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Abstract

Quantification of sleep is important for the diagnosis of sleep disorders and sleep

research. However, the only widely accepted method to obtain sleep staging is by

visual analysis of polysomnography (PSG), which is expensive and time consuming.

Here, we investigate automated sleep scoring based on a low‐cost, mobile elec-

troencephalogram (EEG) platform consisting of a lightweight EEG amplifier com-

bined with flex‐printed cEEGrid electrodes placed around the ear, which can be

implemented as a fully self‐applicable sleep system. However, cEEGrid signals have

different amplitude characteristics to normal scalp PSG signals, which might be chal-

lenging for visual scoring. Therefore, this study evaluates the potential of automatic

scoring of cEEGrid signals using a machine learning classifier (“random forests”) and

compares its performance with manual scoring of standard PSG. In addition, the

automatic scoring of cEEGrid signals is compared with manual annotation of the

cEEGrid recording and with simultaneous actigraphy. Acceptable recordings were

obtained in 15 healthy volunteers (aged 35 ± 14.3 years) during an extended noc-

turnal sleep opportunity, which induced disrupted sleep with a large inter‐individual
variation in sleep parameters. The results demonstrate that machine‐learning‐based
scoring of around‐the‐ear EEG outperforms actigraphy with respect to sleep onset

and total sleep time assessments. The automated scoring outperforms human scor-

ing of cEEGrid by standard criteria. The accuracy of machine‐learning‐based auto-

mated scoring of cEEGrid sleep recordings compared with manual scoring of

standard PSG was satisfactory. The findings show that cEEGrid recordings combined

with machine‐learning‐based scoring holds promise for large‐scale sleep studies.
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1 | INTRODUCTION

Sleep is important for general health and disruption of sleep has

been associated with poor cognitive performance (Cho, Ennaceur,

Cole, & Suh, 2000), metabolic diseases (Garaulet, Ordovás, & Madrid,

2010), cardiovascular diseases (Knutsson & Bøggild, 2011) and over-

all quality of life. Poor sleep quality has been shown to impact a

variety of conditions, such as stroke (e.g. Bassetti, 2005), diabetes,

Alzheimer and mental health (e.g. Carr et al., 2018). Therefore, the

ability to accurately monitor sleep patterns in the wider population

and in the home environment becomes increasingly important.

Recently, significant progress has been made in the field of mobile

electroencephalograms (EEGs) (De Vos, Gandras, & Debener, 2014;

Debener, Minow, Emkes, Gandras, & de Vos, 2012), indicating that

miniaturized EEG systems can be used outside the laboratory environ-

ment. An elegant solution to avoid placing electrodes on the head in

locations where they are visible or difficult to apply, has been proposed

in the form of a miniaturized EEG device placed in or around the ears,

offering both a reliable and user‐friendly alternative for full‐scalp EEG

(Mikkelsen, Kappel, Mandic, & Kidmose, 2015; Mikkelsen, Kidmose, &

Hansen, 2017; Mikkelsen, Villadsen, Otto, & Kidmose, 2017; Pacharra,

Debener, & Wascher, 2017). More specifically, several studies have

reported progress towards using such ear‐centered EEG devices for

tracking the presence of different sleep stages (Looney, Goverdovsky,

Rosenzwei, Morrell, & Mandic, 2016; Mikkelsen, Villadsen, et al., 2017;

Stochholm, Mikkelsen, & Kidmose, 2016; Zibrandtsen, Kidmose, Otto,

Ibsen, & Kjaer, 2016). These studies all showed promising results, but

involved a limited number of participants and also restricted electrode

positioning. Other user‐mounted systems have been developed specifi-

cally for sleep (Levendowski et al., 2017; Younes, Soiferman, Thompson,

& Giannouli, 2017 Lucey et al., 2016; Shambroom et al., 2012; Werth

and Borbely, 1995), but these systems all require electrodes to be

placed in highly visible locations. Ear‐centered EEG solutions come with

the benefit of being sufficiently discrete and therefore acceptable to

users also for routine applications during the daytime.

In a recent study, we demonstrated that important physiological

characteristics can be detected with a lightweight flex‐printed elec-

trode strip that fits neatly behind the ear, the cEEGrid (Debener,

Emkes, de Vos, & Bleichner, 2015). Compared with previous ear‐EEG
studies, the cEEGrid has the advantage of not requiring individualized

electrodes, increased inter‐electrode distances and a larger number of

channels. Comparison of the EEG signals obtained from cEEGrid and a

standard polysomnography (PSG) montage confirmed the suitability of

the cEEGrid for manual sleep staging (Sterr et al., 2018).

Besides the need to reduce manpower for application of the elec-

trodes, there is a growing desire for less time‐consuming manual analy-

sis of sleep recordings. At present, analysis is routinely conducted by

time‐consuming visual inspection. When convenient systems such as

the cEEGrid become widely available to perform large‐scale sleep moni-

toring, there will be a radical increase in the number of sleep recordings

that need to be annotated. If scoring of such recordings is not auto-

mated but continues to depend on manual annotation, the full potential

of light‐weight sleep monitoring solutions will not be realized. The

present study investigates to what extent a fully automated sleep scor-

ing algorithm can reliably estimate the hypnograms based on the data

recorded with cEEGrid electrodes on healthy participants.

