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Abstract: In this paper, we propose a simple colorimetric method for the sensitive and selective
detection of alkaline phosphatase (ALP) activity based on the turn off/turn on oxidase mimic activity
of His@AuNCs. His@AuNCs/graphene oxide hybrids (His@AuNCs/GO) were easily obtained using
the self-assembly method with poly (diallyldimethylammonium chloride) (PDDA)-coated GO and
showed high oxidase-like activity compared with His@AuNCs. We found that the pyrophosphate
ion (P2O7

4−, PPi) could effectively inhibit the oxidase mimic activity of His@AuNCs/GO, and
the hydrolysis of PPi by ALP restored the inhibited activity of His@AuNCs/GO, enabling them
to efficiently catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to generate the blue
oxidized product oxTMB. The intensity of the color showed a linear dependency with the ALP
activity. ALP was detected in the linear range of 0–40 mU/mL with a low detection limit (LOD) of
0.26 mU/mL (S/N = 3). The proposed method is fast, easy, and can be applied to monitor the ALP
activity in serum samples accurately and effectively, which suggests its practicability and reliability
in the detection of ALP activity in clinical practice.

Keywords: His@AuNCs/GO; oxidase-like activity; PPi; ALP; colorimetric detection

1. Introduction

Alkaline phosphatase (ALP) is widely present in the tissues and organs of biological
organisms (e.g., bones, liver, intestine, kidneys, and placenta) and can catalyze the hy-
drolysis and transphosphorylation of a variety of phosphate compounds, including DNA,
proteins, and other small molecules [1,2]. Several diseases, such as bone cancer [3], prostate
cancer [4], and diabetes [5] and liver diseases [6], are influenced by ALP activity, and thus
it has been recognized as a significant biomarker in medical diagnostics.

ALP is frequently utilized as an enzyme label in biochemical assays, such as the
enzyme-linked immunosorbent assay (ELISA) [7]. Therefore, simple, sensitive, and re-
liable assays are highly desirable in the detection of ALP activity in the research and
diagnosis of diseases [8–10]. Several conventional methods are typically used for ALP activity
determination, such as electrochemistry [11,12], fluorometry [13,14], colorimetry [15,16], etc.

Among these, the colorimetric method has spurred great interest owing to its intrinsic
simplicity, speed, and cost-effectiveness. In the standard method that is often employed,
colorless p-nitrophenyl phosphate (pNPP) is used as the substrate and is converted into
the yellow p-nitrophenolate using ALP as the catalyst, and the reaction results in realistic
colorimetric assays [17]. However, previous colorimetric methods often showed inferior
sensitivity and reproducibility, as direct measurement of the subtle color change of the
substrates or products of ALP was extremely difficult [18]. To address this shortfall, the
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cascading of an additional amplification process to establish the sensitivity of ALP is
of value.

Research studies have reported that using the substrates or products of ALP to regulate
plasmonic gold and silver nanomaterials [19–21] helped to achieve signal amplification.
For example, using plasmonic gold nanorods, Gao et al. designed a colorimetric assay to
determine the ALP activity. In this method, ALP was used as the catalyst in the hydrolysis
of ascorbic acid-2-phosphate (AA-P) to ascorbic acid (AA); the AA was then used to reduce
the silver ions to generate a silver shell on the Au nanoclusters (AuNCs), which led to a
perceptible color change producing the signal readout [14].

Although these approaches can provide a simple and visual detection of ALP, plas-
monic nanomaterials suffer from non-specificity of ions in complex biological samples [22],
resulting in poor sensitivity and a limited linear range. Recently, alternative strategies,
using the substrates and products of ALP, have been developed to modify nanozymes
(nanomaterials with intrinsic enzyme-like properties), which could result in signal amplifi-
cation [23,24].

For example, Tian et al. reported an ALP assay employing MnO2 nanosheets as
the signal amplifier [25]. The MnO2 nanosheets catalyze the oxidation of the colorless
substrate TMB to form the blue oxidized product (oxTMB) and ALP catalyzes the hydrolysis
of AA-P to AA, which could weaken the activity of the MnO2 nanosheets, subsequently
weakening the MnO2-controlled cascade signal. As a result, the readout signal amplification
corresponding to the ALP activity can be obtained from the change in absorption. Chen
et al. also developed a nanozyme-based signal amplification method by modifying the
catalytic activities of gold nanoclusters (AuNCs) for the colorimetric detection of ALP
activity [26].

