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Abstract

Introduction: Full quantification of positron emission tomography (PET) data requires an input 

function. This generally means arterial blood sampling, which is invasive, labor-intensive and 

burdensome. There is no current, standardized method to fully quantify PET radiotracers with 

irreversible kinetics in the absence of blood data. Here, we present Source-to-Target Automatic 

Rotating Estimation (STARE), a novel, data-driven approach to quantify the net influx rate (Ki) of 

irreversible PET radiotracers, that requires only individual-level PET data and no blood data. We 

validate STARE with human [18F]FDG PET scans and assess its performance using simulations.

Methods: STARE builds upon a source-to-target tissue model, where the tracer time activity 

curves (TACs) in multiple “target” regions are expressed at once as a function of a “source” 

region, based on the two-tissue irreversible compartment model, and separates target region Ki 

from source Ki by fitting the source-to-target model across all target regions simultaneously. To 

ensure identifiability, data-driven, subject-specific anchoring is used in the STARE minimization, 

which takes advantage of the PET signal in a vasculature cluster in the field of view (FOV) 

that is automatically extracted and partial volume-corrected. To avoid the need for any a priori 
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determination of a single source region, each of the considered regions acts in turn as the source, 

and a final Ki is estimated in each region by averaging the estimates obtained in each source 

rotation.

Results: In a large dataset of human [18F]FDG scans (N = 69), STARE Ki estimates were 

correlated with corresponding arterial blood-based Ki estimates (r = 0.80), with an overall 

regression slope of 0.88, and were precisely estimated, as assessed by comparing STARE Ki 

estimates across several runs of the algorithm (coefficient of variation across runs=6.74 ± 2.48%). 

In simulations, STARE Ki estimates were largely robust to factors that influence the individualized 

anchoring used within its algorithm.

Conclusion: Through simulations and application to [18F]FDG PET data, feasibility is 

demonstrated for STARE blood-free, data-driven quantification of Ki. Future work will include 

applying STARE to PET data obtained with a portable PET camera and to other irreversible 

radiotracers.

Keywords

Blood-free PET quantification; Irreversible radiotracers; Net influx rate; Kinetic modeling; 
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1. Introduction

Positron emission tomography (PET) allows for in vivo quantification of brain metabolism 

of different molecules and neurotransmitter system components such as receptors, enzymes 

and ion channels. Full quantification of dynamically-acquired PET data provides estimates 

of the amount of radiotracer that is specifically bound to a target of interest in the brain 

via binding potentials (e.g., BPF and BPP) in the case of radiotracers with reversible 

kinetics (e.g., [11C]UCB-J and [11C]PBR28) (Innis, 2007). For radiotracers with irreversible 

kinetics (e.g., [18F]FDG and [18F]FDOPA), we can quantify the total radiotracer uptake 

and metabolism via estimation of Ki, the net influx rate of radiotracer into tissue from 

the vascular compartment (Innis, 2007). Essential to obtaining these quantitative estimates, 

whether through kinetic compartment modeling or graphical approaches, is knowing the 

input function. This is the concentration of radiotracer and its radiometabolites in the blood 

compartment throughout the scan, which allows us to model the radiotracer concentration 

in tissue as a function of the radiotracer concentration in the blood (Innis, 2007). The 

best validated and most widely used source of an input function is arterial blood. While 

arterial blood sampling via arterial catheterization has been safely applied in numerous 

research studies, it adds patient burden and cost, and can be labor intensive. Therefore, 

efforts to develop, validate, and disseminate less-invasive PET quantification techniques, 

can enhance use of fully quantitative PET in both research and clinical settings. Here, 

we present Source-to-Target Automatic Rotating Estimation (STARE), a novel approach 

that performs full PET quantification of Ki for PET radiotracers with irreversible kinetics, 

using only the individual-level PET brain data in a completely data-driven manner, without 

requiring collection of blood. We introduce the theory behind this approach, and report its 

initial implementation and validation in 69 previously acquired human [18F]FDG scans (D. 

Devanand, 2010; Roccia, 2019) and in [18F]FDG-based simulations.
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[18F]FDG, a glucose analog, is the most ubiquitously used PET radiotracer and yields 

information on glucose metabolism, which in the brain is considered a marker for neural 

activity (Pacák et al., 1969). Due to the requirements for full quantification of [18F]FDG 

data to estimate Ki and the corresponding metabolic rate of glucose (CMRglu) (Sokoloff, 

1977; M. Phelps, 1979), semi-quantitative metrics, such as the standardized uptake value 

(SUV), have been frequently employed instead (Zasadny and Wahl, 1993). However, 

without strict standardization of SUVs (Boellaard, 2009; Vriens et al., 2010; Westerterp, 

2007), quantification of Ki and CMRglu can be preferable, especially where highly sensitive 

PET metrics are required to detect subtle biological differences. Therefore, there has been 

much work to develop methods that can estimate Ki and CMRglu without relying on 

an arterial input function (AIF). Common classes of less- or non-invasive quantification 

techniques include reference region approaches, image-derived input functions (IDIFs), 

population-based input functions (PBIFs), and simultaneous estimation (SIME) of the input 

function (Guo et al., 2007; Wong et al., 2002; Wong et al., 2001; Chen, 1998; Ogden et al., 

2010; Bohorquez, 2020; Zanotti-Fregonara et al., 2020; S. Takikawa, 1993; Cunningham, 

1991; Hume, 1992).

Reference region approaches quantify PET outcome measures with respect to the tracer time 

activity curve (TAC) in a region assumed to be devoid of specific binding to the target of 

interest for reversible tracers or devoid of an irreversible trapping component for irreversible 

tracers (Cunningham, 1991). However, for many tracers, e.g., [18F]FDG, which is taken up 

by all living tissues, there is no valid reference region available. Progress has been made in 

developing approaches for reversible tracers that correct for the bias introduced by reference 

region assumption violations (Gunn, 2011; Turkheimer, 2012; Salinas et al., 2015); however, 

these approaches still yield relative outcome measures (e.g., BPND). To our knowledge, such 

new methods that would allow for absolute quantification of Ki without sampling any blood 

do not yet exist for irreversible tracers.

Other proposed less-invasive methods, i.e., IDIFs, PBIFs and SIME, generally seek to 

recover a proxy for the AIF that is typically “anchored” or scaled to the individual in 

question, commonly by using one or more blood samples. Obviously, such an approach does 

not entirely eliminate the need for blood sampling. IDIFs rely on extracting the radioactivity 

within vasculature in the PET field of view (FOV) and PBIFs rely on blood data previously 

acquired with the same tracer in other subjects, but both still currently require individual 

blood-based anchoring for practical application. SIME of the input function achieves less-

invasive quantification by fitting the proper tissue compartment model to multiple brain 

regions’ TACs simultaneously. This allows the free parameters of the model, that is the 

parameters requiring estimation, to be estimated simultaneously, under the usual assumption 

that the AIF is the input function common to all regions (Guo et al., 2007; Wong et al., 2002; 

Wong et al., 2001; Ogden et al., 2010; Bohorquez, 2020; Riabkov and Di Bella, 2002; Feng 

et al., 1997; Sari, 2018; Zanderigo, 2018; Maroy et al., 2020). In SIME of the input function, 

the model free parameters are both those describing the tracer kinetics in the tissue (e.g., 

for an irreversible tracer, the micro-parameters K1, k2, and k3 for each brain region) and 

those describing the AIF (e.g., the parameters of the model often used for the AIF, which 

is the sum of three decreasing exponentials). However, to ensure identifiability of all free 
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parameters at the individual level, SIME of the input function also requires “anchoring” the 

solution using at least one blood sample acquired during scanning (Ogden et al., 2010).