Although there is an extensive literature on automated algo-

rithms (for an up‐to‐date review see Boostani, Karimzadeh, & Nami,

2017), we have used ensembles of decision trees, so‐called random

forests, on an extended set of features, as this family of classifiers

have been shown to perform particularly well for the task of sleep

scoring (Boostani et al., 2017; Fraiwan et al. 2012; Mikkelsen, Villad-

sen, et al., 2017). To investigate the need for specialized algorithms

for cEEGrid recordings we compared the performance with a com-

mercial algorithm (packaged with DOMINO by Somnomedics Gmbh)

applied to the cEEGrid recordings. Here, comparisons have been per-

formed with sleep parameters and hypnograms obtained with man-

ual scoring as well as sleep–wake assessment derived from

actigraphy recordings. We also evaluated different possible cEEGrid

channel configurations for automated staging.

2 | EXPERIMENTAL SET ‐UP

2.1 | Participants

The study was approved by the University of Surrey Ethics Commit-

tee. All participants gave written informed consent prior to participa-

tion. All data obtained from the study were stored in accordance

with the Data Protection Act (1998). Twenty participants, aged

34.9 ± 13.8 years (mean ± SD) (eight male) were recruited from the

University of Surrey and the general public.

The study participants were asked to stay in bed for 12 hrs between

approximately 22:00 and 10:00 hours, during which they were allowed

to sleep as much as they wanted (“ad libitum”). Thus, the protocol was

designed to induce a recording containing both a substantial amount of

wakefulness and sleep, rather than a consolidated sleep episode. This

approach provides a more challenging test for automatic sleep scoring.

The recordings took place in the sleep laboratory of the Surrey Clinical

Research Centre. Each subject slept in a separate sound‐attenuated
sleep cabin. Each subject spent only a single night at the centre (i.e. sub-

jects had no adaptation night), thereby increasing sleep disruption. The

full study protocol is presented in Sterr et al. (2018).

Two datasets were lost because of human error and three were

discarded because of technical problems with either the PSG or the

cEEGrid system (i.e. data loss and excessive artefacts). The final sam-

ple for analysis comprised 15 participants (six male), aged

35 ± 14.3 years (range, 18−63). They were all fairly good sleepers

(Pittsburgh Sleep Quality Index [Buysse, Reynolds, Monk, Berman, &

Kupfer, 1989], 2.93 ± 1.71; range, 0–6) and mostly of intermediate

chronotype (Morningness–Eveningness Questionnaire [Horne & Ost-

berg, 1976], 50.4 ± 12.87; range, 15–74).

2.2 | Recording setup

Figure 1 illustrates the full sleep recording set‐up. The PSG was

recorded at 128 Hz using the SomnoHD system (Somnoscreen
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SOMNO HD data logger, SOMNOmedics Gmbh, Randersacker, Ger-

many) from six scalp electrodes (F3, F4, O1, O2, C3, C4) referenced

to the opposite mastoid (M1, M2) augmented with two ECG leads,

two electro‐oculographic (EOG) electrodes and three chin EMG leads

(two derivations to one reference). For the EEG and EOG channels,

the cut‐off frequencies at—3 dB were 0.3 and 75 Hz, and 0.3 and

110 Hz for the EMG channels.

The Somnomedics system will be referenced simply as “PSG” in

the remainder of the paper.

The cEEGrid electrode array consisted of 10 electrodes placed

around each ear, labelled as shown in Figure 3(a). During the record-

ing, the electrodes R4a and R4b were used as common ground and

reference. Data from the cEEGrid electrodes were recorded with a

wireless SMARTING amplifier (mBrainTrain, Belgrade, Serbia) at

250 Hz and a Sony Z1 Android smartphone placed next to the bed.

Before the recording began the impedances of all electrodes were

measured. If an impedance was larger than 50 kOhm, the electrode

was discarded from the analysis; no adjustments to improve impe-

dances were performed. This ensured that the application of the

cEEGrid electrodes took <10 min. Participants were given a pre‐pro-
grammed Actiwatch (MW8, CamNtech, UK) to be worn on the non‐
dominant hand. Data collection started around 22:00 and lasted for

about 12 hr. This early and extended sleep opportunity was intended

to induce long sleep latencies and low sleep efficiencies, because

such sleep periods are more difficult to score and pose a challenge

for automatic scoring systems.

3 | NUMERICAL METHODS

3.1 | Data preprocessing

Before further analysis, all recordings were imported into EEGLAB

v13.5.6b (Delorme & Makeig, 2004) and resampled to 256 Hz, using

the “resample” command in Matlab (which uses an anti‐aliasing fil-

ter). Afterwards, both PSG and cEEGrid were subjected to 0.5–100‐

Hz band pass filtering, and a 50‐Hz notch filter. In effect, as the

sampling rate for the PSG recording was only 128 Hz, the upper

bound on the pass band was in this case the Nyquist frequency, at

64 Hz.

Precise alignment of the PSG and cEEGrid recordings was

achieved by aligning periods of major movement artifacts and/or

slow wave activity in both recordings. The details are described in

Appendix 1.