These nanozyme-based ALP activity assays can achieve signal amplification [27–29].
Some methods can even be efficiently used in colorimetric immunoassays. However, the
sensitivities of these methods are highly dependent on the enzyme-like catalytic activity
of the nanozymes. Usually, the catalytic activities of nanozymes are low when compared
with those of natural enzymes, which limits their application. Therefore, the sensitivity
of nanozyme-based ALP assays must be enhanced by improving the catalytic activities of
the nanozymes.

Anchoring NPs on suitable nanoscale supporters to form hybrid nanomaterials
has recently been found to be an effective method to enhance the catalytic activity of
nanozymes [30–34]. Studies have reported that the enzyme-like activity of metal NCs
can be greatly enhanced by decorating them on two-dimensional nanomaterials, such as
graphene and graphitic carbon nitride. For instance, Wu et al. demonstrated that AuNPs
grown in situ on g-C3N4 nanosheets are hybrid nanozymes, have higher catalytic activities
than both C3N4 nanosheets and AuNPs, and can be applied in the colorimetric detection
of glucose [35]. Chen et al. constructed a colorimetric hydrogen peroxide (H2O2) sensor
using TMB in an acetate buffer (pH 4) solution, based on Fe/Pt nanoparticles decorated on
graphene oxide (GO) nanosheets as oxidase mimics [36]. In our recent work, we improved
the catalytic activity of histidine-protected AuNCs (His@AuNCs) by decorating the nan-
oclusters on reduced graphene oxide (RGO), with the nitrite modulating the oxidase mimic
activity of the His@AuNCs, thus, leading to the development of a nitrite sensor [37].

In this work, a novel nanozyme-based colorimetric platform for the simple, sensi-
tive, and selective screening of ALP activity was successfully developed. As shown in
Scheme 1, His@AuNCs can be efficiently decorated on poly (diallyldimethylammonium
chloride) (PDDA)-functionalized GO using a facile sequential process, and the resulting
His@AuNCs/GO with improved oxidase-like performance can be used to effectively cat-
alyze TMB to oxTMB. Interestingly, the catalytic activity of His@AuNCs/GO dramatically
decreased with the presence of pyrophosphate ion (PPi) in the buffer solution.
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Scheme 1. Illustration of the colorimetric sensing strategy for ALP activity based on PPi-mediated catalytic activity of
His@AuNCs/GO.

In the presence of ALP, PPi is hydrolyzed to phosphate (Pi), resulting in the restoration
of the catalytic activity of His@AuNCs/GO, enabling the detection of the ALP activity. The
proposed method shows a good linear relationship in the range of 0–40 mU/mL with a
LOD of 0.26 mU/mL. In addition, ALP in human serum samples was detected successfully
using this method, which indicates its potential as a promising candidate in biological and
biomedical applications.

2. Materials and Methods
2.1. Chemicals and Instruments

L-Histidine (His), ALP, and TMB were purchased from Aladdin Chemistry Co., Ltd.
GO was purchased from Nanjing XFNano Mstar Technology. Ltd. (Nanjing, China).
Sodium pyrophosphate tetrabasic decahydrate (Na4P2O7·10H2O) and PDDA
(MW = 400,000–500,000, 20 wt% in water) were purchased from Sigma-Aldrich (Shanghai,
China). Chloroauric acid tetrahydrate (HAuCl4), poly(N-vinyl-2-pyrrolidone) (PVP) (K30,
MW = 30,000–40,000), KCl, and other chemicals were purchased from Sinopharm Chemical
Reagent Co. Ltd. (Shanghai, China). Dialysis bags (molecular weight cut-off (MWCO) of
1000 Da; regenerated cellulose (RC) membranes) were purchased from Shanghai Yuanye
Bio-Technology Co., Ltd. (Shanghai, China). All chemicals were of analytical grade and
were directly used without further purification. All solutions were prepared with deionized
water (18.25 MΩ cm).

We used transmission electron microscopy (TEM) by a TECNAI G2 field emission
projection electron microscope (FEI TECNAI G20, Waltham, MA, USA). We used a Nicolet
iS50 Fourier transform infrared spectroscope (Thermo Scientific, Waltham, MA, USA) for
infrared spectra collection. We obtained all absorption spectra on a UV-1800 ultraviolet–
visible spectrophotometer (Shimadzu, Japan). We used a pH meter (Sartorius AG, Ger-
many) for pH adjustment.