Although theoretically, a single arterial sample for IDIFs, PBIFs, or SIME could be acquired 

using an arterial puncture, the procedure can generate a sudden reaction in the subject 

under scanning, potentially causing head motion and alterations in blood pressure and 

cerebral blood flow that may impact tracer delivery to and washout from the brain. Thus, 

it is preferable to avoid collecting even a single arterial sample. For [18F]FDG, where 

the radioactivity in venous and arterial blood closely approximate each other after 40 min 

post-injection (M.E. Phelps, 1979; Wakita, 2000), SIME, IDIFs, and PBIFs have been 

anchored with one or more venous plasma samples acquired late in the scan (Guo et al., 

2007; Wong et al., 2001; Chen, 1998; Bartlett, 2019; S. Takikawa, 1993; Zhou, 2012; Chen, 

2007; Naganawa, 2005; Zanotti-Fregonara, 2009). This approach still requires placement 

of a second intravenous catheter, in addition to the line used for radiotracer injection, 

and measurement of venous blood activity in a well counter, adding complexity to PET 

acquisition.

There has been some success in developing completely blood-free full PET quantification 

approaches. These solutions often require combinations of multiple techniques to achieve 

acceptable performance. One solution anchors a PBIF with IDIF information derived from 

whole-body PET scanning (Naganawa, 2020). Deep learning has also been leveraged to 

obtain blood-free quantification of [18F]FDG; however, to our knowledge this has yet to 

be validated with human scans (Wang et al., 2020). Further, machine learning applied to 

precompiled electronic health record (EHR) data has been combined with SIME of the 

input function to quantify [18F]FDG without the use of any blood samples (Roccia, 2019). 

However, these solutions are thus far situation specific, i.e., with whole body scanning, with 

large sets of biological variables in the form of EHR data, or with large datasets acquired 

from many subjects with the same radiotracer for training and validation of machine learning 

algorithms.

We now propose STARE (Source-to-Target Automatic Rotating Estimation), a new, blood-

free, data-driven approach to quantification of PET tracers with irreversible kinetics that 

relies only on individual-level dynamic PET data. STARE utilizes a source-to-target tissue 

model, where the tracer radioactivity curve in a “target” region is expressed as a function of 

a “source” region, to eliminate the dependency of compartmental modeling on arterial blood. 

This source-to-target tissue model must be adapted to allow us to disentangle the parameters 

of the target region from those of the source region. We do this by considering multiple 

target regions at once, as a function of the common source, and fitting the source-to-target 

model across all target regions and the source simultaneously. This approach allows STARE 

to separate Ki in target regions from Ki in the source region. Differently from SIME of 

the input function, STARE does not use data from blood samples to “anchor” the solution 

to the given individual but instead, uses bootstrapped, PET image-derived measures of 

concentration in the vasculature present in the FOV. We validate STARE in a large set of 

human [18F]FDG scans in comparison to AIF-based estimation and using simulations.
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2. Materials and methods

2.1. Theoretical framework

We first present the theoretical framework for STARE, then the details of our 

implementation in this set of human [18F]FDG scans in 2.2 Implementation.

STARE is based on a reformulation of the standard two-tissue irreversible compartment 

model (2TCirr). The 2TCirr model expresses the concentration of radiotracer in a target 

region of interest (CT(t)) as a function of the concentration of radiotracer in the arterial 

plasma (Cp(t)) as follows (Phelps, 1979a; Sokoloff, 1977):

CT(t) = K1 IRF ⊗ Cp (t) = K1
k2

k2 + k3
e− k2 + k3 t + k3

k2 + k3
⊗ Cp (t) (1)

where t is time, IRF is the impulse response function for the target region, K1, k2, k3 are the 

micro-parameters for the target region, and ⊗ denotes convolution. If Cp(t) were available, 

fitting the model in Eq. (1) to the TAC in a target region would result in estimates of the 

micro-parameters K1, k2, and k3, and thus, of Ki as Ki = K1k3∕(k2 + k3).

Without acquisition of arterial plasma samples throughout the scan, an estimate of Cp(t) is 

not available. In the case of a PET tracer with irreversible kinetics, such as [18F]FDG, Eq. 

(1) typically holds for TACs from any brain region. Therefore, it is possible to reformulate 

Eq. (1) so that CT(t) in a target region is expressed as a function of the TAC in another 

region (CS(t)), denoted here as the “source” region and thus, obviating the need to know 

Cp(t). To do so, we first express both CT(t) and CS(t) with the 2TCirr model as in Eq. (1):

CT(t) = K1, T IRFT ⊗ Cp (t)

= K1, T
k2, T

k2, T + k3, T
e− k2, T + k3, T t + k3, T

k2, T + k3, T
⊗ Cp (t)

CS(t) = K1, S IRFS ⊗ Cp (t)

= K1, S
k2, S

k2, S + k3, S
e− k2, S + k3, S t + k3, S

k2, S + k3, S
⊗ Cp (t)

(2)

By applying Laplace transformation, substitution, and subsequent transformation back into 

the time-domain to Eq. (2), Cp(t) can be substituted out so that the target region TAC, 

CT(t), is expressed as a function of: (1) its own micro-parameters, (2) the micro-parameters 

describing the source region, and (3) the source region TAC itself, CS(t), as follows (see 

Appendix for full derivation):

fT t, θT , S = K1, T
K1, S

CS(t) + K1, T
K1, S

CS(t) ⊗ LT , SevT , St + MT , SeεT , St
(3)

Which, we denote the source-to-target tissue model, where t is time and θT,S are the free 

parameters (the 2TCirr micro-parameters K1, k2, and k3 for the target and the source region). 
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As shown in Eq. (3), θT,S comprises the macro-parameters LT,S, MT,S, υT,S, and εT,S, which 

are combinations of the 2TCirr free micro-parameters (see Appendix for full derivation).

Because the reformulation in Eq. (3) by itself, with a single target and the source region, 

only allows for quantification of PET outcome measures “relative” to the selected source 

region, we model multiple target regions at once as a function of the same common source 

region and simultaneously estimate the parameters for all targets and the source at once. 

This, together with STARE anchoring, allows for absolute estimation of the target and 

source micro-parameters, and of Ki for each. This estimation of absolute measures is one 

of the ways STARE differs from reference region approaches, which also make TAC-based 

substitutions to eliminate Cp(t), but only yield outcome measures “relative” to the selected 

reference region (e.g., BPND).

This strategy is analogous to SIME of the input function. In that context, the parameters 

describing the unknown AIF are estimated together with the free parameters describing 

the tracer kinetics in the tissue by fitting all regions’ TACs at once, under the assumption 

that the AIF parameters are in common to all regions. Similarly, here we model multiple 

target regions at once, under the assumption that the source region parameters that they 

are expressed as a function of, are in common to all regions. The parameters for the target 

regions and the source region are then estimated at once with simultaneous estimation as 

follows.

Once each target region is expressed as a function of the source region (according to Eq. 

