sults to expression quantitative trait loci data (eQTL). While there is no strict threshold for the size of the

GWAS study to use in this analysis, it will be difficult to identify enriched co-expression modules from a

small set of genes. GWAS studies should identify on the order of 10s–100s of significant loci.

Acquire RNA-seq data in the relevant tissue or cell type for your trait of interest

Timing: 1 day to 8 weeks (depending on availability of data)

4. Identify either an existing RNA-seq data or a co-expression network from a relevant cell type or

tissue for your trait of interest.

The basis of this protocol is a co-expression network representing the functional co-expression of genes

within the tissue or cell-type relevant to your trait of interest. Theremay be a publicly available source of

RNA-seq data or a previously published co-expression network that is suitable for your applications.

Search the literature or theGene ExpressionOmnibus (Barrett et al., 2012; Edgar et al., 2002) to identify

sources of data that can support the study. However, it is important that the expression data used in this

protocol is from a tissue or cell type that is relevant to your trait of interest, otherwise the GWAS signals

will not align with the functional organization of the genes in the network.

Note: It is important that the co-expression network is the result of an expression study that had a

large enough sample size. WGCNA, a popular package for constructing co-expression networks

recommends at least 15, but ideally, 20 or more samples (Langfelder and Horvath, 2008).

5. If no publicly available data exists, identify a source of relevant cells and tissue fromwhich you can

extract RNA and perform RNA-seq. This data could come from human or mouse primary cells or a

relevant cell line, however, the cell type or tissue must be relevant to the trait of interest. For an

example, see our study of genes influencing bone mineral density using murine osteoblasts (Sa-

bik et al., 2020).

Note: The protocol for processing and extracting RNA will be specific to your cell type or tis-

sue, and this part of the process will not be covered in this protocol.

Pre-processing RNA-seq data for co-expression network construction

Timing: 2 h

6. The main section of this protocol assumes you have an expression matrix that is pre-processed

and ready for input to WGCNA (Langfelder and Horvath, 2008). Information about processing

RNA-seq data can be found in the FAQ section of the WGCNA package. Briefly, starting from

raw count data, it is recommended that genes with low expression across the majority of samples

are filtered out, e.g., all features with fewer than 10 counts in 90% of the samples, and a variance-

stabilizing transformation (DESeq2 package) is performed (Love et al., 2014). Normalized counts

(RPKM/FPKM) can also be log transformed (log2(x+1)) and used to construct the network. The

result of this process is a matrix of expression values (rows) by samples (columns).
>library(DESeq2)

>DESeq2::varianceStabilizingTransformation(object = exp_mat)

or

>log2(exp_mat + 1)
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Optional: An optional step is to remove batch effects from the expression data using PEER
(Stegle et al., 2012). PEER can be used to remove both known and latent batch effects from

data. The developers of PEER have produced detailed tutorials, available on their Github

wiki page.

7. Finally, a quantile normalization is performed to reduce experimental noise from the expression

matrix (Bolstad, 2020).

Protocol
>library(preprocessCore)

>norm_exp_mat = preprocessCore::normalize.quantiles(as.matrix(exp_mat))

>colnames(norm_exp_mat) = colnames(exp_mat)

>rownames(norm_exp_mat) = rownames(exp_mat)
Curating lists of known disease and phenotype-associated genes

Timing: 2–5 days

8. One characteristic of core genes is that they are associated with monogenic diseases related

to your trait of interest (Boyle et al., 2017). For example, given an interest in bone mineral

density GWAS, one would curate a list of genes that cause monogenic bone diseases (Sabik

et al., 2020).

>norm_exp_mat = as.data.fram(norm_exp__mat)
a. Thus, this step includes identifying a specific set of monogenic or Mendelian diseases that

are related to your trait of interest

b. Then, continue with a literature search to curate a list of genes experimentally shown to cause

these diseases

i. For this purpose, you may want to consult the Online Mendelian Inheritance in Man

(OMIM) database (McKusick, 2007) or eDGAR (Babbi et al., 2017)
9. Another characteristic of core genes is that they are strongly associated with abnormal pheno-

types in knockout models (Boyle et al., 2017), and so another resource that can be used to iden-

tify core modules is a curated list of genes which produce a phenotype related to your trait of

interest when knocked out.
a. There are databases of gene perturbations that result in a variety of phenotypes, including

the Mouse Genome Informatics database (MGI) and the International Mouse Phenotyping

Consortium (IMPC) (Bolser, 2004; Koscielny et al., 2014).

i. The IMPC database systematically knocks out genes and conducts a whole panel of phe-

notyping relating to various organ systems, development, neurology and behavior, aging

and mortality, metabolism, reproduction, etc.

ii. The MGI database is a systematic repository for observed phenotypes in experimental

systems. Using their mammalian phenotype browser, search for phenotypes related to

your trait of interest and create a list of relevant phenotypes and their associated

genes.

iii. These are just two examples of data repositories that contain associations between traits

or diseases and genes. Be sure to do some research to see if your specific phenotype has a

more targeted repository. For example, the Bonebase Database has deep bone pheno-

typing for many of the knockout mice produced in the knockout mouse project (KOMP)

(Rowe et al., 2018).
10. Save all of the genes from this section comma separated value (csv) files for use during the pro-

tocol.