2.2. Synthesis of His@AuNCs

His@AuNCs were prepared based on a previous work by our group [37]. In this
method, an aqueous solution of HAuCl4 (1 mL, 10 mM) was blended with an aqueous
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solution of histidine (3 mL, 0.15 mM) and the mixture was incubated for 2 h at 25 ◦C.
The color of the mixture changed from light yellow to light brown; when the mixture
was irradiated with 365 nm ultraviolet light, the mixture emitted a strong blue light. The
His@AuNCs solution that was obtained was isolated from the precipitates by centrifugation
at 14,000 rpm for 15 min and then washed using a dialysis bag (MWCO: 1000 Da) until
the pH of the solution became neutral. The His@AuNCs obtained were concentrated by
freezing and drying under vacuum, were re-dispersed in an aqueous solution, and were
stored at 4 ◦C until further use.

2.3. Synthesis of His@AuNCs/GO

First, PDDA/GO was prepared according to the literature, with a slight modifica-
tion [38]. In this method, 40 mg PVP was added to 10 mL GO solution (0.25 mg/mL) and
sonicated for 30 min. The resulting black solution was washed, centrifuged three times, and
dissolved in 2.5 mL of water. Afterwards, 0.05 mL of 20 wt% PDDA was mixed well with
8.4 mL of 0.625 M KCl, followed by the injection of 2.1 mL PVP-capped GO; the resulting
solution was sonicated for 1.5 h.

The black sediment was washed with deionized water and subjected to centrifugal
separation. Finally, the products were re-dispersed in 2 mL water and named as PDDA/GO.
For the fabrication of His@AuNCs/GO, 1 mL PDDA/GO (1 mg/mL) was added to 40 mL
of the His@AuNCs solution under stirring (Figure S1). The solution was then sonicated for
3 min before being left to stand overnight, then washed three times, and dissolved in 2 mL
water (final concentration: 0.5 mg/mL). This His@AuNCs/GO solution (0.005 mg/mL,
Figure S2) was used for the subsequent experiments

2.4. Oxidase-Like Activity of His@AuNCs/GO

The oxidase-like activity of His@AuNCs/GO was tested using TMB as the substrate.
Similarly, we used His@AuNCs instead of His@AuNCs/GO to conduct control experiments
under the same conditions. For the subsequent experiments, 10 µL His@AuNCs/GO
(0.5 mg/mL) was added to 1000 µL of the total reaction solution. Based on the maximum
concentration of oxTMB, the other experimental parameters were optimized as follows
(Figure S3): (1) the pH and concentration of acetate buffer were maintained at 3.2 and
50 mM, and (2) the concentrations of TMB was fixed at 1.6 mM. In detail, 100 µL of TMB
(1–18 mM) and 10 µL of the pre-prepared His@AuNCs/GO (0.5 mg/mL) were added to
890 µL (pH 3.2, 50 mM) of acetate buffer and mixed thoroughly. After incubating at 25 ◦C
for 5 min, the UV–visible spectrum was measured with a spectrophotometer.

We used the Lineweaver–Burk equation to calculate the kinetic parameters (Vmax and
Km) [39]:

v =
Vmax × [S]
Km + [S]

, (1)

where v is the reaction velocity, [S] is the concentration of the substrate, Vmax is the
maximum reaction velocity, and Km is the Michaelis–Menten constant [40].

2.5. Inhibiting of the Oxidase-Like Activity of His@AuNCs/GO by PPi

To check the inhibiting ability of PPi, 10 µL Na4P2O7·10H2O stock solution with
different concentrations (0–6 mM) was added to 10 µL His@AuNCs/GO (0.5 mg/mL) and
incubated at 25 ◦C for 10 min. The resultant solution was added to a solution containing
100 µL TMB (16 mM), and 880 µL of acetate buffer (pH 3.2, 50 mM) and stirred for
5 min at 25 ◦C. The UV–vis spectrum of the resultant solution was collected using a
spectrophotometer.

2.6. Colorimetric Detection of ALP Activity

To determine the ALP activity, it is necessary to mix 10 µL of 4 mM PPi and freshly
prepared ALP solutions of different concentrations, dilute to 100 µL with 0.05 M Tris-HCl
buffer (pH 7.4), and incubate at 37 ◦C for 30 min (The incubation time was optimized to
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30 min, Figure S4) [41]. Next, the above solutions and 10 µL His@AuNCs/GO (0.5 mg/mL)
were mixed and incubated at room temperature for 10 min. The subsequent experimental
steps were the same as those mentioned in Section 2.5 (final concentration of PPi: 40 µM).

