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Abstract
Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine ki-

nase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP muta-

tion induces multiple abnormalities in oogenesis, including the growth arrest of ring canals,

large intercellular bridges that allow the flow of cytoplasm carrying maternal products essen-

tial for embryonic development from the nurse cells to the oocyte during oogenesis. In this

study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A

accumulation on ring canals with a concomitant increase in the ring canal diameter, counter-

acting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phos-

photyrosine on ring canals and in the regions of cell-cell contact, where adhesion-

supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are locat-

ed. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates

Arm, leading to its release from DE-cadherin. In the present experiments, immunohistologi-

cal analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was di-

minished in Btk29AficPmutant ring canals. Overexpression of an Arm mutant with

unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phos-

phorylation is necessary for the normal growth of ring canals. We suggest that the dissocia-

tion of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize,

leading to ring canal expansion and cell shape changes during the course of oogenesis.

Introduction
Bruton’s tyrosine kinase (Btk) is a member of the Tec non-receptor tyrosine kinase family,
which also includes Itk, Bmx, Tec, and Txk [1, 2]. Mutations in the Btk gene manifest as a se-
vere immunodeficiency syndrome known as X-linked agammaglobulinemia (XLA) in humans
and X-linked immunodeficiency (Xid) in mice [3]. Mammalian Btk is predominantly express-
ed in the B-cell lineage, at low levels in mature B lymphocytes and at higher levels in marrow-
derived hematopoietic stem cells, common lymphoid progenitor cells and developing B cells.
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Indeed, Btk is involved in B-cell maturation [4, 5] and osteoclast differentiation [6, 7], as in-
ferred from its expression profile. Differentiation of the B-cell lineage from hematopoietic stem
cells to cells of the most mature stage, the plasma cells, consists of several discrete steps.
Among these, the transition of pro-B cells into pre-B cells and the subsequent transition of pre-
B cells into B lymphocytes are primarily blocked in XLA. However, the exact mechanism by
which Btk mediates B-cell differentiation remains largely unknown [4, 8].

In Drosophila, the Tec kinase family is represented by the products of a single gene, Btk29A
[9], conveniently simplifying the analysis of genotype-phenotype associations. The Btk29A
gene produces two types of transcripts, type 1 and type 2. The type 2 product is considered to
be the ortholog of mammalian Btk, since it possesses all functional domains common to mam-
malian Btk, i.e., the PH, TH, SH3, SH2 and kinase domains [9]. The type 1 product, in contrast,
lacks the entire PH domain and part of the TH domain, and instead has a short stretch of a
unique sequence [9]. The mutations in the Btk29A locus lead to developmental defects in a
wide variety of tissues, such as failures in blastoderm cellularization [10], invagination of sali-
vary gland placodes [11], dorsal closure [12], male genital formation [9, 13] and oogenesis
[14–17]. Although the tissues affected by Btk29Amutations are spectacularly divergent, most,
if not all, of these phenotypes appear to result from a deficit in actin organization [10, 11, 14].

To elucidate how Btk29A regulates the morphogenesis of actin-based structures, we focused
our attention on the growth of ring canals, the actin-rich intercellular pores connecting 16 sib-
ling germ cells, i.e., 15 nurse cells and an oocyte [18]. Maternal products, including the mor-
phogens governing the formation of embryonic body axes, are transferred from nurse cells to
the oocyte across the ring canals; the malfunction of these canals could thus lead to serious im-
pairments in early embryogenesis [18, 19].

