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Background: Characterized by the presence of inflammation, fibrosis, and bile duct proliferation, 
cholestatic liver disease (CLD) affects people of all age groups. Takeda G-protein-coupled receptor (TGR5) 
has been implicated in the suppression of inflammation via toll-like receptor 4 (TLR4) and nuclear factor 
kappa B (NF-κB). Kupffer cells and their M1 polarization play important roles in inflammation and 
cholestatic liver injury via production of pro-inflammatory cytokines. Nevertheless, the function of TGR5 
signaling in CLD is largely unknown. 
Methods: We conducted liver tissue experiments, animal experiments, serum marker testing, liver histology 
analysis, Kupffer cell experiments, RNA extraction and Real-time PCR, western blotting, evaluation of ROS 
production by flow cytometry and statistical differences were analyzed by student t-test using GraphPad 
Prism.
Results: We found that serum bile acid (BA) and TGR5 levels were elevated in patients with cholestasis 
cirrhosis. Knockout of TGR5 in animals significantly increased bile duct ligation (BDL)-caused liver injury 
through increasing oxidative stress, promoting M1-predominant polarization of Kupffer cells, and elevating 
the serum levels of inflammatory cytokines. In contrast, TGR5 activation inhibited ROS production, 
secretion of pro-inflammatory cytokines, and M1-predominant polarization of Kupffer cells. Moreover, 
results showed that TGR5 exerted its effects via suppressing NF-κB signaling and activating nuclear factor 2 
(Nrf2)/HO-1 signaling. Finally, the effect of TGR5 on cholestatic liver damage was also confirmed in vivo. 
Conclusions: TGR5 activation protected against BDL-induced CLD by both suppressing inflammation 
via inhibiting the NF-κB pathway and reducing ROS production via activation of Nrf2/HO-1 signaling. 
These findings show the importance of TGR5 in CLD and provide new insight into therapeutic strategies 
for CLD.
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Introduction

Cholestasis is caused by diminished bile formation, 
impaired bile secretion, or obstruction of bile flow (1). The 
pathological features of cholestasis include the presence 
of liver cell inflammation, necrosis, fibrosis, and bile duct 
proliferation (2). Liver diseases related to cholestasis are 
classified as cholestatic liver diseases (CLDs) (3), which 
may lead to cirrhosis (3) and place a significant health 
burden (4).

Bile duct ligation (BDL) is widely used in the study of 
cholestasis (5,6), and bile acids (BAs) were significantly 
elevated in patients with cholestasis or liver cirrhosis (6,7). 
Cholestatic pruritus is a frequent symptom in patients 
with CLDs, and BAs have been proposed as a putative 
pruritogen (8). TGR5 is the founder member of a BA 
receptor subclass which can be activated by several BAs (9).  
The M1 polarization of Kupffer cells, which are liver 
resident macrophages, contributes to inflammation and 
cholestatic liver injury through cytokines (10,11), and 
studies have indicated that activation of nuclear factor kappa 
B (NF-κB) promotes M1 polarization of macrophages 
(12,13). TGR5 has been shown to protect against cholestasis 
by suppression of cytokine production (14), and activation 
of TGR5 leads to the inhibition of inflammatory response 
through suppressing Toll-like receptor 4 (TLR4) and 
subsequent pro-inflammatory cytokine production (15,16). 
Further, TGR5 activation inhibited NF‐κB and its target 
genes to suppress inflammation (17). These studies suggest 
TGR5 plays an important role in suppressing inflammation, 
which is one of the features of cholestasis. Previous study 
has demonstrated that oxidative stress occurs in the livers 
of humans with cholestasis (18) and that elevated BAs 
cause reactive oxygen species (ROS) production (19,20). 
In addition, Deng et al. showed that TGR5 alleviated 
ROS partially via Nrf2/HO-1 signaling (21). These results 
suggest BAs/TGR5 may affect cholestasis, although there 
exact role in it and CLDs is still unclear and remains to be 
elucidated.

In the present study, using TGR5−/− animals and a 
specific TGR5 agonist, we identified TGR5 as a negative 
regulator of BDL-mediated CLD via suppressing NF-κB-
mediated inflammation, and alleviating BAs induced ROS 
in the liver. 

We present the following article in accordance with the 
ARRIVE reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-2631).

Methods

Chemicals

INT-777 was purchased from MedChemExpress LLC 
(South Brunswick, NJ, Catalog number: HY-15677) and 
lipopolysaccharide (LPS) was purchased from Sigma (St. 
Louis, MO, Catalog number: L8274).