(3)), the weighted sum of squared residuals is used across N target regions, where the 

residuals are the distances between each measured target TAC (CT(t)) (with T = 1,…,N 
indicating the different target regions) and the corresponding modeled target TAC (fT (t, 
θT,S)) at each tm time point (m = 1, … , n), as follows:

Φ tm, θT , S = ∑
T = 1

N
∑

m = 1

n
wm CT tm − fT tm, θT , S

2
(4)

Where, ω in Eq. (4) indicates a set of known weights for the different PET frame durations 

(as is standard in PET imaging).

Similar to SIME of the input function, however, minimization of Eq. (4) will not yield 

unique estimates of the free parameters for both the target regions and source region. This 

is due to the fact that there exist multiple combinations of such free parameters that yield 

equivalently good TAC fits. For SIME of the input function, this identifiability problem 

is solved by “anchoring” the solution to a blood sample acquired from the subject during 

scanning (Wong et al., 2002; Ogden et al., 2010; Bartlett, 2020).

Analogously, in STARE, we ensure identifiability by effectively “anchoring” the estimation 

process, not to data from blood samples, but to PET-derived measures of activity in the 

vasculature in the FOV (as are common with IDIF methods), as described in detail in the 

Implementation section. To do this, an additional penalty term is added to the weighted sum 

of squared residuals in Eq. (4):
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Φ tm, θT , S = ∑
T = 1

N
∑

m = 1

n
wm CT tm − fT tm, θT , S

2

+ λ ∑
T = 1

N
Ki, T − Ki, υasc, T

(5)

This penalty term enforces identifiability by constraining the solution, and Ki,T, the Ki 

in region T, to a subject-specific neighborhood around estimates derived from the signal 

in the vasculature within the PET FOV. As is described in 2.2.1 Implementation: STARE 

Anchoring, this is estimated in a data-driven manner based on the individual’s PET data. 

The PET signal is automatically extracted from vasculature within the PET FOV, as in 

IDIF techniques. However, the variability in kinetics across voxels within this vasculature 

region is then bootstrapped to generate a wide range of possible micro-parameter estimates 

for each brain region for a given participant, from which the Ki,υasc,T values are derived. 

This range of micro-parameter estimates is also used to bound all free parameters to be 

estimated during the minimization of the STARE cost function (Eq. (5)). The parameter λ is 

introduced in Eq. (5) for generalizability to other datasets to balance the contribution of the 

model goodness of fit and anchoring terms, because the goodness of fit term is dependent on 

TAC radioactivity units, whereas the anchoring term is independent of TAC units. . In this 

initial [18F]FDG dataset, λ was arbitrarily set to 1; however, its value should be optimized 

for other scanners and/or radiotracers.

Unlike reference region approaches, the only required theoretical assumption of STARE 

for the source region TAC is that it follows the 2TCirr model, as shown in Eqs. (2) and 

(3), where the source and target region TACs are both assumed to follow a 2TCirr model. 

Although, any region whose TAC follows the 2TCirr model could be used as the source 

region, to ensure that final estimates do not rely on an arbitrary choice of source, we elected 

to allow each region to act in turn as the source region. Final Ki estimates thus result from 

averaging the Ki estimates obtained for each source “rotation”. The theoretical framework 

and implementation of STARE anchoring is described in Fig. 1.

2.2. Implementation

STARE was applied to 69 [18F]FDG human brain scans (D. Devanand, 2010; Roccia, 2019; 

Bartlett, 2019) and to simulated data considering TACs from six regions of interest (ROIs): 

cerebellum, cingulate cortex, hippocampus, parietal cortex, medial prefrontal cortex, and 

parahippocampal gyrus. STARE implementation is shown in Fig. 1. Matlab 2016b (The 

MathWorks, Natick, MA) was used for implementation and all subsequent processing.

2.2.1. STARE anchoring—STARE anchors the estimation process to a unique solution 

for each individual via the penalty term in Eq. (5) and via data-driven upper and lower 

bounds that are generated and imposed on the free parameters in the model (each region’s 

micro-parameters). Here we describe how this anchoring can be fully automated.

To summarize, we first use a two-step k-means clustering approach to automatically extract 

a vasculature cluster by parsing the dynamic PET data into characteristic regions, such 
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as background, brain tissue with irreversible uptake, and vasculature. This is followed by 

partial volume correction (PVC) of the final vasculature cluster (Fig. 1). To anchor the 

STARE solution in the correct subject-specific “neighborhood” of the free parameter space, 

we capitalize on the variability of signal within the extracted, and corrected for partial 

volume, vasculature cluster by bootstrapping the voxel TACs within the vasculature cluster 

and obtaining distributions of possible micro-parameter estimates for each region. More 

specifically:

2.2.1.1. K-means Step 1.: To automatically select the optimal number of clusters to be 

extracted, based solely on an individual’s PET data, rather than a priori assuming that 

a pre-set number of clusters will optimally partition all scans, k-means clustering runs 

multiple times, each with a different number of extracted clusters. For [18F]FDG, we used 

a generous range from 6 to 40 clusters. An optimal vasculature cluster is then automatically 

selected from each k-means runs by: (1) eliminating all clusters where the maximum value 

of the average TAC within the cluster corresponds to the end-point of the curve because 

that indicates an irreversible kinetic, which most likely represents tissue; (2) eliminating 

all clusters whose average TAC shows negative values because that most likely represents 

background voxels; and (3) selecting from the remaining clusters, the one whose average 

TAC shows the highest peak value at the earliest time of peak because that most likely 

represents PET signal arising from blood vasculature.

2.2.1.2. K-means Step 2.: K-means clustering then runs again only on those voxels 

within the vasculature cluster selected during Step 1, with the assumption that this cluster 

represents a gross estimate of the vasculature within the FOV, which might be corrupted 

by some spill-in from nearby tissue (especially late in the scan) and spill-out of vasculature 

signal (especially early in the scan). Because it might be that this initial gross estimate 

is comprised of signal from arteries, veins, sinuses, and tissue, in our implementation, we 

elected to extract 4 clusters from the Step 1 vasculature cluster in Step 2. Among the 

extracted clusters, similar to Step 1, the voxels belonging to clusters whose average TAC has 

the highest peak value are selected as the final vasculature cluster. Prior studies have shown 

that with [18F]FDG, as well as with a multitude of other radiotracers and drugs, the signal 

arising from the arterial vasculature early in the scan is higher than the signal arising from 

the venous vasculature, as well as any other tissues (Bartlett, 2019; Bartlett, 2020; Wakita et 

al., 2000; Chiou, 1989). Therefore, the k-means cluster with the highest early-scan peak is 

likely to be the closest approximation of the true activity in arterial blood.

2.2.1.3. Partial volume correction.: PVC via Single Target Correction (STC) is then 

applied to the voxels within the final vasculature cluster from Step 2 (Sari, 2017). STC was 

previously optimized and validated, where PVC is performed on a voxel-wise basis for a 

single region (i.e., the final vasculature cluster), accounting for the voxel-wise spill-in and 

spill-out of radioactivity from the vasculature cluster (Sari, 2017). Given the reconstruction 

parameters of the [18F]FDG dataset considered here, a point-spread function of 5.9 mm full 

width at half maximum (FWHM) was used for PVC via STC (D. Devanand, 2010; Sari, 

2017). This parameter should be selected and optimized based on the scanner resolution and 

reconstruction parameters (e.g., post-reconstruction smoothing) for the dataset at hand.