All germ cells are produced by germ stem cells (GSCs) in the germarium, which is subdi-
vided into Regions 1–3 (Region 3 corresponds to the stage 1 egg chamber; see below and
Fig. 1A). A GSC divides asymmetrically to generate a GSC and a cystoblast (CB). A CB under-
goes 4 rounds of symmetrical divisions, resulting in incomplete cytokinesis and producing a
cyst composed of 16 connected cells. 15 cells in the cyst become nurse cells and the remaining
posterior cell takes on the oocyte fate. Ring canals are derivatives of the arrested contractile
rings resulting from incomplete cytokinesis, in which a contractile ring does not close so that
two sib-cells remain connected with a canal. Thus the first ring canal emerges at the first divi-
sion of the CB in Region 1 of the germarium (Fig. 1A), and two subsequent divisions also take
place and produce corresponding ring canals. Other additional ring canals are the products of
further incomplete cytokineses which occur in Region 2a and Region 2b (Fig. 1A). In Region
2b, the cyst changes shape and becomes a one cell-thick disc that spans the whole width of the
germanium. A cyst in Region 2b continues to develop into a stage 1 egg chamber encapsulated
by the follicular layer (Fig. 1A). The egg chamber matures through stages 1–12 (Figs. 1A, 1C
and 1E for stages 1–9). Ring canals are therefore composed of molecules constituting contrac-
tile rings, the primary component of which is actin.

Previous studies demonstrated that phosphotyrosine is accumulated on the ring canals in a
Btk29A- and src64-dependent manner, and that the loss of Btk29A leads to a marked reduction
in the ring canal size [15, 17]. Although phosphorylated Kelch, an actin-filament cross-linking
protein [20], partly contributes to accumulated phosphotyrosine on the ring canal, the absence
of Kelch has little effect on the early phase of ring canal growth [21]. In contrast, the loss of
Btk29A induces growth arrest at the early stage of ring canal development [15]. In an effort to
decipher the molecular mechanism whereby Btk29A regulates oogenesis, we have identified
Armadillo (Arm), the Drosophila ortholog of β-catenin, as a unique in vitro and in vivo sub-
strate for Btk29A [22]. Here we show that two conserved tyrosine residues of Arm, Arm Y150
and Arm Y667, are strongly phosphorylated by Btk29A in ring canals. We postulate that
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Btk29A-induced tyrosine phosphorylation facilitates the dissociation of Arm from adherens
junctions, thereby altering the actin organization of ring canals, presumably by modulating the
activity of actin-binding proteins. We further show that Parcas (Pcs), the fly ortholog of Sab
that was identified as a negative regulator of Btk in mammals, counteracts the Btk29A action in
ring canals, representing a conserved regulatory mechanism for Btk29A.

Materials and Methods

Flies
Flies were raised on cornmeal-agar-yeast media at 25°C. Canton-Special (CS) was used as a
control strain. The Btk29AficP allele was isolated in one of our laboratories [9]. Other fly lines
were obtained from the Bloomington Stock Center, Drosophila Genetic Resource Center
(Kyoto, Japan) and Viena Drosophila RNAi Center.

Fig 1. Ovarian phenotypes ofBtk29AficPmutants. (A andB) Germaria and early egg chambers of the wild type (A) and Btk29AficP (B) stained for
phalloidin. In the wild type, Region 2b is bordered posteriorly by elongated follicle cells; in Btk29AficPmutants, these cells are interspersed with germ cells
having a round appearance, reflecting a wrapping defect. The number of germ cells present in a germarium is variable and the overall shape of the
germarium is distorted in Btk29AficPmutants, compared with that of the wild type. At stage 1, a wild-type egg chamber is always oval in shape and invariably
contains 16 germ cells. (C andD) Stage 3—stage 8 egg chambers of wild-type (C) and Btk29AficP mutant (D) ovaries. (E and F) Stage 9 mature egg
chambers of wild-type (E) and Btk29AficP (F) ovaries. Scale bars: 10 μm for (A-D) and 50 μm for (E and F).