High amplitude artifacts were identified using thresholding on

signal power calculated in short time windows and were excluded

from the analysis. The details of this are described in Appendix 2.

In cases where the cEEGrid recording started after the PSG, the

cEEGrid recording was padded with NaN‐values to have identical

starting times. However, after both datasets started, the analysis only

included epochs for which recordings from both devices were present.

This implies that only epochs for which both cEEGrid and PSG data

were available were used in the analysis. In two participants, the cEE-

Grid recording malfunctioned a few hours into the recording. In these

cases, only the first part of the night was used in the analysis.

3.2 | Defining optimal electrode derivations

Because cEEGrid electrode arrays feature a larger number of elec-

trodes than other ear‐EEG systems used for sleep staging, an impor-

tant question before automated analysis is how to optimally

combine them into a few representative derivations. This reduction

should maximize both electrode reliability and the amount of infor-

mation in the derivation. For this, a “correlation index” (CI) was cal-

culated, defined as the correlation of power values within a specific

band, weighted by electrode reliability:

CIi ¼ ∑icorr½PðdiÞ;PðsjÞ�gi (1)

where di is the i’ith cEEGrid derivation tested, sj is the j’th scalp

derivation, P (h) is the integrated power of channel h over a sleep

epoch, and gi is the fraction of time over the whole dataset in which

the cEEGrid derivation has good‐quality data.

The derivations tested are all intra‐C single electrode derivations

(two electrodes within the same “C” referenced to each other): the

average of one C versus the other (“L–R”), top electrodes versus bot-

tom electrodes (“TB”, defined as channels 2 and 3 versus channels 6

and 7 in each “C”) and front electrodes versus back electrodes (“FB”,

defined as electrodes 1 and 8 versus electrodes 4 and 5).

In the analysis we focused on the correlation within specific

power bands, specifically alpha (8–16 Hz), beta (16–32 Hz), theta (4–
8 Hz) and delta (1–4 Hz).

3.3 | Sleep scoring

3.3.1 | Actigraphy scoring

The actiwatch recording was passed through the algorithm devel-

oped by the actiwatch manufacturer (CamNtech). It consisted of par-

titioning the recording into 60‐s epochs and smoothing the epoch

F IGURE 1 Participant wearing both cEEGrid electrode array and
polysomnography electrodes. Permission was obtained from the
individual for the publication of this image
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activities, weighting neighbouring epochs by 20% and neighbours by

4%. Finally, the smoothed recording was subjected to a threshold,

below which the participant was scored as sleeping. After process-

ing, the 60‐s epochs were transformed into 30‐s epochs, inheriting

the score of the parent epoch.

3.3.2 | Manual sleep scoring of PSG and cEEGrid

Two experienced sleep technicians scored all recordings, both PSG and

cEEGrid. To avoid previous knowledge from the PSG recording influenc-

ing the cEEGrid scoring, the cEEGrid recordings were anonymized. Scor-

ing was based on 30‐s non‐overlapping epochs according to the

guidelines of the American Association for Sleep Medicine (AASM;

Berry et al., 2017). Even though amplitude characteristics of the EEG

are different between cEEGrid and traditional EEG derivations, no

adjustment of amplitude criteria was implemented for scoring cEEGrid

recordings. Preliminary analysis revealed inter‐rater concordance in

>98% of epochs. Based on this, we decided to only use the scoring from

the first technician in the analyses presented in this manuscript.

In the remainder of the analysis, all non‐scored epochs (meaning

that the manual label was either “A” or “artefact”) were removed

from both PSG and cEEGrid datasets.

3.3.3 | Automatic sleep scoring

For automatic sleep scoring, we developed a custom‐made sleep

scoring algorithm (using a “random forest” classifier as described

below) by closely following the feature‐based approach proposed in

Mikkelsen, Villadsen, et al. (2017) (in turn inspired by Koley & Dey,

2012).

As a benchmark to compare the custom‐made algorithm against,

both PSG and cEEGrid recordings were also analyzed using the auto-

matic algorithm packaged with the DOMINO software supplied by

Somnomedics Gmbh (Randersacker, Germany). Depending on the

quality of the sleep recordings, we should expect the DOMINO soft-

ware to outperform the random forest classifier for the PSG record-

ings, while being less ideal for the cEEGrid recordings.

Features

We computed the 33 features listed in Table 1 for the three chosen

derivations. For automatic sleep staging based on PSG, the chosen

channels were EOG1:M2, EMG2:EMG3 and C4:M1. For staging

based on cEEGrid, the selected derivations were FB(L), FB(R) and L–
R (front versus back for each ear, and the ears relative to each other,

shown in Figure 3b). We also simulated the effect of adding an EOG

channel to the cEEGrid data, where we combined the original 99

cEEGrid features with 33 features extracted from EOG1:M2. For this

particular case, the “channel correlation” feature (F7 in Table 1) was

calculated between “EOG1:M2” and “L–R”. Feature selection was

investigated (see Appendix 3); however, we found that the possible

benefits from reducing the number of features were very limited (an

improvement in Cohen's kappa of about 0.05 points), and therefore

decided to use all features.