Bartlett et al. Page 8

Neuroimage. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2.1.4. Data-driven extraction of Eq. (5) penalty term and parameter space 
bounds.: To derive the individualized penalty term in Eq. (5), specifically Ki,υasc for each 

target region T, and the lower and upper bounds for the model micro-parameters [LB, UB] 

for each micro-parameter for each target region T, we leveraged the variability of the TACs 

within the final, partial volume-corrected vasculature cluster. Our approach extends beyond 

standard IDIF approaches that often simply use the average TAC in a vasculature cluster, 

because these standard approaches typically require blood-based scaling (Zanotti-Fregonara 

et al., 2011).

First, we simulate many instances of vasculature signal curves (Cυasc,b(t), with b = 1, 

… , B and B = 1000 in our implementation), by bootstrapping curves that fall between 

one standard deviation below and one above the average TAC across voxels in the partial 

volume-corrected vasculature cluster, according to the following:

Cυasc, b(t) = μυasc(t) ± συasc(t)Xb(t), b ∈ 1, …, B (6)

where t is time, μυasc(t) is the average TAC in the vasculature cluster, συasc(t) is the 

frame-wise standard deviation of voxels in the vasculature cluster, and Xb is a uniformly 

distributed random number in the interval [0,1] at each time t for each bootstrapping 

iteration b. Each bootstrapped vasculature signal curve is then fit with a 3-decreasing 

exponential model (Fυasc,b(t)), commonly adopted in PET to describe the post-peak blood 

input function (holding at μυasc(t) from time zero to the time of peak, to avoid any early-scan 

non-physiological uptake patterns) (see Fig. 1 for an example of the generated bootstrapped 

curves).

Each region’s TAC is then fit with the 2TCirr model with the Fυasc,b(t) curves serving as 

proxies for the input function, yielding B sets of estimated 2TCirr micro-parameters per 

region. The probability density estimates of these micro-parameter sets are then obtained via 

nonparametric estimation of the probability density function (Matlab function “ksdensity”). 

See Fig. 1 for an example of the hippocampus k2 density estimate. The bounds for each 

micro-parameter, [LB, UB], are then automatically set using the FWHM of the probability 

density estimate (gk) of each k parameter, such that in each region:

gk LBk = gk UBk = 1
2max gk

LBk < UBk
, k ∈ K1, k2, k3 (7)

See Fig. 1 for an example of [LB, UB] for hippocampal k2 values.

The B sets of estimated 2TCirr micro-parameters are then also used to compute B 
corresponding Ki values, from whose distribution, probability density function is also 

derived in the same manner. The Ki,υasc value used to penalize Eq. (5), is then derived 

for each region as Ki, υasc = LBKi +
UBKi − LBKi

2 .
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2.2.2. STARE cost function minimization—For each source rotation, Eq. (5) is 

minimized in parallel via simulated annealing (Pincus, 1970). Simulated annealing was 

implemented using the Matlab function “simulannealbnd” with default options for initial 

temperature (100), reannealing interval (100), function tolerance (1e-6), and maximum 

iterations (Inf). The simulated annealing initial guesses were set randomly in the range [LB, 

UB] for each parameter, and the search space was confined to [LB, UB] for each parameter.

2.2.3. Vascular correction—The source-to-target tissue model in Eq. (3) assumes that 

the TACs of target and source regions are corrected for vascular contribution. However, in 

the absence of measurements of the radiotracer activity in whole blood or plasma, such 

vascular correction is not easily achieved. We, therefore, implemented an optional vascular 

correction procedure within STARE. The partial volume corrected average TAC in the 

vasculature cluster (μυasc(t)) can be used to perform vascular correction of the TACs in all 

regions according to the following:

Ctrue(t) = Cmeas(t) − μυasc(t) ∗ V B / 1 − V B (8)

where t is time, Cmeas(t) is the measured tissue radioactivity from the PET camera, Ctrue(t) 
is the tissue radioactivity corrected for vascular contribution, and VB is a user-modifiable 

vascular volume fraction. We investigated the effect of neglecting vascular correction (VB 

= 0.00), and including STARE’s implementation of vascular correction (with VB = 0.05 

(Leenders, 1990)), according to Eq. (8), on STARE performance in quantifying Ki.

2.3. AIF-based quantification of the available [18F]FDG dataset

An available set of 69 previously acquired and published [18F]FDG scans (D. Devanand, 

2010; Roccia, 2019; Bartlett, 2019) was considered, which included participants with 

mild cognitive impairment, mild Alzheimer’s disease and healthy controls. Per the data 

sharing agreement, data could be made available by request to Drs. J John Mann/Davangere 

P Devanand. As previously described, written informed consent was obtained from all 

participants (D. Devanand, 2010; Roccia, 2019; Bartlett, 2019) and the study was approved 

by the Institutional Review Board of the New York State Psychiatric Institute and Columbia 

University. Acquisition details are previously described (D. Devanand, 2010). Arterial 

plasma was sampled throughout the scan via arterial catheterization as previously described 

(Devanand, 2010a). To generate a “gold-standard” AIF, the measured values of tracer total 

radioactivity in arterial plasma were interpolated from time 0 to the time of the plasma peak. 

After the peak, a sum of three decreasing exponentials was used to fit the radioactivity data 

via non-linear least squares. The AIF then was used as the input function to the 2TCirr 

compartmental model to fit each considered TAC, estimate the model micro-parameters, 

and calculate corresponding Ki estimates. These blood-based 2TCirr Ki estimates were 

considered to be the “gold-standard” comparison for STARE-based estimates of Ki, although 

we acknowledge that AIF data, and thus AIF-based Ki estimates, may be prone to noise 

and error (Graham, 1997). For comparison with STARE, AIF-based 2TCirr was run either 

while neglecting vascular correction (VB = 0.00) or with standard vascular correction, using 

the plasma AIF (because the radioactivity curve in whole blood was not measured in this 

previously acquired dataset) with VB = 0.05 (Leenders, 1990), according to Eq. (8).
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2.4. Assessing STARE performance relative to AIF-based quantification

2.4.1. STARE accuracy—Agreement between STARE Ki and AIF-based 2TCirr Ki 

estimates was assessed using linear regression and Pearson correlation. Regressions and 

correlations were computed for: (1) all regions and scans together, (2) scan-by-scan, across 

all regions, and (3) region-by-region, across all scans. Signed percent differences were also 

computed as: (STARE Ki − 2TCirr Ki)/2TCirr Ki∗100. To assess the possibility of regional 

dependence in STARE performance, a linear mixed effects model was fit with outcome = 

the natural logarithm of Ki and fixed effects = region and quantification method (STARE vs. 

AIF-based 2TCirr). Participant was modeled as a random effect.

2.4.2. STARE precision—Because STARE contains non-deterministic algorithms (i.e., 

k-means clustering and simulated annealing), the stability in estimating Ki was tested. 

STARE was run 10 times per scan for a random subset of the N = 69 [18F]FDG scans. 

Stability of STARE across runs and regions was assessed with the coefficient of variation of 

Ki estimates (COV = standard deviation / mean).