doi:10.1371/journal.pone.0121484.g001
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Histology
For antibody staining, ovaries were dissected in PBS and immersed in 4% paraformaldehyde
in PBS for 30 min. The ovaries were washed three times in PBT, blocked for 1.5 hr in PBS
supplemented with 1% Triton and 0.1% BSA, and then incubated with a primary antibody
for 3 hrs at room temperature or at 4°C overnight. The primary antibodies used in this study
were anti-Btk29A (1:10) [14], anti-Arm (1:10; Developmental Studies Hybridoma Bank),
anti-phosphotyrosine 4G10 (1:250; Upstate Biotechnology), anti-pY142 (1:200; ECM Biosci-
ences) and anti-pY654 (1:200; Invitrogen). The fluorescence-conjugated secondary antibod-
ies were purchased from Molecular Probes and used at a 1:250 dilution. Texas Red-X
phalloidin was purchased from Molecular Probes and used at a 1:50 dilution. All samples
were mounted in 80% glycerol. Images were obtained with a Zeiss LSM 510 META confocal
microscope using Zeiss LSM Image Browser and processed with Adobe Photoshop software.
We measured the longest distance across the lumina of a ring canal to define its diameter
using Adbe Photoshop software. Statistical treatments of data were carried out with Micro-
soft Exel Analysis Toolpak.

Results

Btk29A is Required for Ring Canal Growth
It has been reported that germline clones for strong mutant alleles in the Btk29A locus display
several distinct phenotypes, such as ring canal undergrowth [15, 17], fusome distortion [14], de-
fects in karyosome formation [14], packaging defects [14], aberrant border cell migration (N.
Hamada-Kawaguchi, unpublished data) and oocyte mislocalization [15]. In keeping with these
observations, Btk29AficPmutant ovaries, expressing only the short type 1 splice form of Btk29A,
were grossly aberrant as a result of the irregular shapes and sizes of germ cells and follicle cells
(Figs. 1B, 1D and 1F). Moreover, the Btk29AficP egg chambers were equipped with ring canals
that were much smaller than those of the wild type (Figs. 2A, 2B, 2E and 2F): mature wild-type
egg chambers have ring canals of 8–10 μm in diameter (Fig. 2I), whereas those of Btk29AficP

were about 3–5 μm in diameter (Fig. 2I), as reported for other Btk29A alleles that affect both
type 1 and type 2 products ([15, 17] and N. Hamada-Kawaguchi, unpublished data). It is nota-
ble that the lumina of mutant ring canals appeared to be very narrow in Btk29AficP mutants,
compared to the wild type (Figs. 3M and 3N).

The pcs gene encodes a Drosophila homolog of Sab (an SH3 domain-binding protein associ-
ated preferentially with Btk; [23, 24], which is a negative regulator of Btk in mammals [25].
The average diameter of ring canals differed significantly among the wild type, Btk29AficP ho-
mozygotes, and pcsgs homozygotes (Fig. 2I). The egg chambers null for pcs (pcsgs; [24]) had ex-
tremely large ring canals (Figs. 2C, 2G and 2I), while Btk29AficP pcsgs double-mutant females
developed ring canals that were only slightly smaller (p<0.05 in the Student’s t-test) than the
wild-type ones (Figs. 2D, 2H and 2I). These observations reinforce the hypothesis that Btk29A
plays a pivotal role in ring canal development.

Btk29A Regulates Arm Subcellular Localization
To evaluate the importance of kinase activity in the developmental role of Btk29A, wild-type
and Btk29AficP-mutant egg chambers were subjected to immunostaining with anti-Btk29A
and anti-phosphotyrosine antibodies (Figs. 3C, 3D, 3G and 3H). We found that anti-Btk29A-
reactive materials (Figs. 3A, 3B, 3E and 3F) and anti-phosphotyrosine antibody-reactive mate-
rials (Figs. 3C, 3D, 3G and 3H) were both enriched in ring canals as well as cell borders in wild-
type egg chambers. Indeed, anti-phosphotyrosine staining in all these regions decreased
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Fig 2. Ring canal growth is arrested in Btk29AficP mutants. (A—D) Anti-phosphotyrosine 4G10 antibody
staining highlights the ring canals of mature egg chambers from the wild type (A), Btk29AficP (B), pcsgs (C)
and Btk29AficP pcsgs (D). Scale bars: 50 μm. (E—H) Lateral views of representative ring canals in the stage 9
egg chambers of the wild type (E), Btk29AficP (F), pcsgs (G) and Btk29AficP pcsgs (H) after staining with the
anti-phosphotyrosine antibody. Scale bars: 10 μm. (I) Quantitative comparisons of the ring canal diameter
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dramatically in Btk29AficP-mutant egg chambers (Figs. 3G and 3H). Unlike in the previous re-
port on Btk29Ak05610 [15], residual anti-phosphotyrosine staining was observed, possibly due
to type 1 activities remaining in Btk29AficP. The regions accumulating phosphotyrosine in egg
chambers seem to match the known distribution of adherens junctions [26], through which the
DE-cadherin-β-catenin complex communicates with the cytoskeletal actin network. However,
immunohistochemical examination revealed that the localization and abundance of DE-cad-
herin were marginally affected by the Btk29AficP mutation (data not shown). In contrast, stain-
ing for Arm, an important signaling component of the DE-cadherin complex, was remarkably
more intense around the ring canals and cellular junctions of Btk29AficP-mutant egg chambers
(Figs. 3I - 3N). This observation strongly suggests that Btk29A might control morphogenetic
events by phosphorylating a specific component of the DE-cadherin complex. An obvious can-
didate for the Btk29A substrate is Arm, which has been shown to be a direct phosphorylation
target of Btk29A in ovaries [22].