If part of an epoch was discarded, in either one, two or three

derivations, the features were calculated based on the remaining

part of the epoch. If the entire epoch was rejected, all features were

set to “NaN”, and the epoch would be scored as “awake” (because

this would usually be a result of large amounts of movement).

Random forest classifier

The features were passed to a “random forest” (Breiman, 2001), an

ensemble of “decision trees” consisting of 100 trees. The implemen-

tation used the “fit ensemble” function in Matlab 2016b, with the

“Bag” algorithm. Each tree was trained on a resampling of the origi-

nal training set with the same number of elements (but duplicates

TABLE 1 An overview of the features used in this study, grouped
by type. All features are described in Mikkelsen, Villadsen, et al.
(2017). The EOG and EMG “proxies” are created by band‐pass
filtering the cEEGrid data (using 0.5–30 Hz for the EOG proxy and
32–80 Hz for the EMG proxy)

Label Short description Type

F1 Signal skewness EEG time

domain

F2 Signal kurtosis

F3 Zero crossing rate

F4 Hjorth mobility

F5 Hjorth complexity

F6 75th percentile

F7 Channel correlation

F8 EMG power EMG proxy

F9 Minimal EMG power

F10 Relative EMG burst

amplitude

F11 Slow eye movement power EOG proxy

F12 Rapid eye movement power

F13, F14, F15, F16 Relative power in α, β, θ, δ‐
bands

EEG frequency

domain

F17, F18, F19, F20,

F21, F22

Power‐ratios: α/δ, δ/β, δ/θ,
θ/α, θ/β, α/β

F23 (θ + δ)/(α + β)

F24 Spectral edge frequency

F25 Median power frequency

F26 Mean spectral edge

frequency difference

F27 Peak power frequency

F28 Spectral entropy

F29 Spindle probability Sleep event

proxies

F30 Frequency stationarity

F31 Lowest adj. frequency

similarity

F32 Largest CWT value

F33 Longest sleep spindle

EEG, electroencephalogram; EOG, electro‐oculographic. EMG, elec-

tromyography; CWT, continuous wavelet transform.
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allowed). For each tree, splitting optimized the Gini coefficient (Ceri-

ani & Verme, 2011) and continued until all leaves (subgroups) were

homogeneous. Leave‐one‐subject‐out validation was performed to

obtain classification results for all subjects. When testing classifiers,

we have experimented with different sources of data and training

based on different labels. Unless otherwise stated, ground truth was

the visual scoring of the PSG. We describe our nomenclature used

in Table 2.

3.4 | Hypnogram post‐processing

The classifier described does not consider neighbouring epochs.

However, as certain patterns are used during visual analysis, we

implemented three steps in a post‐processing phase to increase the

plausibility of the estimated hypnograms:

3.4.1 | Determine sleep onset

To avoid spurious sleep detections during wake, it was required that

sleep onset should be followed by 5 min (10 epochs) of consecutive

sleep. This is also known as latency to persistent sleep. Thus, sleep

onset was taken as the beginning of the first epoch fulfilling this cri-

terion.

3.4.2 | Determine wake up

Wake up had to be preceded by 5 min of sleep, and was taken as

the end of the last epoch meeting this criterion.

3.4.3 | Smooth hypnogram

For the period between falling asleep and waking up, class probabili-

ties were extracted from the classifier. The probabilities were

smoothed with a moving average window of five epochs. For each

epoch, the resulting label is the class with the highest smoothed

probability. The only exception to this is that all wake epochs are

retained to preserve brief mid‐night arousals.

The first two stages of post‐processing were also used on the

actigraphy‐based hypnograms, to obtain a fairer comparison.

This post‐processing step was chosen instead of other multi‐
epoch approaches (such as those discussed in Phan, Andreotti,

Cooray, Chén, & Vos, 2018) because the performance of this solu-

tion was very similar, but allows for a relatively simple description.

3.5 | Sleep statistics

To better quantify the agreement between automatically and manu-

ally generated hypnograms, a selection of relevant sleep statistics

was calculated. Correlations between whole‐recording sleep statistics

derived from automatically scored cEEGrid, cEEGrid + EOG and

actigraphy and sleep statistics derived from manually scored PSG

were computed. An overview and definition of used sleep statistics

is shown in Table 3.

4 | RESULTS

4.1 | Data quality and choice of derivations

In total, 18 920 epochs were used for the automatic scoring, which

corresponds to an average of 10.5 hr per participant (range, 3.1–
12.0 hr).

Table 4 shows the percentage of time spent in different stages

(percentage of total recording time), as estimated by the different

approaches. We note that because the cEEGrid estimate of “wake

percentage” is very close to the manual PSG‐based estimate, it is

also very good for “pooled sleep” (which is simply everything else).

This table also shows that sleep was quite disrupted during the

extended sleep opportunity protocol, such that on average partici-

pants were awake for 45% of the recording period.