11. While there is no strict threshold for how large these lists of genes should be, the enrichment

analysis will not identify any significantly enriched modules in Step 4, module enrichment.
STAR Protocols 2, 100768, September 17, 2021 3
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Collaborative cross RNA
sequencing

Sabik et al., 2020 GEO: GSE134081

Software and algorithms

R (R Core Team, 2020) https://www.r-project.org/

RStudio (R Studio Team, 2020) https://rstudio.com/

Python (Van Rossum and Others, 2007) https://www.python.org/

Tidyverse (Wickham et al., 2019) https://www.tidyverse.org/

Knitr (Xie, 2014) https://yihui.org/knitr/

BiocManager (Morgan, 2018) https://cran.r-project.org/web/packages/BiocManager/index.html

biomaRt (Durinck et al., 2009) https://bioconductor.org/packages/release/bioc/html/biomaRt.html

Devtools (Wickham and Chang, 2016) https://cran.r-project.org/web/packages/devtools/index.html

GTExIdConverter NA https://github.com/oliviasabik/GTExIdConverter

DESeq2 (Love et al., 2014) http://bioconductor.org/packages/release/bioc/html/DESeq2.html

PEER (Stegle et al., 2012) https://github.com/PMBio/peer/wiki

WGCNA (Langfelder and Horvath, 2008) https://cran.r-project.org/web/packages/WGCNA/index.html

ToppFun (Chen et al., 2009) https://toppgene.cchmc.org/

LDlinkR (Machiela and Chanock, 2015) https://ldlink.nci.nih.gov/?tab=home

GenomicRanges (Lawrence et al., 2013) https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

LDSC (Finucane et al., 2015) https://github.com/bulik/ldsc

Coloc (Giambartolomei et al., 2014) https://cran.r-project.org/web/packages/coloc/index.html

RACER (Sabik and Farber, 2018) https://github.com/oliviasabik/RACER

PhenStat (Kurbatova et al., 2015) https://www.bioconductor.org/packages/release/bioc/html
/PhenStat.html
MATERIALS AND EQUIPMENT

Data (expression matrix, pre-processed and ready for WGCNA--see before you begin). The data

listed in the key resources tables can be used as exemplar expression data.

R software and required packages. This protocol describes a computational approach that is based

on numerous packages available in R. While newer versions of some of these packages exist, this

protocol was developed with R v3.4.2, RStudio v1.1.383, and the indicated package versions below:

� tidyverse (v1.2.1)

� knitr (v1.24)

� BiocManager (v1.30.10)

� DESeq2 (v1.18.1)

� WGCNA (v1.68)

� biomaRt (v2.34.2)

� LDLinkR (v1.0.2)

� Genomic Ranges (v1.30.3)

� coloc (v3.2-1)

� RACER (v1.0.0)

� PhenStat (v2.14.0)

� devtools (2.0.2)

� GTExIdConverter (0.0.0.9000)

Optionally, the python (v2.7.15) packages LDSC (v1.0.0) and PEER (v1.3)

Local--Memory: 8GB required, 16GB recommended; Processors: 1 required, 4 recommended
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Remote--Memory: 200 GB or more; Processors: 1 required

STEP-BY-STEP METHOD DETAILS

Note: Further discussion of the research questions underlying this protocol can be found in

our two prior publications that leveraged this approach (Calabrese et al., 2016, Sabik et al.,

2020). For example, in these publications, we explore the specificity of the module enrich-

ments against other GWAS studies and more deeply characterize the topology of the genes

in the annotated gene lists within the co-expression modules.

Step 1: Creating GWAS gene list

Timing: 20 min

In order to identify co-expressionmodules enriched for GWAS genes, we first identify all genes over-

lapping a GWAS locus, defined as the set of SNPs in high linkage disequilibrium with the lead SNP.

1. Using the previously identified GWAS study, read in the list of lead SNPs that are significantly

associated with the study trait. In many cases, this will be the output of fine-mapping (Schaid,

et. al. 2018) or a file containing just the lead SNPs for each independent association. For down-

stream analysis, generate a table with these lead SNPs and their genome coordinates.

2. In order to programmatically access the LDLink data using the LDLinkR package in R, users must reg-

ister on the LDLink website in order to receive an LDLink token. The token will be emailed to you.

3. Using this table and the LDLinkR package, each lead variant is queried in the 1000Genomes data-

base and the variants in linkage disequilibrium, or proxy SNPs, for each lead SNP are downloaded

(1000 Genomes Project Consortium et al., 2012; Machiela and Chanock, 2015). In using this

resource, you need to be aware of the population used in the GWAS study you are analyzing.

In many cases, the European (‘‘EUR’’) population is representative of the population used in

the study, however, this is not always the case. Compare the available populations from 1000 Ge-

nomes against the GWAS study publication to find the appropriate option for the analysis. Using

the LDproxy_batch function, all GWAS SNPs can be queried at once, and the proxy SNPs will all

be written to a file on disk using the append = TRUE option.
>LDproxy_batch(

snp = bmd_snps$SNP,

pop = ‘‘EUR’’,

r2d = ‘‘r2’’,

token = [insert_personal_token],
4. Next, this set of proxy SNPs is filtered to include only those with linkage disequilibirum R2 >= 0.7

with the lead variant. These are the regions of the genome that will determine which genes are

implicated by the GWAS in cis.

append = true)
>ld_regions = proxies %>%

filter(r2 >= 0.7) %>%

separate(col = coord, sep = ‘‘:’’,

into = c(‘‘chr’’, ‘‘coord’’)) %>%

STAR Protocols 2, 100768, September 17, 2021 5



group_by(query_snp %>%

summarize(chr = max(chr),

min = as.numeric(min(coord),

max = as.numeric(max(coord)))
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5. Then, using the Genomic Ranges tool, identify all genes from the GRCh37/hg19 Ensembl gene

set overlapping a GWAS bin (Lawrence et al., 2013). Depending on the build of the genome

used in theGWAS in the study, the correct gene annotation reference will need to be used. Down-

load the reference file from the UCSC table browser (Haeussler et al., 2019).