Btk29A Phosphorylates Arm In Vivo
To determine whether Arm associated with ring canals is phosphorylated by Btk29A in devel-
oping oocytes, we employed the anti-pY142 and anti-pY654 antibodies raised against mamma-
lian β-catenin for the detection of phosphorylated Drosophila Arm, based on the fact that the
sequences around the potential phosphorylation sites are identical between β-catenin and Arm
and thus are recognized by the same antibodies [22].

In wild-type ovaries, strikingly intense immunoreactivity to the anti-pY142 antibody was
observed in a single ring canal in Region 2b (not shown) and the stage-1 egg chamber (Fig. 4A
and 4B). Subsequently, other ring canals became progressively positive to the anti-pY142 anti-
body (Figs. 4C and 4D), until ultimately all ring canals were intensely stained by the antibody.
The ring canal that first became immunopositive to the anti-pY142 antibody had a larger diam-
eter than other ring canals, indicating that it is associated with the oocyte membrane [27]. The
anti-pY654 antibody labeled ring canals in a pattern similar to that of the anti-pY142 antibody
(Figs. 4I - 4L). Moreover, the immunoreactivity to the anti-pY142 and anti-Yp654 antibodies
of cellular boundaries was less intense than that of ring canals (Figs. 4A-4D and 4I-4L). In con-
trast, the intensity of staining by the anti-phosphotyrosine antibody 4G10, which reflects the
overall phosphorylation status to which other tyrosine kinases also contribute [28], was similar
in cellular boundaries and ring canals (Figs. 3A-3H), revealing the specificity in the localization
of phosphorylated Arm. Importantly, the intensity of staining for phosphorylated Arm was
dramatically reduced in Btk29AficP mutant egg chambers (Figs. 4E - 4H and 4M - 4P). Notably,
the immunoreactivity of ring canals to anti-pY142 and anti-pY654 antibodies in pcsmutants
appeared earlier than in the wild type; all ring canals in pcsmutants were intensely stained with
these antibodies in stage 1 egg chambers, where only the largest ring canal was immunopositive
in the wild type (Figs. 5A, B, D and E). Furthermore, the staining intensity of ring canals by an
anti-Btk29A antibody was remarkably stronger in pcs than wild-type ovaries (Figs. 5C and 5F).
These observations strengthen the hypothesis that two tyrosine residues of Arm, Y150 and
Y667, are phosphorylated by Btk29A at the early stage of ring canal growth, and Pcs negatively
regulates this Btk29A function. Although it has been reported that the mammalian Pcs

among different genotypes: wild type (n = 143), Btk29AficP (n = 339), pcsgs (n = 282), and Btk29AficP pcsgs

(n = 40). The diameters of individual ring canals at stage 9 were normalized by the A/P (long) axis of each egg
chamber, and the values relative to those of the wild-type control (the means ± standard errors in %) are
shown for the respective genotypes. Statistical differences between the indicated pairs were evaluated by
Student’s t-test (**p<0.01).