2.4.3. STARE performance across diagnostic groups—Given that the [18F]FDG 

dataset includes a transdiagnostic sample, we assessed whether STARE’s performance varies 

by disease state (participants with mild cognitive impairment (MCI), mild Alzheimer’s 

disease (AD) and healthy controls (HC)). A linear mixed model was fit as in 2.4.1 STARE 
accuracy, but with diagnostic group added as a fixed factor (in addition to region and 

quantification method). The two-way interaction of diagnosis by method to test if Ki 

varied by quantification method on a diagnosis-specific basis was examined. Statistics were 

performed in R version 4.0.3 (Bates et al., 2014; Team, 2013).

2.5. Simulations

A set of simulations was designed to examine the sensitivity of STARE to variations in 

its anchoring procedure used to determine Ki,υasc,T and the upper and lower bounds [LB, 

UB] of the model free parameters. One set of simulations, (A), investigated the effect of 

variations in μυasc(t) (the average TAC across the voxels in the final vasculature cluster) 

by manipulating its area under the curve (AUC), the curvature of its tail, and its overall 

shape (in this last case, while holding the AUC constant). Another set of simulations, (B), 

investigated the effect of variations in συasc(t) (the frame-wise standard deviation of voxel 

activities within the final vasculature cluster). Across all simulations, the same representative 

[18F]FDG scan was used as a starting point. To quantify how much each simulation altered 

μυasc(t) or συasc(t) relative to the original curves, a difference score was computed as the 

absolute summed difference across time-points between the original μυasc(t) or συasc(t) and 

the simulated μυasc(t) or συasc(t) curves. This was compared to the percent difference in Ki 

between the original STARE run and the STARE run following the given manipulation.

2.5.1. Effects of μvasc(t) on STARE performance

2.5.1.1. Alter μvasc(t) AUC.: The AUC of μυasc(t) was manipulated while maintaining the 

shape of the curve, by solving for ad dυar in the following equation:
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Fmult∫
0

t
µvasc(τ)dτ = ∫

0

t
µvasc(τ) + addvar dτ, Fmult ∈ [0.1, 3] (9)

where t is time and Fmult is the scaling factor that alters the AUC (with Fmult in the range 

[0.1, 3]). Ad dυar was estimated at each Fmult instance, and then added to the representative 

scan’s μυasc(t).

2.5.1.2. Alter μvasc(t) tail shape.: The shape of the tail of μυasc(t) was manipulated 

by altering the exponential decay of the tail. To do this, the extracted μυasc(t) was fitted 

to the usual 3 decreasing exponential model, and the exponential term with the smallest 

decay constant, which models the late-scan kinetics of μυasc(t), was modulated using a 

multiplicative scaling factor to increase or decrease the rate of decay. The same Fmult values 

as in Eq. (9) were used. The corresponding AUC of the simulated curve was allowed to 

change with the varying Fmult values.

2.5.1.3. Alter μvasc(t) overall shape.: The shape of the μυasc(t) curve was then 

manipulated while holding the AUC constant, by using the same μυasc(t) fit as in 

2.5.1.2 above. Sets of three decay constants, one per each decreasing exponential, were 

randomly generated in each simulation and combined with the original corresponding initial 

magnitude values from 2.5.1.2 above. This new simulated curve was then divided by a 

factor, diυυar, that was estimated in each iteration using a similar procedure to Eq. (9), in 

order to hold the final simulated curve’s AUC constant at the representative scan’s original 

value.

2.5.2. Effects of σvasc(t) on STARE performance—The standard deviation of the 

tracer radioactivity in the voxels within the final vasculature cluster, συasc(t), was then 

manipulated via additive scaling using the same approach as in (Eq. (9)). In this case, 

however, συasc(t) substituted for μυasc(t) in Eq. (9) and the estimated ad dυar at each Fmult 

was added to the representative scan’s συasc(t).

3. Results

3.1. STARE accuracy

Blood-free STARE Ki estimates were highly correlated with AIFbased Ki estimates 

(regression slope (b)=0.88, y-intercept=0.004, Pearson’s r = 0.80, Fig. 2(A), Table 1)). 

Although the regression slope was less than one, the intercept was greater than zero 

and STARE Ki estimates were on average modestly overestimated relative to AIF-based 

estimates (signed percent difference: 5.07% ± 18.14%; Table 1). STARE Ki estimates were 

0.00091 ± 0.0041 greater than AIF-based Ki estimates (Fig. 2(B)).

At a scan-by-scan level, across the six regions considered, the agreement between STARE 

and AIF-based Ki estimates was assessed and slopes ranged from 0.59 to 1.58, y-intercepts 

ranged from −0.0036 to 0.0046, and Pearson’s r ranged from 0.95 to 1.00. Although the r 
values ranged from 0.66 to 0.72 and the slopes ranged from 0.71 to 0.85 for the comparison 

of individual regions’ STARE Ki estimates vs. AIF-based Ki estimates region-by-region, 
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across all scans (Table 1), there was no significant statistical evidence for a regional 

dependence in STARE’s estimation of Ki relative to AIF-based Ki estimates (p = 0.999).

In comparison to AIF-based Ki estimates, Ki,vasc values (i.e., the peak of the probability 

density function of the bootstrapped Ki estimates used for anchoring Eq. (5)) were 

slightly more biased than final STARE-estimated Ki values, based on regression slopes 

(see Supplemental Materials). Notably, Ki values obtained by extracting an unscaled, non-

bootstrapped, average curve from the clustering algorithm (i.e., the average TAC across all 

voxels within the extracted vasculature cluster) and then using it as the input function to 

the 2TCirr model, showed overestimation with respect to AIF-based Ki estimates (slope = 

1.12, see Supplemental Materials), and a percent difference with respect to AIF-based Ki 

estimates that is higher than that of STARE-estimated Ki (percent difference for STARE Ki 

= 5.07 ± 18.14%; percent difference for Ki from vasculature cluster curve = 15.81 ± 21.37%; 

Supplemental Materials).

3.2. STARE precision

Although STARE includes non-deterministic algorithms, STARE stably estimated Ki across 

runs (COV = 6.74 ± 2.48%).

3.3. STARE performance across diagnostic groups

We tested whether STARE’s estimation of Ki was consistent across diagnostic groups (AD, 

MCI, and HC). The interaction between diagnosis (AD vs MCI vs HC) and quantification 

method (STARE vs AIF-based) was non-significant (p = 0.17), indicating that the difference 

in Ki values estimated with the two methods did not significantly vary across diagnoses.

3.4. STARE vascular correction

While the level of correlation between STARE Ki and corresponding AIF-based estimates 

is not affected by whether the vascular correction strategy is considered (r = 0.78) or not 

within STARE (r = 0.79), their agreement slightly varies. More specifically, when comparing 

STARE Ki estimates obtained without the vascular correction strategy to AIF-based Ki 

estimates obtained with VB = 5%, the slope of the regression line is b = 0.83, (Fig. 3(A)). 

When the proposed vascular correction strategy is used within STARE and compared again 

to AIF-based Ki with VB = 5%, the slope of the regression line is b = 0.87 (Fig. 3(B)), 

suggesting that considering the vascular correction strategy is favorable, at least in this 

[18F]FDG dataset.