a. Create a GenomicRanges representation of both the GWAS regions and the reference

gene set.
>gr_genes = Granges(genes)

>gr_gwas = Granges(ld07_gwas_regions)

>

>

>

>

>

>

>

>

>

>

>

>

>

s

>

6

b. Next, identify the overlapping genes for each region using the findOverlaps function
overlaps = GenomicRanges::findOverlaps(gr_genes, gr_gwas)

overlaps_info = cbind(ld07_gwas_regions[overlaps@to,

genes[overlaps@from,]$name)

overlaps_info = overlaps_info[,c(1,4,5)]

overlaps_info$type = ‘‘overlaps’’

overlaps_info = overlaps_info[!duplicated(overlaps_info,]

colnames(overlaps_info) = c(‘‘chromosome’’, ‘‘gwas_snps’’,

‘‘gene_name’’, ‘‘type’’)
c. If no gene intersected a given region, include the nearest upstream and downstream genes

from the region. These are identified using the ‘‘precede’’ and ‘‘follow’’ functions from Ge-

nomicRanges. The results are converted into data frames and filtered to include only nearest

upstream and downstream genes associated with variants that do not overlap a gene.
nearest_precede = GenomicRanges::precede(gr_gwas,gr_genes)

precede_info = cbind(ld07_gwas_regions,

genes[nearest_precede,])

precede_info = precede_info[,c(1,4,9)]

precede_info$type = ‘‘precede’’

precede_info = precede_info[!duplicated(precede_info),]

colnames(precede_info) = c(‘‘chromosome’’, ‘‘gwas_snp’’,

‘‘gene_name, ‘‘type’’)

precede_info = precede_info[which(precede_info$morris_snp %in% overlaps_info$gwas_

np),]

nearest_follow = GenomicRanges::follow(gr_gwas,gr_genes)

STAR Protocols 2, 100768, September 17, 2021



>follow_info = cbind(ld07_gwas_regions,

genes[nearest_follow,])

>follow_info = follow_info[,c(1,4,9)]

>follow_info$type = ‘‘follow’’

>follow_info = follow_info[!duplicated(follow_info),]

>colnames(follow_info) = c(‘‘chromosome’’, ‘‘gwas_snp’’,

‘‘gene_name, ‘‘type’’)

>follow_info = follow_info[which(follow_info$morris_snp %in% overlaps_info$gwas_snp),]

>

>

>

>
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d. Combining these three results, create a table where each row represents a gene overlapping a

region implicated by a GWAS-associated variant, the lead variant in that region, the chromo-

some, and whether the gene overlaps the region or is an upstream/downstream gene.
gwas_region_genes = rbind(overlaps_info,
6. Finally, the list of human genes is converted to mouse homologs using the MGI mouse to human

homology map (Bolser, 2004) (http://www.informatics.jax.org/downloads/reports/HOM_Mouse

HumanSequence.rpt).

precede_info, follow_info)
gwas_gene_hom = homology %>%

filter(Symbol %in% gwas_region_genes$gene_name)

gwas_mouse_hom = homology %>%

filter(‘HomoloGene ID’ %in% gwas_gene_hom$’HomoloGene ID0) %>%
filter(‘NCBI Taxon ID’ == 10090)
Step 2: Construct co-expression network

Timing: 30 min to 1 h

This step uses theWGCNA package to create a co-expression network (Figure 1) by grouping genes

that co-vary across samples into modules (Langfelder and Horvath, 2008). This co-expression

network serves as a basis for the enrichment analysis in the next set of steps. This section closely fol-

lows the WGCNA tutorials created by the authors of WGCNA, found here: https://horvath.genetics.

ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/.

7. Check the relationship among your samples using clustering to identify outliers.
sampleTree = hclust(dis(norm_exp_mat), method = ‘‘average’’)
a. Clustering and plotting the resulting tree will allow visualization of the relationships among

your samples.

b. As a result, you may want to remove samples that are dramatically different from the mean by

cutting the tree using cutHeight; more details can be found in the WGCNA data processing

tutorial.
STAR Protocols 2, 100768, September 17, 2021 7
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Figure 1. Example co-expression network from murine osteoblasts and GO annotations for individual modules

As expected, some modules have generic functions, for example immune response and RNA processing, and others represent more specific functions,

like osteoblast differentiation or Wnt signaling. Adapted from Figure 1 in (Sabik et al., 2020).
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8. Next, the soft-thresholding power is empirically determined using the pickSoftThreshold func-

tion. Because it is assumed that the co-expression network will have a scale-free topology, the

scale-free topology fit index is calculated across a range of powers, and the minimum power

required to reach the point of diminishing returns is selected as the soft thresholding power.

This power is applied to the adjacency matrix prior to the calculation of the Topological Overlap

Matrix.
>powers = c(c(1:10), seq(from = 12, to = 20, by = 2))

>sft = pickSoftThreshold(norm_exp_mat,

powerVector = powers,
Note: This step may take a few minutes to run.

9. After determining the optimal soft-thresholding power, we can now calculate co-expression

modules from the gene expression dataset. There are many parameters that can be tweaked in

this function that can alter the resulting network. In this example, values close to the defaults,

however the default values may not be optimal for your dataset. In this example, we used a min-

ModuleSize of 20 genes and a mergeCutHeight of 0.15, in order to avoid having a large number

of small modules. Additionally, a signed network was constructed, as Peter Langfelder recom-

mends for biological network (Langfelder, 2018). For more information about the parameters

of the network calculation step, consult the WGCNA help files in the R environment.

verbose = 5, networkType = ‘‘signed’’)
>net = blockwiseModules(norm_exp_mat, power = 8,

TOMType = ‘‘signed’’, minModuleSize = 20,

networkType = ‘‘signed’’, reassignThreshold = 0,

mergeCutHeight = 0.15, numericLabels = TRUE,

8 STAR Protocols 2, 100768, September 17, 2021



pamRespectsDendro = FALSE, saveTOMs = TRUE,

saveTOMFileBase = ‘‘,/network/norm_exp_mat_TOM’’,
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Note: This step may take a while, from 15–20 min to run.

