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A B S T R A C T   

As Covid-19 affects millions of people worldwide, the global health care will encounter an increasing burden of 
the aftermaths of the disease. Evidence shows that up to a fifth of the patients develop fibrotic tissue in the lung. 
The SARS outbreak in the early 2000 resulted in chronic pulmonary fibrosis in a subset (around 4%) of the 
patients, and correlated to reduced lung function and forced expiratory volume (FEV). The similarities between 
corona virus infections causing SARS and Covid-19 are striking, except that the novel coronavirus, SARS-CoV-2, 
has proven to have an even higher communicability. This would translate into a large number of patients seeking 
care for clinical signs of pulmonary fibrosis, given that the Covid-19 pandemic has up till now (Sept 2020) 
affected around 30 million people. The SARS-CoV-2 is dependent on binding to the angiotensin converting 
enzyme 2 (ACE2), which is part of the renin-angiotensin system (RAS). Downregulation of ACE2 upon virus 
binding disturbs downstream activities of RAS resulting in increased inflammation and development of fibrosis. 
The poor prognosis and risk of developing pulmonary fibrosis are therefore associated with the increased 
expression of ACE2 in risk groups, such as obesity, heart disorders and aging, conferring plenty of binding op-
portunity for the virus and subsequently the internalization of ACE2, thus devoiding the enzyme from acting 
counter-inflammatory and antifibrotic. Identifying pathways that are associated with Covid-19 severity that 
result in pulmonary fibrosis may enable early diagnosis and individualized treatment for these patients to pre-
vent or reduce irreversible fibrotic damage to the lung.   

1. Background 

The 2019 Covid-19 pandemic caused by coronavirus SARS-CoV-2, 
has by September 2020 demanded close to one million people’s lives, 
and affected 30 million people. In most patients, the infection is mild but 
with age, the risk of developing serious or fatal disease increases sub-
stantially in magnitudes of ten to up to 100-fold between patients below 
the age of 60 (0.38% mortality) and those older (up to 27% mortality) 
[1]. In fatal Covid-19 cases, diffuse alveolar damage (DAD) is prominent 
with fibrin exudates, hyaline membrane formation, hyperplasia and loss 
of the alveolar type II cells along with disruption of the basement 
membrane and thickening of the alveolar walls. This may lead to the 
collapse of the alveoli, edema and inflammation and cause fatal dys-
pnea. Emerging data show that up to 17% of Covid-19 patients develop 
pulmonary fibrosis [2]. Although mature fibrosis is not evident in most 
fatal cases, consolidations are associated with more severe disease 

developing over time [3]. Histologically, DAD is classified as acute, 
organizing or fibrosing, where fibrosing DAD is associated with longer 
duration of illness, hospitalization and mechanical ventilation [4]. The 
plausible risk of developing chronic pulmonary fibrosis over time in 
these patients needs to be considered, and therefore we aim to review 
up-to-date knowledge about this patient group. The severe acute respi-
ratory syndrome (SARS) between 2002 and 2004, caused by a similar 
coronavirus (SARS-CoV), resulted in chronic pulmonary fibrosis in a 
small subset (around 4%) of the patients, which was evident 15 years 
after the original infection and correlated to reduced lung function and 
forced expiratory volume (FEV) [5]. It is still debatable whether signs of 
early fibrosis in the current Covid-19 pandemic foretell progress into 
pulmonary interstitial fibrosis disease or if it will resolve over time [6,7]. 
However, in light of the SARS epidemic outbreak in the early 2000, 
Covid-19 may in some susceptible patients develop into chronic pul-
monary fibrosis [8], with high unmet clinical need for efficient 
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treatment. Current research lag behind in identifying the patients sus-
ceptible for developing chronic pulmonary fibrosis although patient 
stratifications are starting to crystalize. Underlying chronic inflamma-
tion, and mitigation of the innate immune system, may underlie the 
cytokine storm seen in severe cases [9]. Still more research is needed to 
unravel which pathways are hi-jacked during Covid-19 to develop 
chronic pulmonary fibrosis, and this review aims to lean towards the 
knowledge built in the field of idiopathic pulmonary fibrosis (IPF) since 
striking resemblances exist. 