Figure 2 shows CIi (Equation 1) plotted for four different fre-

quency bands, and a range of electrode combinations. Good correla-

tions were obtained by using electrode averages and larger electrode

distances. Based on this, we have chosen to use three standardized

derivations: L–R (average of left electrodes versus average of right

TABLE 2 Description of nomenclature used in exploration of different automatic processing experiments

Name Method

Aut. PSG Automatic scoring using features derived from polysomnography (PSG) data and training based on the labels from manual PSG

cEEGrid Automatic scoring using features derived from cEEGrid data and training based on the labels from manual PSG

cEEGrid‐manual Manual scoring of cEEGrid recording

cEEGrid+EOG Automatic scoring using features derived from cEEGrid data as well as the electro‐oculographic (EOG) channel from the PSG, as

described above. Training labels are obtained from the manual PSG scoring

cEEGrid* Automatic scoring using features derived from cEEGrid data, using training labels from manual cEEGrid scoring. Ground truth

for testing was based on manual annotation of cEEGrid as well. This means that when kappa and accuracy values are

computed, cEEGrid‐based hypnograms are used, and not PSG‐based ones

Actiwatch Automatic scoring using actiwatch software (CamNTech, Cambridge, UK)

PSG DOMINO Automatic scoring of PSG recording using the DOMINO software from Somnomedics Gmbh

cEEGrid DOMINO Automatic scoring of cEEGrid recording using the DOMINO software from Somnomedics Gmbh

EMG, electromyography; CWT, continuous wavelet transform.
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electrodes), FB(L) and FB(R) (average of front versus average of back

electrodes in both “Cs”). This yields a combination of high informa-

tion content and reliability. The final choices are shown graphically

in Figure 3(a).

After artifact rejection of channels and epochs, Figure 3(b) shows

the reliability (i.e. how much is left after artifact removal) of the

three aggregated derivations. Pooling the electrodes makes them

more reliable, and it is rare that no more than one electrode in each

group is available.

4.2 | Automatic sleep scoring

Figure 4 illustrates the scoring for one subject. It compares manual

annotation based on PSG, and both manual and automatic annota-

tion based on cEEGrid data. We see that the algorithm captures the

overall structure of the night's sleep well, with some added short

transitions, outperforming visual scoring of the same recording.

In Figure 5a classification performance is shown for sleep–wake

classification based on actigraphy and cEEGrid‐based scoring. We

see that average performance increases (for accuracy and Cohen's

kappa) when EEG information is incorporated, and automatic cEE-

Grid scoring is markedly better than the actiwatch scoring.

Figure 5(b) shows the distributions of sleep staging accuracies as

well as Cohen's kappa values. Different ways of training the classifier

and annotating the data, and the use of different input signals, are

compared, as described in Table 2.

Table 5 shows p‐values (not corrected for multiple testing) for

the null hypothesis that the kappa values derived for cEEGrid and

PSG have equal means to the value derived for alternative hypno-

gram sources. We see that the two worst performing methods, “cEE-

Grid*” and “actiwatch” are significantly different (worse) than

automatic cEEGrid.

In particular, as the initial visual scoring of cEEGrid data was not

always very accurate, the classifier trained on cEEGrid‐based labels

performed worse than that based on PSG‐based labels. This suggests

that the to‐be‐expected improvement from sharing information

between the human scorer and automatic classifier is more than off-

set by the reduction in actual brain‐state information contained in

the manual labels when switching from PSG‐based to cEEGrid‐based
training labels. This also highlights the need to perform simultaneous

PSG measurements for use in training automatic classifiers, when

testing reduced montages such as the cEEGrid (in other words: a

manual scoring of the reduced montage recording cannot substitute

as a ground truth for use in algorithm development).

Figure 6 compares distribution of a range of sleep statistics for

the different types of classifiers described in Table 2. The automatic

cEEGrid classifiers generally performed better than visual cEEGrid

annotation or actigraphy. For estimating REM periods, adding the

EOG helped to identify REM stages. None of the methods reliably

captured the short awakenings as annotated in the PSG. This is also

reflected in Figure 4.

TABLE 4 Percentage of epochs scored as each stage, calculated
by pooling all subjects before calculating average (instead of average
of subject averages)

Manual
PSG

Aut.
PSG

cEEGrid
+ EOG cEEGrid Actiwatch

Wake 34.8% 43.9% 45.1% 38.4% 25.5%

REM 13.0% 09.1% 06.1% 06.7% –

N1 06.7% 01.5% 0.5% 00.1% –

N2 34.4% 36.4% 41.0% 47.1% –

N3 11.1% 9.1% 07.3% 07.7% –

Pooled sleep 65.2% 56.1% 54.9% 61.6% 74.5%

PSG, polysomnography; EOG, electro‐oculographic; REM, rapid eye

movement. EMG, electromyography; CWT, continuous wavelet trans-

form.
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“CI” as defined in Equation 1. “TB” in this context means “top versus
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right ear, respectively. Values for TB(L) and TB(R) have been plotted
as “detached” from the rest of the derivations because they have
been positioned on the x‐axis outside of their place in the ordering
(which would have hidden them inside the group of 56 “single‐
electrode” derivations)