10. While the network is constructed, the topological overlap matrices (TOMs) are saved, however,

we also suggest saving the soft-thresholding results, the tree cutting results, the module labels,

colors, and eigengenes so they can be easily reloaded later without re-running any of the above

code.

verbose = 3)
>moduleLabels = net$colors

>moduleColors = labels2colors(net$colors)

>MEs = net$MEs

>geneTree = net$dendrogram[[1]];

>save(sft, MEs, moduleLabels, moduleColors, geneTree,
Pause point: This is a good stopping point, as you can always come back and reload the net-

work.RData file to come right back to where you are right now. To reload the network, use this

code:

File = ‘‘./network/network.RData
11. Finally, network results are all labeled with the identifiers from the expression matrix, however, it

would also be useful to have them labeled with alternative identifiers that map to other applica-

tions we intend to use, including gene ontology analysis software and enrichment analysis with

our curated gene lists. A common identifier for both of these applications in our case is gene

symbol, however, this code can be modified for other organisms and ontologies.

>load(‘‘./data/network/network/RData’’)
>ensembl = useMart(‘‘ensembl’’)

>mm19 = useDataset(mart = ensembl, dataset = ‘‘mmusculus_gene_ensembl’’)

>m = getBM(attributes = c(‘‘ensemble_transcript_id’’,

‘‘external_gene_name’’, ‘‘description’’, ‘‘chromosome_name’’,

‘‘start_position’’, ‘‘end_position’’),

filters = c(‘‘ensembl_transcript_id’’),

values = colnames(norm_exp_mat),

mart = mm19)

>gene_MEs = t(rbind(colnames(norm_exp_mat), moduleColors, moduleLabels))

>colnames(gene_MEs)[1:3] = c(‘‘ensemble_transcript_id’’,

‘‘mod_color’’, ‘‘mod_number’’)

>annotated_mods = merge(gene_MEs, m, by =

‘‘ensembl_transcript_id’’)

STAR Protocols 2, 100768, September 17, 2021 9
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Step 3: Gene ontology analysis

Timing: 30 min

Next, perform gene ontology analysis for each module in the network to identify the functional cat-

egories represented by each module (Figure 1). There are numerous tools for conducting gene

ontology analysis; however, our tool of preference for this project was ToppFun within the

ToppGene suite (Chen et al., 2009). This web interface tool searches for enrichment across an exten-

sive set of functional categories, including gene ontology and pathways, but also human and mouse

phenotypes, publications and published co-expression data sets, gene families, microRNAs, drugs,

and diseases. The background geneset used in ToppFun is the full set of genes present in the gene

ontology categories that are being analyzed for enrichment.

Pause point: From this point on, each step break can be considered a good stopping point,

just be sure to save your script.

12. In order to port our modules into the web interface and for ease of browsing, write each module

out into a .csv file. For example, this code chunk writes out the genes in module 1 to a file that

can be uploaded to the web interface.
>annotated_mods %>%

filter(mod_number == 1) %>%
13. Using the column of identifiers from this table, copy and paste into the ToppFun input box

and begin the analysis. For each module of genes, ToppFun will report back a summary of

all the enriched gene sets. Click the button at the top of the results page reading

‘‘Download All’’, and save the results for browsing in R. ToppFun reports back the signifi-

cance of each enrichment with an assortment of multiple testing correction methods,

the number of hits for that category from your query ("Hit Count in Query List"), and the total

number of genes in the category ("Hit Count in Genome"). ToppFun returns three different

adjusted p-values: the Bonferroni, Benjamini & Hochberg, and Benjamini & Yekutieli

adjusted values. We recommend using a threshold of Bonferroni corrected p-values less

than 0.05 to identify significant enrichments. This is the most conservative approach, but

given the large number of gene ontology categories, we have deemed the conservative

approach appropriate.

write_csv(., ‘‘./data/network/mod_1.csv’’)
Step 4: Module enrichment

Timing: 20 min

14. Now that a list of genes implicated by GWAS has been produced, we can identify which co-

expression modules are enriched for GWAS genes and for the genes previously identified as

causal of related monogenic diseases and phenotypes in mice.
>co

10
a. First, we define the set of modules in our co-expression network for analysis.
lors = unique(moduleColors)
b. Then, a loop is initiated that begins by defining an object containing annotated information

for the genes in each module. Next, a fisher’s exact test is applied to measure the

statistical significance of the representation of genes implicated by the GWAS study. In
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this section a = overlap of module and gene list, b = the size of the gene list minus the over-

lap, c = the size of the module minus the overlap, and d = the number of genes with quan-

tified expression levels in the RNA-seq experiment.
= as.data.frame(get(paste0(‘‘mod)’’,color,‘‘_trx_info’’))

= unique(d$external_gene_name) %in% gwas_mouse_genes

= sum(x=TRUE)

int(dim(d))

int(x)

= x

= (417 – a)

= (dim(d)[1] – a)