Human liver tissue

The study was approved by the Institutional Ethical 
Review Committee of the Affiliated Changzhou No. 2 
People’s Hospital of Nanjing Medical University {No. 
[2020]KY125-01}. Thirty patients with cholestatic liver 
cirrhosis and 30 controls were included, and liver tissue 
was collected immediately after resection and snap-frozen 
in liquid nitrogen. Written informed consent was obtained 
from all participants. All procedures performed in this study 
involving human participants were in accordance with the 
Declaration of Helsinki (as revised in 2013).

Animal experiments

TGR5−/− male mice were provided by Johan Auwerx and 
Kristina Schoonjans as gifts. Mice were kept in normal 
laboratory conditions and received ad libitum access to 
water and food. The experiment was approved by the 
Institutional Animal Care and Use Committee of The 
Affiliated Changzhou No. 2 People’s Hospital of Nanjing 
Medical University, in compliance with institutional 
guidelines for the care and use of animals.

TGR5−/− and WT mice (8 weeks) were randomly 
divided into a BDL group and sham-operated group 
(n=20 per group). BDL was performed aseptically under 
general anesthesia (ketamine HCl, 50 mg/kg) and the 
abdomen was opened to identify and double ligate the bile 
duct with 5.0 silk sutures. Sham-operated mice received a 
similar procedure without ligation. The investigators were 
blinded to the group allocation during the experiment. 
On day 10, the mice were euthanized and liver tissues  
were collected.

Serum marker testing

The level of alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), BAs, or total bilirubin (TBIL) was 
tested using commercial kits (Nanjing Jiancheng Bio).

https://dx.doi.org/10.21037/atm-21-2631
https://dx.doi.org/10.21037/atm-21-2631
about:blank
about:blank
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Activities of hepatic malondialdehyde (MDA) and catalase 
(CAT)

The activity of hepatic MDA or CAT was tested by 
commercial kits from Nanjing Jiancheng Bio. BCA was used 
to detect the protein concentration of the samples.

Liver histology analysis

Tissues were fixed, embedded, sectioned, and subjected to 
hematoxylin and eosin (HE) staining or Masson’s trichrome 
staining. 

Kupffer cell experiments

Kupffer cells were isolated as described previously. Cells 
were cultured in DMEM with 10% FBS (Invitrogen). To 
determine cell purity, the cells were incubated with CD68 
(1:100, Abcam, ab31630) and Alexa Fluor 488 conjugated 
second antibody sequentially (Beyotime). 

Lentivirus preparation

Short hairpin RNA (shRNA) oligos targeting mouse Nrf2 
(Table S1) were cloned into pLKO.1 vector (OriGene, 
Rockville, MD). The resulting plasmids, psPAX2 and 
pMD2.G, were co-transfected into 293T cells for lentivirus 
production.

RNA extraction and real-time PCR

RNA was isolated using TRIzol (Invitrogen). Two μg of 
RNA was used to synthesize cDNA using Primescript RT 
kit (TaKaRa). Ten ng of cDNA was used for qPCR with 
SYBR Green Master Mix (ABI) and ABI Prism 7300 system 
(ABI) with the following parameters: 94 ℃ 25 s, 38 cycles 
of 94 ℃ 7 s, and 58 ℃ 25 s. Gene level was calculated using 
double-delta method. Primers are listed in Table S2.

Western blotting

Proteins were extracted using radioimmunoprecipitation 
buffer. The cytosolic or nuclear fraction was made by 
NE-PER Nuclear and Cytoplasmic Extraction Reagents 
(Thermo Fisher Scientific). Proteins were resolved on 8% 
SDS-PAGE, transferred to nitrocellulose membranes, 
and incubated at 4 ℃ overnight with primary antibodies  
(Table S3), followed by incubation with HRP-conjugated 

second antibodies. Protein band was detected with ECL 
reagents (Invitrogen) and analyzed with Image J.

Evaluation of ROS production by flow cytometry

Cells were harvested, washed with ice-cold PBS, and 
incubated with 10 μM DCFH-DA (Beyotime) for  
20 minutes, then analyzed by a flow cytometer (Millipore, 
Burlington, MA). 

Statistical analyses

All data are expressed as mean ± standard error. Statistical 
differences between two groups and among more than two 
groups were analyzed by student t-test and ANOVA test, 
respectively, using GraphPad Prism. A P value <0.05 was 
defined as statistically significant.

Results

Serum BA levels and TGR5 expression levels were elevated 
in patients with cholestasis cirrhosis

Both serum BA levels (Figure 1A) and the expression of 
TGR5 at mRNA level (Figure 1B) and protein level (Figure 
1C,D) were significantly up-regulated in the liver tissue of 
patients with cholestasis cirrhosis compared with controls. 