3.4. STARE simulations

Simulation showed that altering the overall amplitude of signal within the vasculature cluster 

used to generate the STARE anchors (i.e. altering the AUC of μυasc(t) via additive scaling) 

had the most substantial impact on STARE Ki estimation (Fig. 4(A)1). To compare with 

human data, in the 69 [18F]FDG scans, the mean percent difference in AUC between STARE 

μυasc(t) and the AIF was −6.10 ± 15.69%. According to our simulations, when the simulated 

difference in the AUC of μυasc(t) was 10%, it yielded a −9.97% change in Ki estimates.
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STARE was relatively robust to alterations in the kinetics of signal arising from the 

vasculature cluster (Figs. 4(A)2 and 4(A)3) and the level of voxel-wise variance in the 

vasculature cluster used to generate the STARE anchors (Fig. 4(B)).

More specifically across all simulations, Ki only changed by greater than 50% with respect 

to the original, non-simulated STARE Ki values under the following simulated conditions: 

(1) μυasc(t) AUC was increased by at least 200% (corresponding to a y-axis difference 

score of at least 5.40 in Fig. 4(A)1) or (2) μυasc(t) AUC was reduced by at least 40% 

(corresponding to a y-axis difference score of at least 2.16 in Fig. 4(A)1). From Fig. 4(A)1, 

we can observe that: (1) altering μυasc(t) AUC yielded the expected inverse effects on 

STARE Ki estimates, such that, for example, increasing the AUC yielded negative biases 

in STARE Ki; and (2) reducing μυasc(t) AUC had a greater impact on STARE Ki than 

increasing μυasc(t) AUC, presumably due to instabilities in the 2TCirr modeling in the free 

parameter bound generation because the input function tail approached 0 microCi/cc in 

activity and at times became negative.

In the second simulation in Fig. 4(A)2, which manipulated the kinetics of the amplitude 

of signal arising from the vasculature cluster (allowing the AUC to change with change 

in shape), the simulated Ki estimates changed by less than 50%, even when the rate of 

μυasc(t) tail decay was increased by 300% or decreased by 90% (Fig. 4(A)2). In Fig. 4(A).3, 

where the AUC of μυasc(t) was held constant, while the shape was varied, a much smaller 

impact on STARE Ki was observed, with all percent differences less than 15% (Fig. 4(A)3). 

Similarly, altering the level of voxel-wise variance within the vasculature cluster had little 

impact on STARE Ki (Fig. 4(B)).

4. Discussion

We present the theory and initial validation with human [18F]FDG scans, for a new, 

publicly-available PET quantification approach – STARE – that quantifies the net influx rate 

(Ki) of radiotracers with irreversible kinetics (https://github.com/elizabeth-bartlett/STARE). 

This method, in theory, allows for noninvasive quantification of PET data without requiring 

blood sampling during the course of a PET scan and operates in an automatic, data-driven, 

individual-subject way. In a large dataset of human [18F]FDG scans (D. Devanand, 2010), 

STARE Ki estimates showed modest overestimation with respect to, and strong correlation 

with, “gold-standard” AIF-based Ki estimates, and were precisely estimated. In simulations, 

STARE Ki was largely robust to deviations in the subject-specific STARE anchoring.

The goal of STARE is to provide blood-free full quantification of data acquired with PET 

tracers with irreversible kinetics. While validated here using [18F]FDG, STARE’s theoretical 

framework is based on a manipulation of the general 2TCirr model. Therefore, theoretically, 

STARE can be applied to any tracer whose kinetics can be fitted with an irreversible 

compartment model. For tracers with non-brain-penetrating radiometabolites, we expect 

the source-to-target modeling portion of STARE to perform well, because that portion 

completely eliminates the dependence on blood measurements and would solely be relying 

on activity of the parent tracer in tissue. However, the subject-specific anchoring portion 

of STARE that relies on leveraging the activity in the vasculature in the FOV, would be 
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corrupted by activity from the radiometabolites, and thus, would require optimization and 

further validation, or development of a different approach to anchoring, depending on the 

tracer at hand. Key considerations when validating STARE for another tracer include PET 

signal heterogeneity and noise levels across the brain, according to the PET camera used to 

acquire the data. This validation, in comparison to AIF-based quantification, can be achieved 

with a modest sample size.

This highlights one of the advantages of STARE, which is that the approach does not depend 

on machine learning, for which large sample sizes are often required for adequate model 

training. In fields like dynamic PET imaging, where data sharing initiatives are still in their 

infancy, and PET acquisition with arterial blood sampling is costly and complicated, large 

datasets meeting the appropriate requirements for machine learning are rare, especially for 

novel radiotracers. One such machine learning method, noninvasive SIME (nSIME), which 

was previously validated with the same [18F]FDG dataset considered here, trained a model 

with 83 different predictors extracted from precompiled EHR data to estimate [18F]FDG Ki 

in conjunction with simultaneous estimation (Roccia, 2019). nSIME performed comparably 

with blood-free STARE (r = 0.80 STARE, r = 0.83 nSIME (Roccia, 2019); Bland-Altman 

plots appear qualitatively comparable across methods). STARE appears to exhibit less bias, 

despite the fact that STARE only requires an individual participant’s dynamic PET data and 

does not require other participants’ data for model training.

We note that there is inter-subject variation in STARE performance (range of regression 

slopes of STARE Ki relative to AIF 2TCirr Ki is 0.59 to 1.58 across subjects). Some 

inter-subject variability is to be expected, given that STARE is estimating a blood-based 

outcome measure without any blood data; however, this metric (i.e., regression slope at the 

individual level) is rarely reported in the literature for comparison. It would be expected that 

STARE would be more sensitive to PET data quality issues (e.g., substantial patient motion 

or poor signal-to-noise) than blood-based modeling, because STARE solely relies on the 

PET data, without the additional information provided by the blood data, as in the case of 

traditional AIF 2TCirr. Further work is required to determine: (1) how the present level of 

inter-subject variability impacts PET studies (e.g., test-retest and pre/post pharmacological 

intervention comparisons), (2) whether the current inter-subject variability is stable across 

PET scanners, tracers, and populations, and (3) whether the inter-subject variability can be 

reduced with further optimizations.

STARE also includes an option for vascular correction, where, at the user’s discretion, the 

source and target TACs can be corrected for any desired level of blood volume fraction. 

While the level of correlation between STARE Ki and corresponding AIF-based estimates 

is not affected by whether the vascular correction strategy is considered or not within 

STARE, their agreement slightly varies, and our results suggest that considering the vascular 

correction strategy within STARE is favorable, at least in this [18F]FDG dataset. The 

suitability of STARE’s vascular correction strategy should be examined for each tracer and 

in additional datasets, scanners, and populations, and future work could explore optimization 

of the proposed strategy or implementation of alternative strategies. Because using a fixed 

blood volume fraction (here 5%) may compromise quantification in diseases with potential 

blood volume variations (e.g., in tumors (Aronen, 2000), metabolic disorders such as 
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hypothyroidism (Pak et al., 2020), or stroke (Derdeyn, 2002)), development of a STARE 

version that includes an estimable VB for each participant and/or brain region could be 

beneficial.

STARE performance was comparable across brain regions for both accuracy and precision. 

This finding highlights another key feature of STARE – the source rotation. Unlike reference 

region methods, where a priori knowledge is required to determine one appropriate region 

assumed to be devoid of tracer specifically bound to the target, STARE’s source rotation 

step does not require any a priori determination of a source region. Our findings show 

that STARE estimates Ki with equivalent accuracy when we compute final Ki estimates 

as averages across all rotations. We also provide preliminary evidence that STARE is 

robust to disease-specific uptake patterns, where we found that STARE performance did 

not significantly vary across HC, AD, and MCI groups, providing initial validation of the 

assumption that STARE can operate on any TACs/brain regions with irreversible kinetics.

