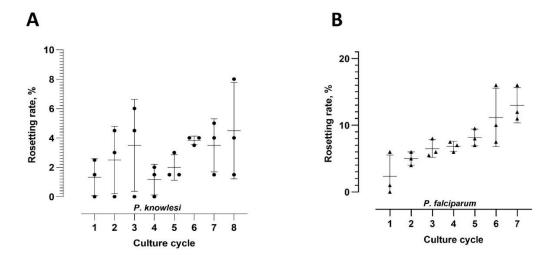


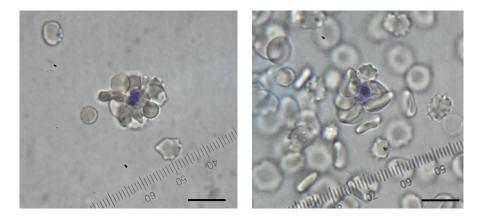
Supplementary Material

Supplementary table 1. Information on tools, reagents and biological materials used in this study.

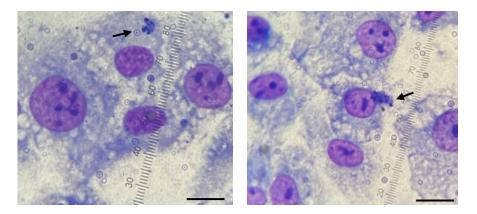
s derived contributed riments for derived ontributed ments for s derived ontributed ments for es 2A-H. s derived contributed riments for derived ontributed riments for derived ontributed ments for derived ontributed ments for
contributed riments for derived ontributed ments for s derived oments for es 2A-H. s derived contributed riments for derived ontributed riments for derived ontributed ontributed ontributed ontributed
contributed riments for derived ontributed ments for s derived oments for es 2A-H. s derived contributed riments for derived ontributed riments for derived ontributed ontributed ontributed ontributed
ontributed ments for es 2A-H. s derived contributed riments for derived ontributed
contributed riments for derived ontributed
ence assay.
ence assay.

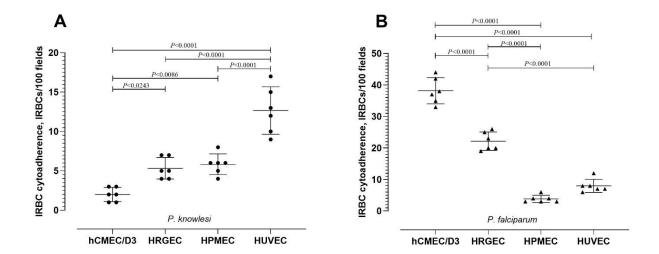

Supplementary Material

Sodium chloride	J.T.Baker	Cat#3624-69
Sodium hydroxide	SYNERLAB	Cat#SY-CS10237
StemPro TM Accutase TM cell dissociation reagent	ThermoFisher Scientific	Cat#A1110501
Trypan blue	Sigma-Aldrich®	Cat#T6146
Trypsin solution	Sigma-Aldrich®	Cat# T3924-100ml
Software	<u> </u>	
GraphPad Prism version 9.5.1	GraphPad	
Others	·	
0.5-10µl micropipette tips	Kirgen	Cat#KG5131-L
1.5ml microcentrifuge tube	GSBIO	Cat#CC102-N-F
1000µl micropipette filtered tips	Axygen	Cat#TF-1000-R-S
15ml Falcon tube	Biofil	Cat#CFT021500
200µl micropipette filtered tips	Axygen	Cat#TF-200-L-R-S
25cm ² cell culture flask canted neck (plug-seal cap)	SORFA	Cat#210110
3ml sterile transfer pipette	Biologix	Cat#30-0138A1
500ml vacuum bottle filter	Biofil	Cat#Fpe204500
50ml Falcon tube	Biofil	Cat#CFT01115
50mL sterile syringe	Terumo	Cat#SS*50LE
75cm ² cell culture flask canted neck (plug-seal cap)	SORFA	Cat#210200
96-well microplates	Nunclon Surface	Cat#137101
Cellulose acetate syringe filter	Bioflow Lifescience	Cat#MALCA25022
(0.22um pore size)		
Cryovial	Corning	Cat#430488
Falcon® Cell Culture Flask T25, filter cap	VWR TM	Cat#29185298
Glass slide	Sail brand	Cat#7101
Kimwipes	Kim Tech Science Brand	Cat#34155/34120
Lab-tek chamber slide w/ cover permanox slide	Thermo Scientific Nunc	Cat#1383823
sterile- 8 wells		
LABTEK chamber slides	ThermoFisher Scientific	Cat#177445
LD columns	Miltenyi Biotec	Cat#130-042-901
Microscope coverslip 22x22mm	Mariendfeld	Cat#0101052
Microscope slide with frosted side	Citoglas	Cat#P/N.0312-2101
Parafilm	Bemis	Cat#PM-996
QuadroMACS TM separator	Miltenyi Biotec	Cat#130-090-976
Vacutainer	BD	Cat#367284