TABLE 3 Overview and description of sleep statistics used in this
study

Label Description

Total sleep Total duration of all epochs scored as “sleep”

Sleep efficiency Total sleep divided by duration of recording

Wake after sleep

onset (WASO)

Duration of wake epochs between falling

asleep and waking up (defined as the end of

the last epoch scored as sleep). This means

that wake epochs after final awakening were

not included in the calculation of this

variable

Sleep onset latency Time from start of recording until first sleep

epoch

Rapid eye movement

(REM) latency

Time from sleep onset until first REM epoch
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Table 6 shows p‐values for paired t‐tests, testing whether the

sleep statistics for manual PSG scoring have the same mean values

as those of the alternative methods. We see that the fact that p‐val-
ues are sensitive to bias and not covariance means that primarily the

“noisy” estimates have non‐significant p‐values, whereas, for

instance, “total sleep” as estimated from automatic PSG‐based scor-

ing is significantly different to that estimated from manual PSG scor-

ing, despite an r2‐value of 0.72.

Table 7 shows intra‐class correlation (ICC) values, comparing the

sleep statistics from the methods described in Table 2 with those

Legend
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derived from the manual scorings. We see that the ICC values gen-

erally tell the same story as the r2‐values, with automated estimates

based on either PSG or cEEGrid being comparable, and REM latency

generally being estimated very poorly.

5 | DISCUSSION AND CONCLUSION

We investigated the performance of automated sleep staging of data

recorded from cEEGrid electrodes, comparing it with manual scoring

of the same data as well as simultaneously recorded PSG data in a

protocol in which sleep was disrupted. This is relevant for sleep

monitoring in healthy participants and patients at home, where man-

ual annotation of huge amounts of daily recordings would be

unmanageable. The study confirms that EEG from cEEGrid sensors

preserves the information needed for reliably scoring sleep in

healthy subjects. The automatic sleep staging of cEEGrid data leads

to a similar accuracy as automatically staged PSG recordings. Auto-

matic scoring extracts more valid sleep statistics than automatically

annotated actigraphy data and provides more accurate hypnograms

from cEEGrid recordings than visual annotation and when visual

annotation of PSG is taken as the ground truth.

Although the latter result might seem surprising, we consider

two explanations. On the one hand, AASM rules for sleep staging

have been defined for standardized PSG montages, and might be

suboptimal for montages with non‐standardized positions, such as

the cEEGrid solution. On the other hand, because of the non‐stan-
dardized positions of cEEGrid electrodes, the human annotator may

struggle to reliably pick up certain features in a particular visualiza-

tion. However, because automated sleep staging reliably extracts the

relevant information, it is clear that the cEEGrid does pick up sleep‐
stage‐sensitive features, despite the alternative positioning. Other

mobile EEG solutions intended for sleep assessment will also most

likely have different electrode positions to standard PSG, to avoid

sites with hair or positions in which the electrodes may be visible.

These solutions might thus also benefit from automated scoring and

our results support continued research in automated annotation of

sleep stages. Related to this, it was harder to algorithmically repro-

duce cEEGrid‐based manual labels than PSG‐based manual labels
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F IGURE 5 Comparison of classification performance for various automatic sleep staging algorithms and one manual classification. (a) Using
only sleep–wake scores, (b) using five‐stage scoring. Labels on the x‐axis are described in detail in Table 2

TABLE 5 Calculated p‐values for the null hypothesis (using a Student's t test) when kappa values derived for automatic cEEGrid scoring and
those derived for other means of scoring have equal means (as seen in Figures 5 and 6). All p‐values are calculated using paired two‐tailed t
tests

cEEGrid* Actiwatch cEEGrid‐manual Aut. PSG cEEGrid + EOG PSG DOMINO

Two‐stage

Mean ± SD 0.214 ± 0.140 0.246 ± 0.165 0.153 ± 0.331 −0.030 ± 0.182 −0.024 ± 0.145 −0.02 ± 0.204

p‐value 0.000 0.000 0.096 0.532 0.534 0.704

Five‐stage

Mean ± SD 0.176 ± 0.115 – 0.151 ± 0.266 −0.043 ± 0.178 −0.036 ± 0.092 −0.065 ± 0.225

p‐value 0.000 – 0.045 0.365 0.154 0.286

PSG, polysomnography; EOG, electro‐oculographic.
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when the algorithm only used cEEGrid data. This suggests that even

for a very experienced scorer, it is more difficult to score sleep

based on non‐standard derivations. This should be kept in mind

when new EEG solutions are validated. Such comparisons should not

only use manual scoring, as the results might be confounded by the

uncertainty from non‐standard electrode locations. As automated

algorithms for new EEG systems need to be trained on labelled data,

this research suggests collecting data from subjects recorded
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F IGURE 6 Sleep statistics. See Table 2
for a description of the methods
compared. For each plot four r2‐values can
be calculated, according to how well the
straight line fits to the scatter plot. The r2‐
values for each plot are (in the order of
the legend): total sleep (0.72; 0.84; 0.89;
0.61; 0.78), sleep efficiency (0.34; 0.49;
0.65; 0.25; 0.27), WASO (0.55; 0.70; 0.52;
0.42; 0.32), SOL (0.94; 0.96; 0.61; 0.67;
0.63), REM latency (0.04; 0.00; 0.03; 0.21;
NaN). WASO, wake‐after‐sleep‐onset;
REM, rapid eye movement; SOL, sleep
onset latency