To evaluate the practical application of our proposed method, ALP in human serum
samples was used for spiked experiments. Typically, human serum samples obtained
from school hospital of Northwest normal university. The serum samples were diluted
50-fold with deionized water, and we performed the spike experiment with a known ALP
concentration of 1 to 10 mU/mL.

3. Results
3.1. Characterization of His@AuNCs/GO

TEM was employed for the characterization of the morphology of His@AuNCs and
His@AuNCs/GO. A typical TEM image (Figure 1A) showed that the His@AuNCs were
highly uniform and monodisperse with a narrow size distribution of 1.72 nm (the size
was statistically calculated from more than 100 NCs in the TEM image (Figure S5). In
addition, the high-resolution transmission electron microscopy (HR-TEM) revealed a high
crystallinity of the resulting His@AuNCs.
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As can be seen in Figure 1A (inset), the His@AuNCs showed clear lattice fringes with
an interplanar distance of 0.24 nm, corresponding to the (111) lattice planes of the face-
centered cubic structure of metallic Au (Figure 1A, inset). Figure 1B,C, respectively, shows
the typical images before and after the loading of the His@AuNCs onto PDDA/GO. It may
be observed (Figure 1C) that the GO nanosheets were modified by His@AuNCs. To further
characterize, the FTIR spectra of GO, His@AuNCsand His@AuNCs/GO were record
(Figure 1D). It can be observed that the characteristic peaks of GO (1041, 1240 cm−1) and
His@AuNCs (881, 1330, 2974, 2890 cm−1) appear in His@AuNCs/GO at the same time [42,43].
Besides, Figure S6 shows EDX analysis of the GO, His@AuNCs, and His@AuNCs/GO,
and the presence of the elements C, N, O, and Au were detected in His@AuNCs/GO.
These results demonstrate that His@AuNCs effectively self-assembled on the PDDA/GO
platform to form His@AuNCs/GO.

3.2. Oxidase-Like Activity of His@AuNCs/GO

In our recent work, the oxidase mimic activity of His@AuNCs was studied by the
catalytic oxidation of the substrate TMB [37]. In this work, the oxidase-like activity of
the His@AuNCs loaded onto PDDA/GO was investigated. As shown in Figure 2A, com-
pared with the His@AuNCs-TMB system, a visible color change was observed in the
His@AuNCs/GO-TMB system (inset of Figure 2A). This result was also evidenced by the
UV–vis absorption spectrum at 652 nm. The results indicated that His@AuNCs/GO has
an oxidase-like activity. We further studied the catalytic properties of His@AuNCs/GO
through steady-state kinetic experiments.
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As seen in Figure 2B, the initial rate versus TMB concentration followed typical
Michaelis–Menten behaviors for a certain range of substrate concentrations. Under the
same conditions, the absorption of the His@AuNCs-TMB solution was further investigated.
The Km and the Vmax were calculated using the Lineweaver–Burk plot [37]: the Km and
Vmax of His@AuNCs/GO were found to be 0.098 mM and 1.728× 10−7 M s−1, respectively,
and those of His@AuNCs were found to be 0.126 mM and 1.164 × 10−7 Ms−1, respectively
(Table 1). The results indicated that His@AuNCs/GO in comparison with His@AuNCs had
a higher affinity toward TMB, that is, a better oxidase-like catalytic activity.



Biosensors 2021, 11, 174 7 of 12

Table 1. Apparent steady-state kinetics parameter for nanomaterials oxidase mimic activity.

Catalyst Km (mM) Vmax (10−7 M s−1)