TGR5 knockout exacerbated BDL-caused liver damage

To study TGR5 function in cholestasis cirrhosis, BDL 
was performed in mice. In wild type (WT) mice, BDL 
significantly increased serum levels of AST, ALT, total 
bile acid (TBA), and TBIL on day 1, 3, 7, and 10 (Figure 
2A,B,C,D). TGR5−/− significantly exacerbated BDL-
caused elevation of AST, ALT, TBA, TBIL, and collagen 
deposition and, importantly, also decreased the mouse 
survival rate (Figure 2E). BDL also promoted collagen 
deposition (Figure 2F). These results suggest that TGR5 
knockout significantly increased BDL-caused injury.

TGR5−/− BDL mice showed increased oxidative stress and 
pro-inflammatory response

To study how TGR5−/− exacerbated BDL-caused injury, 
oxidative stress and pro-inflammatory responses were 
evaluated. The results showed that BDL significantly elevated 
the MDA level, which was further increased by TGR5−/−. 

https://cdn.amegroups.cn/static/public/ATM-21-2631-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2631-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2631-Supplementary.pdf
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Figure 2 TGR5 knockout exacerbated BDL-induced liver injury. WT or TGR5−/− mice underwent BDL. (A,B,C,D) Levels of serum AST, 
ALT, total bile acid, and TBIL on day 1, 3, 7, and 10 (n=3 per group). (E) 14-day survival curve of WT in TGR5−/− BDL mice (n=15 per 
group). (F) HE and Masson staining of liver on day 10 (scale bar: 100 μm). ***P<0.001 (vs. sham); ##P<0.01, ###P<0.01 (vs. WT). BDL, bile 
duct ligation; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin (TBIL); HE, hematoxylin and eosin.
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Figure 3 TGR5−/− BDL mice showed increased oxidative stress and pro-inflammatory response. WT or TGR5−/− mice underwent BDL. (A) 
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cytoplasmic) and Nrf2 (nuclear and cytoplasmic) in liver on day 10 (n=3 per group). **P<0.01, ***P<0.001 (vs. control); #P<0.05, ##P<0.01 (vs. 
WT). BDL, bile duct ligation. MDA, malondialdehyde; CAT, catalase.

In contrast, BDL significantly decreased the level of CAT, 
which was further suppressed by TGR5−/− (Figure 3A). In 
WT mice, BDL significantly increased levels of TNF-α 
and IL-6 on day 1 and 3, which was further significantly 
elevated by TGR5−/− (Figure 3B). Western blotting results 
also showed that in WT mice, BDL dramatically enhanced 
TGR5 and TLR4 in liver on Day 10, but sharply suppressed 
HO-1. Silencing of TGR5 further increased TLR4 but 
decreased HO-1 (Figure 3C), suppressed BDL-inhibited 
cytoplasmic NF-κB, increased BDL-induced cytoplasmic 
Nrf2. In contrast, silencing of TGR5 increased BDL-induced 
nuclear NF-κB but suppressed BDL-inhibited nuclear Nrf2 
(Figure 3D). These findings suggest that TGR5 knockout 
exacerbated BDL-induced injury via promoting oxidative 
stress and inflammation.

TGR5 activation inhibited ROS production, secretion 
of pro-inflammatory cytokines, and M1-predominant 
polarization

ATGR5 agonist was then used to further study the role 
of TGR5. Kupffer cells (Figure S1) were isolated from 
BDL mice, then treated with a TGR5 agonist INT-777 
at a concentration of 3 μM for 24 hours. Activation of 
TGR5 significantly decreased ROS production (Figure 4A), 

suppressed the expression of M1 marker iNOS2, increased 
the expression of M2 marker ArgI at the mRNA level 
(Figure 4B), and suppressed the secretion of TNF-α and 
IL-6 (Figure 4C). Activation of TGR5 remarkably inhibited 
the expression of TLR4, but significantly increased 
the expression of HO-1 (Figure 4D). Administration of 
INT-777 also significantly increased cytoplasmic NF-
κB, decreased cytoplasmic Nrf2, decreased nuclear NF-
κB, and increased nuclear Nrf2 (Figure 4E). These data 
confirm TGR5 activation suppresses ROS production and 
inflammation.