doi:10.1371/journal.pone.0121484.g002
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Fig 3. Effect of the Btk29AficP mutation on the localization of Btk29A, Arm and phosphotyrosine. The
panels show the stage 2 (A, B, E and F) and the stage 1 (C, D, G andH) egg chambers from wild-type (A—D)
and Btk29AficP mutant (E—H) ovaries doubly stained with phalloidin for actin (red inA, C, E andG) and the
anti-Btk29A antibody (green inA and E) or the anti-phosphotyrosine antibody (green in C andG). The images
of antibody staining are also shown in black and white in (B), (D), (F) and (H) to aid in comparisons of the
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localization and abundance of Btk29A or phosphotyrosine between the wild-type and Btk29AficP mutant egg
chambers. Btk29A is highly enriched around ring canals and cell-cell contact regions in the wild-type
chambers, whereas it is barely detectable in the Btk29AficP mutant chambers. (I—N) Arm (green) is localized
along the cell-cell contact regions and ring canals in the wild-type (I) and Btk29AficP mutant (K) germaria.
Actin is visualized by phalloidin staining (red). The entire stage 1 (J and L) and close-up views of ring canals
in stage 1 (M andN) of the wild-type (J andM) and Btk29AficP mutant (L andN) germaria are shown. Some of
the ring canals are marked with arrowheads in (A—L). Note the marked accumulations of Arm in the regions
surrounding the ring canals in Btk29AficP mutants. Scale bars: 10 μm.

doi:10.1371/journal.pone.0121484.g003

Fig 4. Btk29A-dependent tyrosine phosphorylation of Arm associated with ring canals. Staining with the anti-pY142 (A—H) or anti-pY654 (I—P)
antibody highlights the ring canals of wild-type egg chambers at stage 1 (A, B, E, F and I, J, M, N) and at stage 3 (C, D, G, H andK, L, O, P). In the Region 2b
germarium and stage 1 egg chamber, a single ring canal is stained by the anti-pY142 or anti-pY654 antibody (A, B, I and J). At later stages, additional ring
canals of wild-type egg chambers become positive for the anti-pY142 (C andD) and anti-pY654 (K and L) antibodies (stage 3 egg chambers are shown).
Note that β-catenin Y142 and Y654 are equivalent to Arm Y150 and Y667, respectively. In Btk29AficPmutants, immunoreactivity to the anti-pY142 (E, F,G
andH) and anti-pY654 (M, N,O and P) antibodies is almost completely absent. Some of the ring canals are marked with arrowheads in (A)–(P). Scale bars:
10 μm. The stage 1 and 3 egg chambers were doubly stained with phalloidin for actin (red) and the anti-pY142 antibody (green, A, C, E andG) or the anti-
pY654 antibody (green, I, K,M andO). Images of staining with the anti-pY142 antibody (B, D, F andH) or the anti-pY654 antibody (J, L, N and P) are also
shown in black and white to aid in comparisons between the wild-type and Btk29AficP egg chambers. Scale bars: 10 μm.

doi:10.1371/journal.pone.0121484.g004
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ortholog Sab inhibits the catalytic activity of Btk [25], our result implies that Pcs might act as a
negative regulator of Btk29A by a distinct mechanism—for example, by promoting
Btk29A degradation.

Impaired Arm (β-catenin) Phosphorylation Impedes Ring Canal Growth
To explore roles of Arm phosphorylation in ring canal growth, we overexpressed the unpho-
sphorylatable and phosphomimetic forms of Arm in germ cells as driven by nos-GAL4. Since
ring canals grow rapidly while dynamically changing their orientation, accurate staging of
germ cell development and complete reconstitution of the three-dimensional structure are crit-
ical for a precise estimate of their diameters. The effects of overexpression of Arm variants
could be more subtle than those induced by mutations in the genome. We therefore decided to
measure the ring canal diameter at stage 1, as this stage is unequivocally determined by the
completion of follicular encapsulation, which is immediately preceded by the formation of a
one cell-thick disc of germ cells that spans the whole width of the germanium. Overexpression
of Y150F+Y667F, in which both of the tyrosine residues of Arm were replaced with unpho-
sphorylatable phenylalanine, led to a significant reduction of the diameter of ring canals com-
pared with that of the wild type (Figs. 5G and 5L). Overexpression of Y150F, in which only