His@AuNCs (TMB) 0.126 1.164
His@AuNCs/GO (TMB) 0.098 1.728

3.3. Inhibitory Effects of PPi

As the proposed method was based on the modulation of the oxidase-like activity
of His@AuNCs/GO, we first investigated the inhibitory effects of PPi on the activities of
His@AuNCs/GO. Different amounts of PPi and His@AuNCs/GO were mixed and added
into the catalytic oxidation reaction solution containing TMB. The typical absorption spectra
around 652 nm are shown in Figure 3A. Figure 3B shows the dose-related inhibitory ability
of PPi on the oxidase-like activity of His@AuNCs/GO; the absorption signals were linear
with the PPi observed within the range of 0–40 µM (Y = −0.012X + 0.542, R2 = 0.985). As
the maximum inhibition of the catalytic activity occurred when 40 µM of PPi was added,
the concentration of 40 µM was selected for subsequent detection. Moreover, the inhibitory
effects of PPi to the oxidase-like activity of His@AuNCs were investigated. As shown
in Figure S7, the inhibitory effects of PPi to the His@AuNCs are far lower than that to
His@AuNCs/GO, indicating that His@AuNCs/GO is needed in the proposed method.
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Figure 3. (A) The UV–vis absorption spectra of the His@AuNCs/GO-TMB system in the presence of various concentrations
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According to the previous reports about nanozymes, in the presence of reducing
agents, TMB is less effectively oxidized, which may be due to different mechanisms—
namely, reducing oxTMB to colorless TMB [44–46]. To clearly explain the inhibitory
behavior of PPi, we explored whether PPi can reduce oxTMB. Figure S8 shows the ab-
sorbance at 652 nm when PPi is added to the His@AuNCs/GO-TMB system after 5 min
of chromogenic reaction. Compared with the system without PPi, there was no obvious
change in absorbance, which proves that PPi cannot reduce oxTMB. Therefore, we suggest
that the inhibition of PPi to His@AuNCs/GO is similar to previous reports [47,48], as
shown in Scheme 1, as PPi has strong affinities toward His@AuNCs/GO [49,50].

3.4. Detection of ALP Activity

ALP can catalyze the hydrolysis of PPi in a weak medium to generate Pi. Thus, we
hypothesize that it is possible to restore the inhibited activity of nanozymes when ALP is
incubated with PPi/His@AuNCs/GO (His@AuNCs/GO treated with PPi) via the hydroly-
sis of PPi. With this assumption, we designed a colorimetric ALP activity assay (Scheme 1),
and evaluated the sensitivity of the colorimetric analysis in the detection of the ALP activity.
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Figure 4A shows the absorption spectra of the ALP-treated PPi/His@AuNCs/GO-TMB sys-
tem with different concentrations of ALP. The absorption signal increased with increasing
ALP concentration.
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To verify whether Pi and ALP are directly involved in the restoration of the inhibited
catalytic activity of His@AuNCs/GO, we performed control experiments by adding Pi
and ALP to the His@AuNCs/GO-TMB system. As seen in Figure S9, no color change
was seen in the control tests. The results confirmed the feasibility of the proposed strat-
egy for ALP activity sensing (Scheme 1). Under optimal conditions, the absorbance val-
ues of ALP solutions with different ALP concentrations were measured; the absorption
signals were linear with the ALP activities observed within the range of 0–40 mU/mL
(Figure 4B) (Y = 0.010X + 0.146, R2 = 0.993) and the limit of detection (LOD) for ALP was
0.26 mU/mL evaluated using a signal three-fold the background noise (S/N = 3), and
a LOQ of 0.30 mU/mL at three times background noise is measured. The ALP activity
detection established by this method was better than previously reported, as listed in
Table 2.

Table 2. Comparison of our method with other ALP detection methods.

Material Method Linear Range
(mU/mL)

LOD
(mU/mL) References

Au NPs/ATP Colorimetric 100–600 10 [51]
Au nanorods Colorimetric 5–100 3.3 [14]

CdTe/CdS QDs Fluorescent 3–1000 3 [52]
CDs Fluorescent 2.5–40 1 [53]

GQDs Fluorescent 16.7–782.6 1.1 [54]
Protein stabilized gold nanocubes Fluorescent 0.0312–1 1.616 [55]

PDA nanodots Colorimetric 1–50 0.94 [56]
His@AuNCs/GO Colorimetric 0–40 0.26 This work

The assay method we proposed can distinguish the color change caused by ALP
with the naked eye, is easy to implement, and meets the sensitivity requirements, and
this method does not require expensive instruments to detect ALP [47]. To evaluate
the selectivity of the proposed method, an investigation on the influence of potentially
interfering substances, including ATP, ADP, AMP, Pi, F−, Cl−, Br−, I−, SO4

2−, NO3−,
PO4

3−, CO3
2−, Thr, Val, Pro, His, Leu, and Lys, was performed under the optimized

conditions. We observed that the abovementioned coexisting interfering substances had a
negligible effect on the absorption intensity (Figure 4C). The results demonstrate that, due
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to the strong coordination interaction between PPi and His@AuNCs/GO and the specific
catalytic activity of ALP on PPi, the selectivity of the sensor was satisfactory.