= (29255 – c – b – a)

sign(paste0(‘‘ft_mod_’’, color),

sher.test(matrix(c(a,b,c,e), 2, 2, byrow = TRUE),

alternative = ‘‘greater’’))
c. Finally, a table is produced that condenses results for each test, reporting the p-value and the

odds ratio, for each module. A p-value adjustment is applied using the Benjamini & Hoch-

berg (FDR) method and the results are returned, sorted by adjusted p-value. We recommend

a threshold of FDR < 0.05 to identify enriched modules.
as_enrichment_results =

s.data.frame(matrix(nrow = 59, ncol = 3))

lnames(gwas_enrichment_results) =

(‘‘module_color’’, ‘‘p_value’’, ‘‘odds_ratio’’)

r (i in 1:length(colors)){

olor = colors[i]

t = get(paste0(‘‘ft_mod_’’, color))

was_enrichment_results[i,1] = color

was_enrichment_results[i,2] = ft$p.value

was_enrichment_results[i,3] = ft$estimate

as_enrichment_results$p.adj = p.adjust(gwas)enrichment_results$p_value, method =

dr’’, n = length(gwas_enrichment_results$p_value))

as_enrichment_results %>% arrange(p.adj)
d. This process can be repeated for each module from the co-expression network and the re-

sults can be compared using a scatter plot of the results (Figures 2A, 2C, and 2D), where

the enrichment and significance are plotted and each point represents a module. In this

case, one module is among the most highly/significantly enriched across all gene sets, which

is characteristic of a ‘‘core’’ module. The module that scores highest across all gene sets is a

good candidate for a ‘‘core’’ module.
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Figure 2. Identifying co-expression modules enriched for genes with ‘‘core’’-like properties

Module enrichment for (A) GWAS genes, (B) GWAS heritability, (C) genes associated with related phenotypes, and (D) genes associated with related

monogenic diseases. Adapted from Figure 2 in (Sabik et al., 2020).
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e. In this step of the analysis, the user will need to set their specific

f. In order to better understand the biological functions that the enrich modules represent,

refer back to the results of the gene ontology analysis conducted in section 3. Filter the re-

sults of the module you identified in this section to see which gene ontology terms are en-

riched in your module of interest.
Step 5: LD score regression

Timing: 1 h

Another lens through which we can understand the relationship between the modules in the co-

expression network and the GWAS results is through partitioned heritability analysis using LD score

regression. This workflow is used to identify modules that are composed of genes related to variants

that are enriched for trait heritability in the GWAS study. LD score regression is conducted using the

ldsc package, which takes GWAS summary statistics, baseline linkage disequilibriummeasurements,

and gene sets in which to identify enrichment (Finucane et al., 2015). The partitioned heritability of

the SNPs in the regions surrounding the genes in each module is calculated to identify the modules

that are most highly enriched for heritability for the trait of interest.

Note: While this package is not wrapped for R, it is accessible in python using the command

line, so the code chunks from this section cannot be run in R! The ldsc package wiki on gi-

thub has a detailed tutorial for the following steps, including links for downloading

required files.

15. The first step of LD score regression is to format the GWAS summary statistics for using in the

ldsc algorithm, the merge alleles file is provided with the ldsc package
STAR Protocols 2, 100768, September 17, 2021



>./munge_sumstats.py \

--out BMD \

--merge-alleles w_hm3.snplist \

--a1-inc \
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16. Next, a set of SNPs associated with each module are identified via the genes in each module.

This function requires a gene set for each module (as Ensembl gene IDs), a file indicating the

coordinates of each Ensembl gene ID (ENSG_coord.txt, provided in the ldsc documentation),

the plink file for each chromosome (1000G_plinkfiles/1000G.mac5eur., provided in the ldsc

documentation), and a path for the annotation output, indicating the module and the chromo-

some number. This will need to be run for each chromosome across all modules.

--sumstats bmd_gwas_sumstats.txt
>python ../../src/ldsc/make_annot.py –gene-set-file

violet_module_human_gene_ids.Geneset – gene-coord-file

ENSG_coord.txt –windowsize 100000 – bimfile

./100G_plinkfiles/1000G.mac5eur.1.bim –annot-file
17. Finally, using all of these annotations, run ldsc using the (1) processed summary statistics, (2) the

base annotation paths for the modules’ annotations, (3) the SNP weights and (4) frequencies for

the European 1000 Genomes data that are provided with the ldsc package. The overlap anno-

tations flag was used because transcripts were used to generate the co-expression network, so

the gene sets are non-disjoint. Finally, a base name for the output is provided. This command

will output a log file, recording the command used to generate the output and a results file.

The results file contains a table reporting the proportion of SNPs associated with the gene

set, the proportion and standard error of heritability in those SNPs, the enrichment and standard

error of the enrichment, and a p-value indicating the statistical significance of the enrichment

(Table 1). This table can be filtered to identify the modules that are significantly enriched for trait

heritability, and ordered by enrichment to identify the most enriched modules.

./violet_annot/violet_module.1.annot.gz
>python ldsc.py

--h2 BMD.sumstats.gz\

--ref-ld-chr antiquewhite4_module., bisque4_module., black_module., blue_modules.,

...etc.\

--w-ld-chr ./weights_hm3_no_hls/weights.

--overlap-annot\

--frqfile-chr 1000G.mac5eur.\
--out BMD_all_modules_compare
Table 1. Example output for LD score regression

Module prop_snps prop_h2 prop_h2_se Enrichment enrich_se enrich_p p.adj

purple 0.47 0.26 0.04 5.56 0.90 3.1 3 10�6 8.8 3 10�5

Tan 0.41 0.15 0.02 3.78 0.59 3.6 3 10�6 8.8 3 10�5
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Step 6: Gene-level analysis prioritization

Timing: 30 min

Once key modules enriched for genes exhibiting core-like properties are identified in sections four

and five, the next step is to use these modules as a platform for identifying key genes influencing the

phenotype of interest. In sections seven and eight, it may not be feasible to analyze every gene in an

enriched module. The topological properties of the nodes within the module can be used to prior-

itize genes for colocalization and phenstat analysis. In this section, the WGCNA package is used to

calculate the module membership score for each gene within a module of interest.