Fig 5. Effects of the pcsmutation and arm-variant overexpression on ring canal development. (A—F) Stage 1-egg chambers were stained with
antibodies against pY142 (A andD), pY654 (B and E) or Btk29A (C and F) in the wild-type (WT;A—C) and pcsgsmutant (D—F) ovaries. (G—K) Effects of
overexpression of Y150F+Y667F (G), Y150F (H), Y667F (I), Y150E+Y667E (J), or arm+ (K) on ring canal growth. Scale bars: 10 μm. (L) Quantitative
comparisons of the ring canal diameter at stage 1 among different genotypes: wild type (n = 208), Y150F+Y667F (n = 166), Y150F (n = 181), Y667F
(n = 160), Y150E+Y667E (n = 255), and arm+ (n = 127). The means ± standard errors of ring canal diameters (in μm) at stage 1 are shown for the respective
genotypes. The numbers of ring canals examined are shown in parentheses. Statistical differences between the indicated pairs were evaluated by Student’s
t-test (**p<0.01; n.s., nonsignificant).

doi:10.1371/journal.pone.0121484.g005
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Y150 was made unphosphorylatable while Y667 remained intact, was similarly effective in re-
ducing the ring canal diameter, whereas Y667F overexpression was without significant effect
(Figs. 5H, 5I and 5L), indicating that tyrosine phosphorylation at Y150, rather than Y667, is
critical for normal ring canal growth. Interestingly, overexpression of the phosphonomimetic
variant Y150E+Y667E neither increased nor decreased the ring canal diameter significantly
(Figs. 5J and 5L). These results seem to suggest that Y150 phosphorylation is necessary but not
sufficient for normal ring canal growth, which tolerates wide variations in the amount of Arm
in a cell.

Discussion
We present evidence that phosphorylation of Arm Y150 and Arm Y667 by Btk29A is a critical
step in the growth of ring canals, which mediate the transport of maternal materials required
for embryogenesis after the fertilization of oocytes. First, the Btk29AficP mutation arrests ring
canal growth before stage 5 (Fig. 1 and [29]). Second, Btk29A and Btk phosphorylate, in vivo,
tyrosine residues of Arm and β-catenin, respectively [22]. Third, the antibody that specifically
recognizes Y142- or Y654-phosphorylated β-catenin strongly labels Arm pY150 or pY667 asso-
ciated with ring canals in a Btk29A-dependent manner (Fig. 4). Fourth, the level of phosphory-
lation at Arm Y150 and Arm Y667 in ovarian lysates dramatically decreases in Btk29AficP

mutants [22]. Fifth, overexpression of Arm mutants devoid of phosphorylation at Y150 inhib-
ited the growth of ring canals (Fig. 5H). We have also demonstrated that Pcs is an important
negative regulator of Btk29A: loss of Pcs stimulated accumulation of Btk29A on ring canals, re-
sulting in the induction of premature tyrosine phosphorylation of Arm and the enlargement of
ring canals (Figs. 5A-5F). Although loss of the Btk29A inhibitor Pcs was sufficient for inducing
ring canal overgrowth, overexpression of a putative phosphomimetic form of Arm was unable
to produce a similar effect. This might suggest the involvement of unknown substrates of
Btk29A other than Arm in the regulation of ring canal growth.

In mammalian cultured cells, the impact of tyrosine phosphorylation of β-catenin on its
transcriptional activity and cell adhesion has been documented [30]. For example, an increase
in the tyrosine phosphorylation of β-catenin by v-Src induces a rapid loosening of cell-cell con-
tact and promotes invasiveness [31]. Treatment of cells with a tyrosine-phosphatase inhibitor
leads to the redistribution of β-catenin from cellular junctions to cytoplasm or the nucleus
[31].