STARE was applied here with six ROIs that we have considered in previous work with 

the same dataset (Roccia, 2019); however, any region can potentially be quantified with 

STARE, with the caveat that, as the number of ROIs increases, the dimensionality of 

the free parameter space also increases (three free parameters per ROI). Running STARE 

with different numbers of ROIs, and with different ROIs from the original six, produced 

comparable STARE Ki performance relative to blood-based 2TCirr estimation. The results 

of these analyses compared to estimation of Ki with AIF-based 2TCirr are as follows: (1) 

random subsets of the original six ROIs used in STARE, including using five, four, and three 

of the original ROIs (regression slope = 0.68 to 0.82 and r = 0.62 to 0.73 across ROIs), (2) 

using three original with three new ROIs (regression slope = 0.83 to 0.95 and r = 0.68 to 

0.75 across ROIs), and (3) using six new ROIs (regression slope = 0.86 to 1.07 and r = 0.72 

to 0.88 across ROIs).

In our assessment, our proposed strategy of having the source region rotate among the ROI 

set is favorable with [18F]FDG in brain tissue as applied, for example, to psychiatric or 

neurodegenerative disorders, where each region of the brain shows relatively similar kinetics 

and no source region seems to outperform the other. For other tracers or in other conditions 

(e.g., tumor uptake), one region may outperform another as a source, or there may be a priori 
reasons for selecting a specific region as the source, in which case, the rotation step can 

be avoided. Additionally, a weighting scheme could be optimized that weights Ki estimates 

from particular source rotations more heavily, if there is a specific rationale for it, rather than 

using the unweighted average approach proposed here.

This is the first presentation of STARE; therefore, there are limitations to the conclusions 

we can draw, as well as many potential future directions of this work. In this [18F]FDG 

dataset, λ, which balances the relative contributions of goodness of fit and anchoring 

terms in Eq. (5), was set arbitrarily to 1. The magnitude of the anchoring term relative 

to the goodness of fit term, i.e., the relative influence of the anchoring term, will change 

depending on TAC radioactivity units and thus, the choice of λ should be optimized and set 

accordingly. In future studies, we propose to assess the influence of λ and optimize it during 

application of STARE to new [18F]FDG scans acquired with two different types of scanners 
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(CerePET from Brain Biosciences, Inc, Rockville, MD, USA and Siemens Biograph mCT 

from Siemens Healthineers, Knoxville, TN, USA) as part of grant R01EB026481 (PI: 

Francesca Zanderigo, PhD). Future work with different tracers will also help optimize the 

choice of λ. Also in the current implementation, defining ROIs requires a T1-weighted 

magnetic resonance imaging (MRI) scan. Future work can examine the use of clustering 

techniques to identify ROIs based only on the PET data. Further, in this first implementation 

we did not partial volume correct the source and target regions. Future work should 

explore the influence of partial volume effects on STARE performance, especially in 

the context of neurodegenerative disorders. Simulated annealing was selected here as the 

optimizer. However, simulated annealing is time consuming, taking ~20 min total for 

optimization across the six parallelized source rotations. A more computationally efficient 

implementation may allow STARE to be extended to voxel-level estimation and involves 

developing adaptations that are robust in the face of the higher noise level present at the 

voxel-level. This extension of STARE’s application is part of our planned future work.

In this initial validation, all scans were obtained on the same PET scanner and thus, 

validation will be required to assess STARE’s generalizability to other scanners and 

tracers. In simulations, STARE anchoring was robust to deviations in the signal within 

the vasculature cluster, but can be hindered by large inaccuracies in the mean signal within 

the vasculature cluster. For this reason, the two-stage k-means extraction process is critical, 

because it allows for automatic cluster number selection based on the kinetics and noise 

present within that particular scan. However, in the PVC step, the user must supply the 

FWHM of the point spread function for the specific scanner and reconstruction approach. It 

is essential that this value is selected appropriately, as grossly altering the AUC of the mean 

signal in the vasculature cluster, could begin to effect STARE performance. As detailed in 

the STARE manual, the user additionally has the opportunity for quality control and manual 

intervention of the vasculature cluster generation portion of STARE, where the remainder of 

STARE can proceed from a different vasculature cluster that is selected.

Although not used for this purpose in STARE, the novel vasculature clustering technique 

could be used to generate an unscaled IDIF. This approach will require optimization 

(particularly for the PVC step), and validation with external datasets. In this initial dataset, 

the Ki estimates obtained by extracting an unscaled, non-bootstrapped average curve from 

the vasculature cluster, have poorer correspondence to AIF-based Ki estimates than STARE-

estimated Ki (Supplemental Materials). Furthermore, Ki,vasc estimates (i.e., the peak of the 

probability density function of the bootstrapped Ki estimates used for anchoring in Eq. (5)) 

are slightly more biased than final STARE-estimated Ki values. We do not expect Ki,vasc 

or an unscaled, non-bootstrapped curve from the vasculature cluster to perform as well in 

external datasets, where direct effects of scanner FOV, spatial resolution, smoothing during 

reconstruction, motion, etc., have yet to be investigated. However, the simulations conducted 

here suggest that the STARE algorithm as a whole will be robust to deviations in the 

accuracy of the anchoring procedure, which we will evaluate in ongoing studies.
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5. Conclusions

STARE - Source-to-Target Automatic Rotating Estimation – is a novel approach for 

automated, blood-free quantification of the net influx rate (Ki) of PET radiotracers with 

irreversible kinetics, that relies solely on the individual’s dynamic PET data. Letting each 

of the brain regions for which quantification is desired to act, in turn, as a common 

“source” brain region for all other “target” regions, allows STARE to gain strength by 

exploiting the information in multiple regions at once with the goal of accurate and precise 

estimation of Ki across all regions. STARE is “anchored” for subject-specific identifiability 

using information derived from a novel vasculature cluster extraction and bootstrapping 

procedure. We validated STARE with a set of human [18F]FDG scans, finding stable 

estimation of Ki values that were correlated with “gold-standard” AIF-based estimates. 

STARE performance was also similar across diagnostic groups. In simulations, Ki estimates 

were largely robust to characteristics of the vasculature cluster of voxels used for STARE 

anchoring. With more validation, STARE can accelerate use of quantitative PET imaging 

in the clinic by simplifying acquisition, reducing cost, and affording individualized, non-

invasive quantification.
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Appendix –: STARE derivation

The time activity curves (TACs) in any given source region S(CS(t)) and any given target 

region T(CT(t)) can be expressed as a function of the concentration of radiotracer in arterial 

plasma (Cp(t)) according to the two tissue irreversible (2TCirr) compartment model:

CT(t) = K1, T IRFT ⊗ Cp (t) = K1, T PTe−RTt + QT ⊗ Cp (t)

CS(t) = K1, S IRFS ⊗ Cp (t) = K1, S PSe−RSt + QS ⊗ Cp (t)
(A.1)

where:
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PT = k2, T
k2, T + k3, T

QT = k3, T
k2, T + k3, T

RT = k2, T + k3, T

PS = k2, S
k2, S + k3, S

QS = k3, S
k2, S + k3, S

RS = k2, S + k3, S

(A.2)

where t is the vector of PET frame time-points, K1,S, k2,S, and k3,S are the 2TCirr micro-

parameters for the source region S, K1,T, k2,T, and k3,T are the 2TCirr micro-parameters for 

the target region T, and IRF is the impulse response function in each region.