18. Quantitatively, the module membership score is the correlation between the module’s eigen-

gene, which describes the collective expression profile of the group of genes, and each

individual gene’s expression pattern. Module membership is highly correlated with intramodu-

lar connectivity, and thus, intramodular hub genes tend to have high module membership.
>MMvalue = as.data.frame(cor(norm_exp_by_strain,

MEs, use = ‘‘p’’))

>MMPvalue = as.data.frame(corPvaluStudent(
19. Once module membership is calculated for all transcripts, we can annotate all the genes in our

modules of interest with their module membership scores, sort the list to identify those genes

with the highest module membership scores, and carry those into steps seven and eight.

as.matrix(geneModuleMembership), nSamples))
>module_color = ‘‘purple’’

>cols = c(paste0(‘‘MM.’’, module_color), paste0(‘‘MM.p’’, module_color), ‘‘MMValue’’,

‘‘MMPvalue’’, ‘‘Transcript.ID’’)

>mod_MMtable = dplyr::select(MMvalue, one_of(cols)) %>%

merge(., dplyr::select(MMPvalue, one_of(cols))

>mod_mm_df = merge(mod_MMtable,

get(paste0(‘‘mod)’’, module_color, ‘‘_trx_info’’)),

by.x = ‘‘Transcript.ID’’, by.y = ‘‘ensembl_transcript_id’’)
>mod_mm_df %>% arrange(desc(MM.purple))
Step 7: Colocalization analysis

Timing: 1 h 30 min

Colocalization analysis is conducted to provide support for hypotheses linking individual genes from

core modules with the GWAS phenotype. Colocalization analysis is conducted to evaluate whether

two loci share a causal variant. In this instance, the coloc package is implemented to identify relation-

ships between trait-associated GWAS loci and cis expression quantitative trait loci (eQTLs) from

Gene-Tissue Expression project (GTEx), however, any relevant eQTL dataset could be used in this

step (Giambartolomei et al., 2014, GTEx Consortium et al., 2017). The coloc package evaluates

five different hypotheses regarding the relationship between the two associations and returns the

probability of each as a value between zero and one: the H0 hypothesis, that neither association
14 STAR Protocols 2, 100768, September 17, 2021



ll
OPEN ACCESSProtocol
is significant, the H1/H2 hypotheses, that only one of the associations is significant, the H3 hypoth-

esis, that both associations are significant but do not share a causal variant, and the H4 hypothesis,

that the two associations are significant and share a causal variant. We are interested in identifying

the pairs of eQTL and GWAS associations that have a high value of H4 (Table 2).

Note: If no single module is identified as a potential core module in steps 4 and 5, the results

may need to be aggregated to create a ranking, see troubleshooting, Problem 1.

20. First, for the colocalization analysis, eQTL information from the GTEx consortium will need to be

downloaded and filtered (GTEx Consortium et al., 2017). The data are available for download at

https://gtexportal.org/home/datasets.

Note: The tarball required for this analysis is 188 Gb in size. It would not be advisable to op-

erate on this data on a laptop, though it may be possible. It is recommended that this file is

downloaded directly to a remote server using the command line.
>wget

https://storage.googleapis.com/gtex_analysis_x7/single_tissue_eqtl_data/
Note: It is possible to use eQTL from any source, however, the below code is designed to work

with GTEx data and may need to be modified to work with other eQTL sources.

21. Once the full eQTL data are acquired, the associations for each gene will need to be extracted

from each tissue file. This can be accomplished using awk on the command line. These files can

all be saved to a subdirectory of the downloaded github repo directory and read in as a part of

the loop.

GTEx_Analysis_v7_eQTL_all_associations.tar.gz
>awk -F ‘‘\t’’ ‘$1 � /ENSG###\ {print}’ .txt | awk -F ‘‘\t’’

‘{ if (($3 >= lower_coord_limit) &&

($3 <= upper_coord_limit)) { print } }’ >

tissue_gene_eqtl_output_file.txt
22. Furthermore, there are a few additional pieces of information required for input to coloc that

have not been used in previous steps of this analysis. The sample size for each underlying

GWAS or eQTL study, and the minor allele frequency (MAF) of the variants in each study are

required. For the GTEx v7 eQTL studies, a key is provided with the sample sizes for each of these

studies. The sample size for the GWAS study should be included in the summary statistics or

associated manuscript. Additionally, the MAFs are included as part of the GTEx eQTL associa-

tion table, and the frequencies of the alleles in the GWAS study are typically reported, however,

the MAF is not always the reported frequency, so you may need to convert these frequencies if

>gene_files = list.files(‘‘./data/eqtl_data/b4galnt3_snps/’’)
Table 2. Example output for colocalization analysis using the coloc package

Tissue Gene Nsnps PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf

Adipose_Subcutaneous ENSG00000139044 858 2 310�12 3 310�6 8 310�7 .999 3 310�6

Adipose_Visceral_
Omentum

ENSG00000139044 858 5 310�14 3 310�6 2 310�8 .999 6310�8
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any are above 0.5. If MAFs are not reported, they can be sourced from the 1000 Genomes proj-

ect using the LDLink tools.
>gwas_coloc$MAF = ifelse(gwas_coloc$A1FREQ > 0.5,

(1 – gwas_colos$A1FREQ), (gwas_coloc$A1FREQ))
23. With all of this data read in, a loop can now be run that reads in and formats eQTL and GWAS

data and runs coloc for each file in the eQTL data folder. The results of the five hypothesis test for

each eQTL/GWAS association pait are saved in a dataframe.