TABLE 6 Calculated p‐values for the null hypothesis (using a Student's t test) that the sleep statistics from automatic scoring are from
distributions with the same mean values as those derived from manual , polysomnography scoring (as seen in Figure 7). All p‐values are
calculated using paired two‐tailed t tests

Aut. PSG cEEGrid + EOG cEEGrid PSG DOMINO actiwatch

Total sleep 0.008 0.001 0.058 0.672 0.014

Sleep efficiency 0.005 0.000 0.04 0.805 0.053

Wake after sleep onset 0.099 0.016 0.079 0.180 0.887

Sleep onset latency 0.679 0.788 0.202 0.221 0.003

REM latency 0.221 0.127 0.142 0.039 –

PSG, polysomnography; EOG, electro‐oculographic; REM, rapid eye movement.

TABLE 7 Intraclass correlation coefficients (ICCs) between manual PSG‐based scoring and the alternatives for sleep statistics. The precise
type of ICC was “ICC(A,1)”, as described in McGraw and Wong (1996), and implemented in Salarian (2016)

Aut. PSG cEEGrid + EOG cEEGrid PSG DOMINO Actiwatch

Total sleep 0.778 0.819 0.933 0.787 0.824

Sleep efficiency 0.435 0.471 0.750 0.464 0.345

Wake after sleep onset 0.698 0.757 0.690 0.633 0.566

Sleep onset latency 0.969 0.979 0.771 0.796 0.662

REM latency 0.087 0.010 −0.101 0.314 –

PSG, polysomnography; EOG, electro‐oculographic; REM, rapid eye movement.
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simultaneously with the new system and traditional PSG, so that

PSG‐based labels can be used for training the algorithm.

When manual scoring is still preferred (this could be the case in

relation to certain sleep disorders), we highly recommend cEEGrid‐
specific training of the sleep technician.

Additionally, we compared the performance of our automatic

classifier with that of a commercial system (DOMINO). We observed

a similar performance on PSG data and, not surprisingly, markedly

worse performance when the commercial system was applied to

cEEGrid data. That the commercial system achieved a less than ideal

score may be because it was not developed to score other than

standard signals or it does not perform well scoring disrupted sleep

patterns, such as those created by the current protocol.

Another question addressed is how the redundancy of electrodes

on cEEGrid can be exploited to increase the reliability for sleep stag-

ing. For this, we examined correlations between cEEGrid data and

PSG data, while taking electrode reliability into account. This

revealed that the horizontal derivations FB(R) and FB(L) were the

most informative for preserving sleep‐relevant information. This is

similar to work presented in Bleichner, Mirkovic, and Debener

(2017), where the significance of cEEGrid channel orientations for

picking up far‐field electrical activity was discussed. In the present

study, we exploited the electrode redundancy to obtain a reliable

signal representation in all instances during sleep. Optimal placement

of electrodes when only a limited number of electrodes are available,

is a highly important and under‐documented challenge. In our previ-

ous work, we derived optimal low‐density channel positions and ori-

entations from initial high‐density EEG evaluations (Zich et al., 2015).

However, this is not feasible in a sleep setting. We anticipate that

the present findings will be informative for future around‐the‐ear
EEG work.

The hypnograms generated by visual and annotated scoring

mainly differ in estimates of wake‐after‐sleep‐onset (WASO), as seen

in Figure 6. WASO is an important parameter for evaluating sleep

quality, but with the current automated assessment of cEEGrid data

cannot yet be reliably assessed. We hypothesize that this is because

of the different EEG characteristics between brief arousals and

“proper” wake EEG. The WASO‐related problems were also observed

in other studies; see Myllymaa et al. (2016), Popovic, Khoo, and

Westbrook (2014) and Griessenberger, Heib, Kunz, Hoedlmoser, and

Schabus (2013). However, the current results clearly demonstrate

that compared with actigraphy, the automatic cEEGrid‐based classi-

fiers perform significantly better in sleep–wake assessment, besides

offering the opportunity to detect different sleep stages. Although it

is known that actigraphy is not necessarily a reliable assessment of

sleep, it is often chosen for convenience. Having an easily mounted

EEG solution similar to the one proposed here promises a better

trade‐off between accuracy and usability. Additionally, our auto-

mated approaches do not provide very accurate estimates of the

latency to the first REM period. This is likely to be a result of the

short duration of this period and leads to some very noisy statistics,

as seen in Figure 6.

The current dataset is larger than previous ear‐EEG sleep studies.

However, 15 subjects are still not a large sample size and further

validation in larger cohorts will be beneficial before using the system

in basic and applied sleep research. Given that most classifiers,

including the one used here, perform better with large training sets

(see Mikkelsen & de Vos, 2018), reliability of automated scoring

might further improve with a larger dataset.