1.1. The risk groups in Covid-19 and underlying mechanisms 

The severity of Covid-19 varies widely in patients and risk increases 
with age, male gender, and people with underlying disorders such as 
cardiovascular disease, diabetes and obesity [10–12]. In fatal cases with 
Covid-19, patients have developed complications such as severe pneu-
monia, pulmonary edema, acute respiratory distress syndrome (ARDS), 
organ failure, and septic shock. Age and male gender have been shown 
to be independent risk factors for more severe disease development [13, 
14]. The alarming severe outcome in these groups of patients is partly 
caused by a “cytokine storm”, which calls for means to mitigate the 
inflammation. However, blocking single or several cytokines may be 
unfavourable in Covid-19 due to the virally induced lymphopenia and 
the abrogated type 1 interferon response seen in Covid-19. These phe-
notypes may hallmark a more severe Covid-19 infection, where the virus 
buys time to replicate by escaping the innate immune system. As 
reviewed by Quartuccio et al. several biological drugs, including 
anti-IL-6 and anti-IL-1 treatment, are promising in treating the cytokine 
storm, however, cautiousness is emphasized since quenching the im-
mune response could result in a diminished viral clearance [9]. To 
prevent lung damage and fibrosis, it will be important to understand the 
underlying pathways that may be parallell but not always equal to virus 
clearance. Though, the thought to use novel antifibrotic therapies 
designed for IPF is appealing since several of them, for example mole-
cules blocking intergrins and galectins in the TGF-beta pathway, also act 
to inhibit viral infection [8]. Yet another treatment in Covid-19 are 
PDE4 inhibitors (PDE4i). These have recently been suggested as prom-
ising molecules to beat the severe inflammation in Covid-19, acting to 
block infiltration of neutrophils, monocytes, and lymphocytes and to 
reduce inflammatory cytokine and chemokine production from these 
cells and from the lung epithelium [15]. 

The host immune response to the coronavirus infection differs be-
tween males and females and between young and old persons, which 
could be answering to the question why there is a discrepancy in the 
clinical outcome of SARS-CoV-2 infections [16]. The disparity in infec-
tion outcome between sexes may therefore be due to the enhanced 
innate and adaptive immune responses in females that could result in 
better defense against this virus [17]. Moreover, children are equally 
susceptible to the SARS-CoV-2, however, their immune system, being on 
higher alert due to common infections in childhood as well as vaccina-
tion protocols, result in a trained immune memory and may represent a 
cross protection against various pathogens including SARS-CoV-2. 
Children infected with the coronavirus also seem to maintain lympho-
cyte levels, which in adults are reduced and a clinical sign of bad 
prognosis. Lymphocytopenia is seen in 48% of adult Covid-19 patients 
[18]. 

1.2. The fibrotic link 

As a result of the severe inflammatory response in serious Covid-19 
disease, including a cytokine storm, regulatory pathways are activated 
to counteract and heal the damaged tissue. If imbalanced or prolonged, 
this results in a fibrotic response manifested as different patterns in 
computed tomography (CT) scans including interstitial thickening, 
ground glass opacities, irregular interface, coarse reticular pattern and 
parenchymal band [3,19]. Irregular interface and parenchymal band 

could predict early formation of pulmonary fibrosis and may contribute 
to the severity and fatality of the disease [3]. 