>tis = read_tsv(‘‘./data/eqtl_data/tissue_key.txt’’)
>ge

>fo

p

x

y

t

z

col

z$v

z =

col

‘

‘

gen

z =

tis

...

...

gen

N

16
a. First, an empty dataframe is initiated
ne_coloc_results = data.frame(matrix(NA, nrow = length(tis$Tissue), ncol = 8))
b. Next, we initiate a loop that iterates over each eQTL file, reads it in, and formats it with appro-

priate variant IDs.
r (i in 1:length(gene_files)){

rint(i)

= gene_files[i]

= nchar(gene_files[i]) -23

issue = str_sub(x, 1, y)

= read_tsv(paste0(‘‘./data/eqtl_data/b4galnt3_snps/’’,

x). col_names = FALSE)

s = c(‘‘X2’’, ‘‘X3’’, ‘‘X4’’, ‘‘X5’’, ‘‘X6’’)

ariant_id = docall(paste, c(z[cols], sep = ‘‘_’’))

z[,c(1,14,7,8,9,10,11,12,13)]

anmes(z) = c(‘‘gene_id’’, ‘‘variant_id’’,

‘tss_distance’’, ‘‘ma_samples’’, ‘‘ma_count’’, ‘‘maf’’,

‘pval_nominal’’, ‘‘slope’’, ‘‘slope_se’’)

e_snp_ids = GTExIdConvert(z$variant_id)

merge(z, gene_snp_ids, by = ‘‘variant_id’’)

sue_n = as.numeric(tis[which(tis$Tissue ==

tissue),2])
c. Finally, the coloc objects for the GWAS and the eQTL are formatted, coloc is run, and the re-

sults are written out into a dataframe.
e.coloc = list(pvalues=as.numeric(z$pval_nominal),

=as.numeric(tissue_n), type=‘quant’,
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snp=as.character(z$rs_id),

MAF=as.numeric(z$maf))

gwas.coloc = list(pvalues=as.numeric(gwas_coloc$P),

N=142487 type=‘quant’,

snp=as.character(gwas_coloc$SNP),

MAF=as.numeric(gwas_coloc$MAF))

coloc_x = coloc.abf(gene.coloc, gwas.coloc)

gene_coloc_results[i,] =

c(tissue,z$gene_id[1],

coloc_x$summary[1],

coloc_x$summary[2],

coloc_x$summary[3],

coloc_x$summary[4],

coloc_x$summary[5],

coloc_x$summary[6])

}
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The resulting table will report the tissue (‘‘tissue’’), the gene ID (‘‘gene’’), number of SNPs included in

the coloc analysis (‘‘nsnps’’), and the posterior probability of the four hypotheses assessed by coloc

(‘‘PP.H0.abf’’ = no significant association, ‘‘PP.H1.abf’’ = only the eQTL association was significant,

‘‘PP.H2.abf’’ = only the GWAS association was significant, ‘‘PP.H3.abf’’ = the associations are both

significant and likely have independent genetic drivers, ‘‘PP.H4.abf’’ = the associations are both sig-

nificant and likely share a common genetic driver).

Optional: These results can also be visualized with the RACER package (Sabik and Farber,

2018)(Figures 3A–3D). A detailed vignette for using the RACER package can be found here:

https://oliviasabik.github.io/RACERweb/articles/IntroToRACER.html.

Step 8: PhenStat analysis

Timing: 1–2 hrs

While the colocalization analysis provides evidence supporting a relationship between network iden-

tified genes and a trait of interest, a causal relationship can only be demonstrated through controlled

perturbation of a target and direct measurement of the phenotype of interest. The hypotheses

generated by the above steps can lead to a novel set of experiments, however, databases of exper-

imental perturbations and measured phenotypes can be mined for evidence supporting a causal

relationship between a gene and a phenotype of interest. For example, the International Mouse Phe-

notyping Consortium has a database of phenotypes measured in 7022 strains of knockout mice as of

release 12.0 (Koscielny et al., 2014).

24. Identify genes from your core module, perhaps those with eQTL that colocalize with the GWAS

of interest that are represented in the IMPC database.
a. From their home page (https://www.mousephenotype.org/), search by gene name for po-

tential causal genes.

b. Navigate to a gene of interest to see what phenotypes are available, for example the page for

the gene B4galnt3. (https://www.mousephenotype.org/data/genes/MGI:3041155).
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Figure 3. Identifying core genes from a core module

(A–D) represent the results of positive colocalization analyses, where there was a sufficiently high PP H4 to indicate that the BMD GWAS signal and the

GTEx eQTL for the given gene shared a common genetic driver.

(E–H) represent significant differences in a phenotype (bone mineral density) in knockout mice from the IMPC database, as analyzed by PhenStat.