Supplementary table 2. Range of serum OSF-2 levels in various physiologic and pathological conditions.

References	Physiologic serum level (ng/mL)	Pathological serum level (ng/mL)
Gadermaier et al., 2018	Median: 78.5 Range: 36.1 to 133.3	N/A
Caswell-Smith et al., 2016	Median: 50.1 Range: 28.1 to 136.4	N/A
Yildiz et al., 2021	61.4 ± 5.13	Exacerbated asthma 101.6 ± 32.8
Yang et al., 2016	75.96	Nonalcoholic fatty liver disease 126.75
Ninomiya et al., 2018	Median: 87.5 Range: 28 to 245	Eosinophilic Chronic Rhinosinusitis <u>Mild:</u> Median: 104.5 Range: 54 to 259
		Moderate: Median: 114 Range: 40 to 325
		Severe: Median: 136 Range: 48 to 369
Kou et al., 2024	N/A	Atopic dermatitis
Thuwaji et al., 2017	N/A	Cholangiocarcinoma >94
Yamaguchi et al., 2013	N/A	Systemic sclerosis 104.9
Okamoto et al., 2011	N/A	Idiopathic interstitial pneumonias 107.1±11.9
Zhu et al., 2016	N/A	Non-small cell lung cancer 1914.16
Ding et al., 2017	N/A	Diabetic retinopathy 1670.20
Tuna et al., 2024	27.4 ± 14.1	COVID-19 with macrophage activation syndrome (MAS): 43.9 ± 20 COVID-19 without MAS 37.2 ± 22


Supplementary figures


Supplementary figure 1. Basal rosetting rates of *P. knowlesi* (A) and *P. falciparum* (B) across continuous cycles of cultivation. Three biological replicates were performed for each experiment.

Supplementary figure 2. **Rosettes formed by** *P. knowlesi* **(left) and** *P. falciparum* **(right).** Wet mount preparation from 5% Giemsa staining, 1,000 X magnification. Scale bars represent 10 mm.

Supplementary figure 3. *Plasmodium* **IRBC–endothelial cytoadherence.** Snap shots of *P. knowlesi* IRBC (arrows) adhered to HUVEC primed with culture supernatant of *P. knowlesi* culture 1,000 X magnification. Scale bars represent 10 mm.

Supplementary figure 4. Comparison of IRBC–endothelial cytoadherence by *P. knowlesi* (A) and *P. falciparum* (B) with different human endothelial cell lines. One-way ANOVA with Tukey's test was performed. For *P. knowlesi*, the basal IRBC-HUVEC binding was significantly higher than those of HPMEC, HRGEC and hCMEC/D3. For *P. falciparum*, the basal IRBC-hCMEC/D3 binding was significantly higher than those of HRGEC, HPMEC, and HUVEC.