We emphasise that all participants in this study were healthy

and good sleepers. However, although we did not attempt to iden-

tify the characteristics of common sleep disorders, we aimed to imi-

tate realistic variability in sleep quality and patterns. This was

implemented by keeping subjects in bed for approximately 12 hr. A

wide range of sleep durations and sleep onset latencies were

obtained as a consequence and we consider this a strength of this

study.

Regarding future work, the results presented here need to be

confirmed in clinical cohorts and also in healthy participants in older

age categories before the cEEGrid can be considered as a replace-

ment for PSG in a clinical and research setting.

Overall, the results of this study are encouraging, as automated

scoring combined with easy‐to‐use EEG monitoring holds great pro-

mise for future sleep monitoring in a much wider population than

currently possible.
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APPENDIX 1

RECORDING ALIGNMENT

As the clocks from the different wireless recording solutions could

not easily be aligned, polysomnography (PSG) and cEEGrid record-

ings were aligned according to one of two approaches.

The primary approach (employed in 11 subjects) was based on

the presence of large motion artifacts. It was designed in the follow-

ing manner:

1. A single scalp derivation from the PSG recording (C3:M2) and a

single electrode (L7, L8 or L5) from the cEEGrid recording (refer-

enced to R4b) was extracted. The positive envelope of each sig-

nal was extracted.

2. For each envelope, the 90th percentile was calculated. All data

points in each envelope below the 90th percentile were dis-

carded (set to 0), resulting in a time series consisting of 90%

zeros.

3. The cross‐correlation was calculated for the two time series. A

clear peak in the cross‐correlation indicated the corresponding

lag between the two measurements.

In four subjects, this approach resulted in multiple peaks in the

cross‐correlation, meaning that the correct alignment could not be

uniquely defined. In these cases, we instead relied on the slow‐wave

portion of the electroencephalogram (EEG) in the following manner:

1. Data rejection, as described in Appendix 2, was performed on

the cEEGrid recording.

2. The average of the right “C” was subtracted from the average of

the left “C”, creating a purely lateral derivation. Likewise, the sig-

nal from the right mastoid was subtracted from the signal from

the left mastoid.

3. Each of the two time series was filtered with a pass‐band of 0.3–
4 Hz.

4. The filtered signals were rectified (meaning all values were

exchanged for their absolute value).

5. The cross‐correlation was calculated between the two time ser-

ies.

In all four cases, the cross‐correlation had a single dominant

peak.

We chose to keep the first method in the 11 subjects for which

it worked, because the corresponding cross‐correlation spectra were

significantly cleaner. Hence, in the situations where it offered a well‐
defined alignment, this was regarded as being the most probable

(the two methods may differ in their estimates, in the order of less

than a second).

APPENDIX 2

DATA REJECTION

Because the two different EEG set‐ups have different susceptibilities

to both movement and electrode artefacts, automatic data rejection

was performed before the recordings were fed into an automatic

sleep scoring algorithm. This data rejection algorithm was fine‐tuned
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to match the results of a manual rejection performed on a single trial

recording. The automatic rejection consisted of two steps:

1. The recording was partitioned into 2‐min epochs. For each chan-

nel in each epoch, the standard deviation was calculated. If the

standard deviation exceeded 80 μV, the electrode was deemed

faulty in the given time period and rejected.

2. After faulty channels were rejected individually, the recording was

partitioned into 1‐s epochs with 50% overlap. For each epoch,

power in the 5.7–54 Hz band was calculated. If the power exceeded

2.1·10−12V2/Hz for at least 14% of the electrodes present (exclud-

ing those rejected previously), the whole epochwas rejected.

After all epochs were marked, an additional two steps were

taken to clean up the epoch rejections. (a) An epoch was only

rejected if at least three consecutive epochs (meaning a 2‐s win-

dow) were rejected. (b) Long runs of rejected epochs, inter-

spersed with short windows of accepted data, were merged, by

also rejecting the intermediate epochs. Two rejected epochs

were merged if their combined duration was at least five times

as long as the separating gap.

APPENDIX 3

FEATURE SELECTION

We investigated feature selection in the following manner.

A classifier was trained using the entire dataset as test data.

Using this classifier, we gained a ranking of all 99 features (based

on the Gini coefficient, as supplied by the “Classifica-

tionBaggedEnsemble” class in Matlab), depending on how well each

of them separates the five classes. Using the ranking, we randomly

drew N distinct features, letting the ranking weight the drawing

(such that more important features are preferred). The drawing and

weighting were carried out using the “datasample” function in Mat-

lab. For each N ∈ (1, 99), 20 random drawings were performed.

Additionally, two drawings were done in which the N best features

were used (two drawings were necessary because of the variability

inherent in the bagging algorithm). For each drawing, leave‐one‐out
classifiers were trained and applied to all subjects, leading to kappa

calculations.

Figure 7 shows both the distribution of kappa values coming

from the random drawings and the averages from the two deter-

ministic drawings. It can be seen that the optimal number of fea-

tures is about 20–30, but also that the change between 99 and

the optimal number is rather small, at maximum an improvement of

0.05 in kappa value. Because of this small benefit, we have chosen

to keep the full set of features as this is a more straightforward

approach.
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