The robustness of the proposed method was evaluated by the relative standard de-
viation (RSD) of sensing affect the His@AuNCs/GO to ALP activity. The results of de-
tection from His@AuNCs/GO of different synthetic batches under the same conditions
were shown in Figure S10A. The calculated RSD were 2.57%, indicating the proposed
method has good accuracy. In addition, the stability of His@AuNCs/GO was evalu-
ated. The His@AuNCs/GO was stored at 4 ◦C for one month; afterwards, 95% of the
oxidase-like activity of His@AuNCs/GO was still preserved compared with the initial
value, and the sensing properties of His@AuNCs/GO to ALP did not change significantly
(Figure S10B). These results indicated that the proposed method have good repeatability
and outstanding stability.

3.5. Analytical Application in Real Samples

To assess the potential applicability of the method, we conducted an assay of the
ALP activity in serum samples with different ALP concentrations. As shown in Table 3,
the recovery efficiency and RSD values were obtained in the range of 98.67–102.5% and
2.08–4.44%, respectively, for different samples, indicating the effectiveness and reliability
in the application of the proposed His@AuNCs/GO hybrid-based colorimetric assay in
real biological samples.

Table 3. Reliability of His@AuNCs/GO for ALP activity detection in real samples (n = 3).

Sample Added (mU/mL) Detected (mU/mL) RSD (%, n = 3) Recovery (%)

1 3 2.96 3.22 98.67
2 4 3.97 4.44 99.17
3 6 6.15 2.08 102.50
4 9 9.15 2.24 101.70

4. Conclusions

In summary, we proposed a facile colorimetric assay for the sensitive and selec-
tive determination of the ALP activity based on the PPi-inhibited oxidase mimic activity
of His@AuNCs/GO. The hydrolysis of PPi by ALP restored the inhibited activity of
His@AuNCs/GO, enabling His@AuNCs/GO to efficiently catalyze the oxidation of TMB
to generate the blue product oxTMB. The intensity of the color showed a linear dependency
(0–40 mU/mL) and can be related to the ALP activity. This is a fast, robust, simple, and
cost-effective method that can be used to accurately and reliably detect ALP activity in real
samples, which suggests that it has good practicability and reliability in detecting ALP
activity in clinical practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios11060174/s1, Electronic supplementary information (ESI) available. Figure S1: UV-Vis
absorption spectra of His@AuNCs/GO-TMB system with different incubation ratios of His@AuNCs
and PDDA-GO (from a to f: 1:10, 1:20, 1:30, 1:40, 1:50, 1:100), Figure S2: UV-Vis absorption spectra of
His@AuNCs/GO-TMB system in different concentrations of His@AuNCs/GO (from a to e: 0.002,
0.003, 0.004, 0.005, 0.006 mg/mL), Figure S3: Effect of pH (a), acetate buffer (b) and TMB concentration
on the oxidase-like activity of His@AuNCs/GO, Figure S4: The absorbance of the sensing system
as a function of the enzymatic reaction time (0, 5, 10, 15, 20, 25, 30, 40, 60 min) in the presence of
0, 10, and 20 mU/mL ALP individually, with PPi as the substrate, Figure S5: The size statistical
histograms of His@AuNCs, Figure S6: EDX of His@AuNCs (A), GO (B) and His@AuNCs/GO (C),
Figure S7: The absorbance of the sensing His@AuNCs-TMB system with PPi as the substrate, The
inset is the inhibitory effect of PPi on His@AuNCs/GO-TMB system, Figure S8: Comparison of the
UV-Vis absorption spectra of the His@AuNCs/GO-TMB system after 5 min of reaction with PPi and
without PPi, Figure S9: UV-vis absorption spectra of His@AuNCs/GO-TMB system in the presence of
ALP and Pi, Figure S10 (A): Detection of ALP activity by colorimetric sensor established by different

https://www.mdpi.com/article/10.3390/bios11060174/s1
https://www.mdpi.com/article/10.3390/bios11060174/s1
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batches of His@AuNCs/GO, (B): a represents the oxidase-like activity of His@AuNCs/GO, b and c
respectively represent the detection of PPi and ALP by the sensor.
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