1.3. The consequences of ACE2 engagement in virus infection leading to 
fibrosis 

The renin-angiotensin system (RAS) plays a key role in maintaining 
blood pressure homeostasis and salt balance, but is also critically 
involved in acute lung diseases such as ARDS. The RAS has been 
implicated in pulmonary fibrosis and especially the downstream actions 
of angiotensin I (Ang I), which is cleaved by angiotensin converting 
enzyme (ACE) into angiotensin II (Ang II). In this way, Ang II promotes 
inflammatory and fibrotic responses through the Ang II type 1 receptor 
(AT1R) [20]. The other arm in the RAS involves cleavage of Ang I into 
the Ang (1–9) petide by the angiotensin converting enzyme 2 (ACE2) 
and counteracts the ACE arm. Downstream events of Ang (1–9 ) results 
in a reduction of inflammation and fibrosis through the Mas receptor. In 
addition ACE2 also acts on Ang II by converting it into Ang (1–7) pep-
tide, which further attenuates inflammation. The ACE2 thus functions as 
a negative regulator of the angiotensin system [20]. The involvement of 
the RAS system in Covid-19 infection is thoroughly reviewed by Fur-
uhashi et al. [20]. The host entry of SARS-CoV-2 is mediated through 
binding to membrane-anchored ACE2, similar to SARS-CoV in SARS 
[21]. Further, the transmembrane protease serine 2 (TMPRSS2) and 
potentially related proteases e.g. ADAM17 promote SARS-CoV-2 entry 
by ACE2 cleavage, which increases viral uptake, in addition to activating 
the S protein of the virus for membrane fusion [21,22]. Soluble ACE2, 
circulating in the blood may on the other hand have a protective effect 
by binding the coronavirus, hindering endocytosis. In animal models of 
pulmonary fibrosis and in IPF (idiopathic pulmonary fibrosis) patients, 
the ACE2 is downregulated in the lung, thus deminishing the ACE2 
pathway [23]. However, in critically ill Covid-19 patients, the ACE2 has 
been seen to be upregulated in affected lung tissue compared to adjacent 
healthy lung tissue, along with increased plasma levels of ACE2 [24]. 
Although increased soluble ACE2 may be beneficial with the down-
stream action of Ang-(1–7) counteracting inflammation and fibrosis, 
increased membrane bound ACE2, which is also upregulated in smokers, 
older people and diabetes, provides the virus with plenty of entry points 
[25,26]. Lessons could be learned from other organs, and in obesity and 
diabetes, as adipocytes from abdominal fat express ACE2, which may 
serve as a reservoir for the SARS-CoV-2, explaining these patients’ high 
risk of severe disease [27]. The poor prognosis and risk of developing 
pulmonary fibrosis are therefore associated with increased expression of 
ACE2 in risk groups, explained by enhanced binding opportunities for 
the virus and intervention with the ACE2 activity and its beneficial 
anti-inflammatory and antifibrotic effects. This further favors the 
ACE-/Ang II arm, pushing towards increased inflammation and fibrosis 
[28]. Thus, the RAS plays a critical role in the pathogenesis of Covid-19 
and other lung diseases, illustrated in Fig. 1 to outline the molecular 
events involved in Covid-19 infection upon ACE2 binding and down-
stream events. 

1.4. Effector molecules that may contribute to fibrosis 

Given the altered balance of the RAS in Covid-19 and in IPF [29], 
more similarities are shared between these diseases such as increased 
levels of VEGF and IL-6. Mechanistically, the ACE-/Ang II arm is acti-
vated upon increased IL-6 and reactive oxygen species (ROS). This on-
sets the TGF-beta pathway, which in turn is known to be highly involved 
in fibrosis [30]. In fact, IL-6 and IL-1 are known regulators of the in-
flammatory and also fibrotic response in IPF, also seen in Covid-19 pa-
tients [8] potentially contributing to the severe cytokine storm seen in 
these patients. In severe/fatal cases of Covid-19, the inflammatory me-
diators IP-10 (CXCL10), MCP-3 (CCL7) and IL-1 RA were clearly upre-
gulated. Moreover, increased CXCL10 and another chemotactile 
cytokine MCP-2 (CCL8) have also been linked to ARDS for activating 
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various immune cells and counteracting pulmonary fibrosis [31,32]. 
Interestingly, in our studies using an ex vivo model mimicking swift 
cellular responses in IPF [33], we found increased expression of CXCL13 
(unpublished data), a chemokine usually expressed by a subset of T 
helper cells exposed to antigens and that has B cell chemoattractant 
properties. CXCL13 is identified as a predictive marker for IPF [34]. Also 
matrix metallopeptidase 7 (MMP7), which has also been suggested as a 
biomarker for IPF, was distinguished in our model. In line with these 
findings, coronaviruses depend on host MMPs and other proteases such 
as TMPRSS2, for cell infiltration, survival, and replication [21,35], 
further implicating converging pathways in pulmonary fibrosis and 
Covid-19. 