Transforming the system of equations in Eq. (A.1) into Laplace domain, we obtain:

ℒ CT (s) = K1, Tℒ Cp (s)ℒ IRFT (s) = K1, Tℒ Cp (s) PT
s + RT

+ QT
s

ℒ CS (s) = K1, Sℒ Cp (s)ℒ IRFS (s) = K1, Sℒ Cp (s) PS
s + RS

+ QS
s

(A.3)

By solving for Cp(s) in the second equation in the Eq. (A.3) system and substituting it into 

Eq. (A.1), we obtain:

ℒ CT (s) = K1, T
K1, S

ℒ CS (s)ℒ IRFT (s)
ℒ IRFS (s) (A.4)

ℒ IRFT (s)
ℒ IRFS (s)  can be expressed as follows:

ℒ IRFT (s)
ℒ IRFS (s) =

PT
s + RT

+ QT
s

PS
s + RS

+ QS
s

= sPT + sQT + QTRT
s + RT

s + RS
sPS + sQS + QSRS

= s PT + QT + QTRT
s + RT

s + RS
s PS + QS + QSRS

= s2 PT + QT + sQTRT + sRS PT + QT + QTRTRS
s2 PS + QS + sQSRS + sRT PS + QS + QSRTRS

(A.5)

where:

PT + QT = k2, T
k2, T + k3, T

+ k3, T
k2, T + k3, T

= 1 (A.6)

and

PS + QS = k2, S
k2, S + k3, S

+ k3, S
k2, S + k3, S

= 1 (A.7)

Therefore, simplifying further, this yields:
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ℒ IRFT (s)
ℒ IRFS (s) = PT + QT

PS + QS

s2 + s QTRT
PT + QT

+ sRS + QTRTRS
PT + QT

s2 + s QSRS
PS + QS

+ sRT + QSRTRS
PS + QS

= s2 + sQTRT + sRS + QTRTRS
s2 + sQSRS + sRT + QSRTRS

(A.8)

By defining the following system of Equations:

αT , S = QTRT
PT + QT

+ RS − QSRS
PS + QS

− RT = QTRT + RS − QSRS − RT

βT , S = QTRTRS
PT + QT

− QSRTRS
PS + QS

= QTRTRS − QSRTRS

γT , S = QSRS
PS + QS

+ RT = QSRS + RT

ωT , S = QSRTRS
PS + QS

= QSRTRS

(A.9)

Eq. (A.8) can be expressed as:

ℒ IRFT (s)
ℒ IRFS (s) = 1 + sαT , S + βT , S

s2 + γT , Ss + ωT , S
= 1 + sαT , S + βT , S

s − vT , S s − εT , S

= 1 + LT , S
s − vT , S

+ MT , S
s − εT , S

(A.10)

with:

vT , S = −γT , S + γT , S2 − 4ωT , S
2

εT , S =
−γT , S − γT , S2 − 4ωT , S

2

(A.11)

and:

LT , S = αT , S − βT , S + αT , SεT , S
εT , S − vT , S

MT , S = βT , S + αT , SεT , S
εT , S − vT , S

(A.12)

And expressed as a function of the 2TCirr micro-parameters:
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LT , S = k3, Tk2, S − k2, Sk3, S
k2, T + k3, T − k3, S

MT , S = k2, T
2 + k2, Tk3, T − k2, Tk2, S − k2, Tk3, S

k2, T + k3, T − k3, S

(A.13)

By applying the inverse Laplace transform to Eq. (A.10), we obtain a function, ZT,S(t), in the 

time domain as:

ZT , S(t) = ℒ−1 ℒ IRFT (s)
ℒ IRFS (s) = δ(t) + LT , SevT , St + MT , SeεT , St

(A.14)

where δ(t) is the Dirac delta function.

By applying the inverse Laplace transform to Eq. (A.4), and considering Eq. (A.14), we can 

express the TAC in each target region (C(t)) as a function of the TAC in the source region 

(C(t)) and of six free parameters: three for the source region, which are in common across all 

target regions (K1,S, k2,S, k3,S) and three for each target region (K1,T, k2,T, k3,T):

CT(t) = K1, T
K1, S

ZT , S ⊗ CS (t)

= K1, T
K1, S

CS(t) + K1, T
K1, S

CS(t) ⊗ LT , SevT , St + MT , SeεT , St

= f t; K1, T , K1, T , k2, T , k2, S, k3, S, k3, S

(A.15)
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Fig. 1. 
Graphical representation showing the theoretical framework and implementation of STARE.
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Fig. 2. 
Blood-free STARE Ki vs. Ki obtained via arterial blood-based two-tissue irreversible 

(2TCirr) compartmental modeling in 69 human [18F]FDG scans. In both (A) & (B): Each 

color corresponds to a single scan, where Ki is quantified for six regions (cerebellum, 

cingulate cortex, hippocampus, parahippocampal gyrus, parietal cortex, and prefrontal 

cortex). (A) Scatter plot, with linear regression slope (b), y-intercept, and Pearson’s 

correlation coefficient (r) reported across all scans and regions. (B) Bland-Altman plot with 

the mean Ki difference (i.e., overall bias) shown in blue and the 95% confidence interval 

for the mean difference estimate shown in light gray. Limits of agreement (95% confidence 

intervals of mean difference) are shown in orange.
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Fig. 3. 
Effect of vascular correction on STARE estimates of Ki. In both (A) & (B): Each color 

corresponds to a single scan, where Ki is quantified for six regions (cerebellum, cingulate 

cortex, hippocampus, parahippocampal gyrus, parietal cortex, and prefrontal cortex). Linear 

regression slopes (b), y-intercepts, and Pearson’s correlation coefficients (r) are shown. (A) 

STARE Ki estimates with VB = 0% (no vascular correction, y-axis) relative to AIF-based 

2TCirr Ki estimates with VB = 5% (x-axis) and (B) STARE Ki estimates with VB = 5% 

(within STARE vascular correction, y-axis) relative to AIF-based 2TCirr Ki estimates with 

VB = 5% (x-axis).
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Fig. 4. 
Simulation results for STARE. The data from a single, representative scan were used to build 

all simulations in (A) and (B). Simulations A.1 through A.3 alter scaling (area under the 

curve (AUC) and shape characteristics of the signal in the vasculature cluster (i.e. the mean 

of voxel radioactivities in the vasculature cluster, μvasc(t))), whereas Simulation B alters the 

standard deviation of the radioactivity of voxels within the vasculature cluster (σvasc(t)). 

These properties are used in the generation of the STARE anchors. The left columns of (A) 

and (B) use the same metric on the y-axes to assess the difference between the original and 

simulated μvasc(t) or σvasc(t) curves, which sums the difference between the curves across 

all time-points. The x-axes of the left columns of (A) and (B) are the percent difference in 

STARE-estimated Ki between that simulation iteration and the original result. If necessary, 

a center column is shown as a zoomed-in inset of the left column. The right columns of (A) 

and (B) show the simulated curves (with the original curves shown in black)). Within each 
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simulation (across rows), the colors (on a yellow-to-blue scale) are consistent from left to 

right.
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