A computer-aided search for the consensus phosphorylation sites for Btk and related ki-
nases revealed two primary candidate residues in Arm: Y150 and Y667, which correspond to
Y142 and Y654 in mammalian β-catenin, respectively [32]. An additional residue that could be
phosphorylated in human β-catenin is Y86, which is not conserved in Arm. We previously
showed that Btk29A and Btk phosphorylate at least two tyrosine residues, Y150 and Y667 in
Arm, and Y142 and Y654 in mammalian β-catenin, respectively [22]. Y142 phosphorylation
was shown to be important in allowing β-catenin to bind to α-catenin [30], which regulates
the mobility of the DE-cadherin-β-catenin complex [33]. The phosphorylation of Y142 in β-
catenin was reported to be critical for binding to the transcriptional cofactor, BCL9-2 [34], a
human paralog of which is mutated in B-cell lymphoma, although this finding has not been
successfully reproduced [35]. On the other hand, Y654 is placed in a domain for binding to the
basal transcription factor TATA-binding protein (TBP) [36].

Ring canals are derivatives of arrested meitotic cleavage furrows and thus contain abundant
F-actin. They also contain mucin-like glycoprotein [37], the Adductin homolog Hu-li tai shao
(Hts) [38], cortactin [39], ABP280/filamin [40, 41], Kelch [21] and Src64 and Btk29A tyrosine
kinases [17, 29]. Cortactin, ABP280/filamin and Kelch are F-actin-binding proteins, while Hts
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regulates the subcellular localization of F-actin. In fact, F-actin is the core component of ring
canals. For ring canal growth, actin filaments seem to be polymerized at the plasma membrane
to expand the ring canal rim and are disassembled at the cytoplasmic face to maintain the
lumen [20]. The Arp2/3 complex is suggested to function in the polymerization of actin fila-
ments at the ring canal plasma membrane to drive ring canal growth [42]. Interestingly, Godt
and Tepass [26] have shown that the DE-cadherin complex is accumulated at cell membranes
surrounding the ring canals in germarium Region 2b and the stage 1 follicle. It is also known
that ring canals fail to develop properly in germline clones for armmutations [43]. The E-
cadherin-β-catenin complex is associated with the F-actin network, and this association is
known to be mediated by certain actin-binding proteins. Namely, α-catenin mediates the asso-
ciation of the E-cadherin-β-catenin complex with dynamic F-actin to regulate the mobility of
adhesive junctional foci, while some other mediators are involved in the association of the E-
cadherin-β-catenin complex with stable F-actin [33].

For the rapid growth of ring canals, dynamic F-actin must be polymerized and depolymer-
ized while tethered to the plasma membrane. Btk29A-mediated tyrosine phosphorylation of
Arm seems to represent a novel mechanism regulating this process: dissociation of Arm from
DE-cadherin upon its tyrosine phosphorylation by Btk29A might confer more flexibility on the
association of DE-cadherin/Arm with F-actin, thus making possible the reorganization of F-
actin in ring canals while the DE-cadherin complex is anchored to the appropriate sites on the
germ-cell plasma membrane. On the other hand, Piedra et al. [44] have shown that activated
Fer or Fyn phosphorylates β-catenin at Y142, resulting in the loss of its association with α-cate-
nin. Tyrosine phosphorylation of β-catenin/Arm by Btk/Btk29A could similarly increase free
α-catenin, which, in turn, might suppress Arp2/3-mediated actin polymerization by competing
with Arp2/3 for binding to actin filaments [45].

The release of tyrosine-phosphorylated β-catenin/Arm from adherens junctions increases
the cytoplasmic pool of β-catenin/Arm that is readily available, upon receiving a Wnt signal,
for translocation to the nucleus, where it regulates transcription [22, 30]. It remains to be deter-
mined whether or not any changes in transcription due to Btk29A-mediated tyrosine phos-
phorylation of Arm contribute to ring canal growth.
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