1.5. The chronic inflammation confers fibrosis 

It is established that chronic inflammation affects the tissue micro-
environment and indeed, the massive inflammation seen in severe 
Covid-19 induces fibroblastic activation and increased production of 
extracellular matrix components, MMPs and tissue inhibitors of MMPs 
(TIMPs), which serve to counteract the damages inflicted by inflam-
mation including ROS, proteases and other effector molecules. The 
wound healing response includes thickening of the parenchyma and 
induction of fibrosis in Covid-19, a process that alters the biomechanics 
of the lung and therefore lung function. Prolonged, these events may 
cause chronic pulmonary fibrosis similar to IPF, showing a stiff tissue 
with less compliance [36]. Importantly, the fibrosis renders altered 

Fig. 1. The SARS-CoV-2 depends on protease cleavage by TMPRSS2 of the ACE2 receptor and the spike protein of the virus for efficient cell invasion. The infection 
results in downregulation (endocytosis) of the ACE2 diminishing its anti-inflammatory and anti-fibrotic arm in the renin-angiotensin-system resulting in increased 
inflammation and subsequently fibrosis. ACE (angiotensin converting enzyme), TNF (tumor necrosis factor), IL (interleukin), CXCL, CCL (chemokines), TMPRSS2 
(transmembrane protease serine 2), MMP (matrix metalloprotease). 
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biomechanical properties as more fibrosis increases tissue stiffness, 
although inhomogeneously, throughout the lung [37]. Therefore it will 
be important to also study the effect of altered biomechanics alongside 
with other parameters. In line with this, cells closely sense and respond 
to their surrounding milieu [38,39], where the stiff IPF lung tissue [40] 
is found to induce specific cellular responses and thus being highly 
involved in disease progression [33,41]. This self-propagating cellular 
answer towards the stiffer microenvironment induces enhanced depo-
sition of extracellular matrix proteins, including deposition of glycos-
aminoglycans (GAGs). We have shown that there is significant change in 
amount and structure of GAGs in IPF [42], specifically, highly sulfated 
heparan sulphate was found in the border zone between highly fibrotic 
areas and more normal structures of the distal lung. Changes in GAGs 
will in turn affect the retaining and release of growth factors e.g. 
TNF-alpha, IL-6 and TGF-beta and their activities, which in turn 
contribute to altered cellular activity and further propagate fibrosis. 

2. Conclusion 

The risk factors for developing poor prognosis for Covid-19 include 
obesity, heart disorders and aging and a common denominator for these 
groups is chronic low grade inflammation with augmented baseline of 
IL-6 and TNF alpha [43–45]. Therefore, we conclude the importance of 
identifying subgroups of Covid-19 patients that have a high risk of 
developing chronic structural changes ultimately leading to pulmonary 
fibrosis. Identifying pathways, which are associated with Covid-19 
severity, that results in pulmonary fibrosis may enable early diagnosis 
and individualized treatment for these patients to prevent or reduce 
irreversible fibrotic damage to the lung. Key to understanding the 
convergent disease mechanisms in pulmonary fibrosis and Covid-19, is 
the development of clinical translatable ex vivo models as well as a 
robust animal model. Promisingly, Israelow et al. reported on a platform 
for rapidly testing prophylactics and novel therapies in a mouse model 
that present a robust SARS-CoV-2 infection following inoculation with 
patient authentic virus [46]. This gives promise to solve some enigmas 
relating to Covid-19. 
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