Adapted from Figure 5 in (Sabik et al., 2020).
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c. IMPC reports which genotype/phenotype relationships are significant above a multiple testing

threshold for all genes; however, they make all data available for testing a single hypothesis.

d. The data may be downloaded by clicking on a relevant phenotype icon (https://www.mouse-

phenotype.org/data/charts?accession=MGI:3041155&allele_accession_id=MGI:4434237&

pipeline_stable_id=ESLIM_001&procedure_stable_id=ESLIM_005_001&parameter_stable_

id=ESLIM_005_001_004&zygosity=homozygote&phenotyping_center=ICS), scrolling to the

‘‘Access the results programmatically’’ section and clicking to download the ‘‘PhenStat-ready

raw experiment data’’.

e. This data can be loaded in R and the analysis can be run using the PhenStat package (Kurba-

tova et al., 2015). First, the data are read in:
l = ‘htps://www.mousephenotype.org/data/exportraw? phenotyping_center=JAX&parameter_stable_id=IMPC_DXA_004_

&allele_accession_id=MGI:5804021&strain=MGI:3056279&pipeline_stable_id=JAX_001&&zygosity=homozygote&’

taset1 = data.table::fread(url)

taset1 = as.data.frame(dataset1)

taset1 = dataset1[,c(15,16,21,26,28)]
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f. Next, a PhenList object is created for Phenstat
st = PhenList(dataset1,

estGenotype=’’JR29804’’,

ataset.colname.batch = ‘‘Assay.Date’’,

ataset.value.male = ‘‘male’’,

ataset.value.female = ‘‘female’’,

ataset.clean = TRUE,

utputMessages = TRUE)
g. Next, use the testDataset function to test for differences in a dependent variable, here

"Value". The program will choose whether to keep specific model effects, and report if it cor-

rects for batch, weight, and sex, or an interaction term. Additionally, it does not detect a dif-

ference in variance between the genotype groups.
sults_MM_bmd = testDataset(test, depVariable = ‘‘Value’’)
h. Use the summaryOutput function to view the results of the statistical test for comparing the

knockout phenotype against the control.
mmaryOutput(results_MM_bmd)
i. Finally, create a boxplot of the differences in the value between genotypes for both sexes

using the boxplotSexGenotype function, or the boxplotSexGenotypeBatchAdjusted if the

effect of batch was significant.
xplotSexGenotype(test,

epVariable = ‘‘Value’’,

raphingName = ‘Bone Mineral Density’’,

utputMessages = T)

enStat::boxplotSexGenotypeCatchAdjusted(test,

epVariable = ‘‘Value’’)
j. The adjusted variables can also be extracted, using the getColumnWeightBatchAdjusted

function, and plotted using a different package, for example, ggplot2 (Figures 3E–3H).
EXPECTED OUTCOMES

The expectation of this analytical pipeline is that the results of the module enrichment analyses will

identify one, or a small set of modules that will harbor significant enrichment for genes that exhibit

core-like properties. As an example, in the original implementation of this pipeline to study bone

mineral density, one group of co-expressed genes, the purple module, was the most highly en-

riched for genes associated with a number of core-like properties. The purple module was the

most highly enriched (1) for genes associated with genes that, when knocked out in mice, ex-

hibited an effect on bone mineral density, (2) for genes related to osteoblast-related monogenic

diseases, including osteogenesis imperfecta, hyperostosis, and osteosclerosis, and (3) for genes

implicated by GWAS and GWAS heritability (Figure 2). However, the expectation that there will

be a clear subset of modules enriched across all core-like properties that may not hold, see trou-

bleshooting Problem 1.
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LIMITATIONS

This protocol relies heavily on publicly available data, which can be both a benefit and an obstacle. It

may be the case that there is useful data in each of the resources listed here, however, it is likely that

only a subset of applicable data is available for the phenotype in question. In this case, specific,

bespoke experiments may need to be performed to demonstrate the hypotheses in question. Addi-

tionally, this protocol requires knowledge of the R language and running tools on the command line,

including python packages and awk. While the vignette on Github was created to help novice users

by providing example data and examples of each step of this protocol, newer users may still need to

learn some of the skills underlying the protocol to execute it fully.
TROUBLESHOOTING

Problem 1

In the before you begin section, in ‘‘Curating lists of known disease and phenotype genes’’ , you may

find that the gene lists you identify for your trait of interest from the databases mentioned are not

sufficiently large to identify any enriched modules
Potential solution

While we list a couple of options for sources of disease and phenotype associated genes, the genes

relevant to your analysis may not be as heavily represented and curated gene lists may need to be

manually curated from the literature.
Problem 2

In steps three and four, gene ontology analysis and enrichment analysis, it may be the case that too

many of the modules from the co-expression network are too small to be significantly enriched for

GO terms, GWAS genes, or genes associated with monogenic diseases.
Potential solution

This can be addressed by increasing theminModuleSize parameter in the network construction com-

mand in step two. This will result in a small number of larger modules, which may elide some nuances

between smaller modules, but will allow for more successful enrichment analyses.
Problem 3

In steps three through five, gene ontology, enrichment analysis, and LD score regression, you may

find that no single module is remarkable across the GWAS, phenotype, and monogenic disease-

related gene enrichment analyses and partitioned heritability analysis.
Potential solution

If this is the case, optimizing over themodule ranks for each enrichment will lead to a prioritized list of

modules, which can be carried into the steps seven and eight, colocalization and Phenstat analysis.
Problem 4

In step seven, colocalization analysis, there are a limited number of tissues in GTEx. It is possible that

none of the tissues present in GTEx are relevant to the GWAS phenotype at the center of the

analysis.
Potential solution

In the protocol, the solution implemented is to analyze all available tissues, which can still surface

pan-tissue effects. Another option is to use an eQTL dataset more fit for purpose. Recently, the

eQTL Catalog has been made available by the EMBL-EBI (Kerimov et al., 2020).
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Problem 5

It is assumed that there is a viable surrogate phenotype in the IMPC for step eight, however there is a

limited number of phenotypes available from the IMPC and there may not be one that is fit for

purpose.

Potential solution

If there is not a suitable surrogate phenotype in the IMPC database, additional experiments may be

required to demonstrate a causal relationship between the gene and phenotype of interest.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Charles Farber (crf2s@virginia.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability
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