INT-777 alleviated the effect of Nrf2 interference 

To investigate how TGR5 activation affects inflammation, 
Nrf2 was silenced in primary WT Kupffer cells using 
lentivirus (Figure S2). Nrf2-silenced WT Kupffer cells 
were then treated with TGR5 agonist INT-777 at a 
concentration of 3 μM for 24 h. The results showed that 
silencing of Nrf2 significantly increased ROS (Figure 5A) 
and M1 marker iNOS2, and decreased M2 marker ArgI 
at the mRNA level (Figure 5B), elevated TNF-α and IL-6 
(Figure 5C), reduced HO-1 (Figure 5D), and increased 
nuclear NF-κB (Figure 5E). INT-777 alleviated the effect of 
Nrf2 interference.

https://cdn.amegroups.cn/static/public/ATM-21-2631-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2631-Supplementary.pdf
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Figure 4 TGR5 agonist INT-777 inhibited ROS production, pro-inflammatory response, and M1-predominant polarization in vitro. 
Primary Kupffer cells from BDL mice were administered INT-777 (3 μM) for 24 hours. (A) ROS levels; (B) mRNA levels of iNOS2 and Arg 
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Activation of TRG5 inhibited LPS-induced M1-
predominant polarization, NF-κB nuclear translocation, 
and secretion of TNF-α and IL-6

To further study the role of TGR5, WT mouse primary 
Kupffer cells were treated with LPS (100 ng/mL) and INT-
777 (3 μM) for 24 h because LPS has been shown to activate 
the TLR4/ NF-κB signaling pathway (22). The results 
showed that activation of TRG5 by INT-777 significantly 
attenuated LPS-mediated IL-6 and TNF-α increase  
(Figure 6A), increase the M1 marker iNOS2 and decrease 
of the M2 marker ArgI at the mRNA level (Figure 6B), 
suppression of cytoplasmic NF-κB, and increase of nuclear 
NF-κB (Figure 6C). These results suggest TGR5 activation 
abolished the effect of LPS. 

Discussion

The present study demonstrated BA and TGR5 levels 

were elevated in patients with cholestasis cirrhosis. Using 
TGR5−/− mice, we further showed that knockout of TGR5 
significantly increased BDL-induced liver injury via elevation 
of ROS, promotion of Kupffer cell M1-predominant 
polarization, and increase of inflammatory cytokines, which 
were all abolished by TGR5 activation. These findings shed 
light on new therapeutic strategies for CLD.

Bile acids promote the flow and excretion of bile, 
excess cholesterol, and waste, and these substances have 
been identified as “digestive surfactants” to promote the 
absorption of lipids (23). One common characteristic of 
cholestasis is elevated levels of bile acids in serum and 
liver. The accumulation of bile acids in the liver induces 
oxidative stress and mitochondrial damage, leading to 
the inflammatory response. The inflammatory damages 
the liver cells, resulting in liver fibrosis, cirrhosis and 
ultimately liver failure. Moreover, BAs also activate 
receptors to trigger downstream signaling (16). It has been 
shown that TGR5 was stimulated by BAs to mediate their 



Annals of Translational Medicine, Vol 9, No 14 July 2021 Page 7 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(14):1158 | https://dx.doi.org/10.21037/atm-21-2631

Figure 5 Nrf2 interference alleviated the effect of INT-777. Nrf2-silencing Kupffer cells were administered with INT-777 (3 μM) for  
24 h. (A) ROS levels; (B) mRNA levels of iNOS2 and Arg I; (C) TNF-α and IL-6 secretion; (D) protein levels of TLR4 and HO-1; (E) 
protein levels of NF-κB (nuclear and cytoplasm). ***P<0.001 (vs. shNC-vehicle); ##P<0.01, ###P<0.001 (vs. shNrf2-vehicle). Nrf2, nuclear 
factor 2; ROS, reactive oxygen species.

effects on energy metabolism and inflammatory responses 
(9,24). Reich et al. reported that stimulation of TGR5 
triggered ROS production, leading to bile acid-dependent 
cholangiocyte proliferation (25), while Keitel et al. showed 
that TGR5 stimulation resulted in the generation of ROS 
in astrocytes and neurons (26). In contrast, one study 
showed that activation of TGR5 by its agonist suppressed 
ROS production in human podocytes (27), and in the 
present study we found that TGR5 activation significantly 
suppressed ROS production. These controversial results 
suggest the effect of TGR5 activation on ROS production 
might be cell or tissue-specific. 

Nrf2 is one of the key transcription factors that mediate 
protection against oxidants (28). Nrf2 has been shown 
to promote HO-1 promoter activity and increase HO-1 

expression (29), which plays a key role in maintaining 
antioxidant/oxidant homeostasis (30), and is implicated in 
a variety of diseases including diabetes and cancer (31,32). 
Here we showed that TGR5 increased nuclei Nrf2, leading 
to HO-1 enhancement and Nrf2 knockdown attenuated 
TGR5 activation effect. This is consistent with the results 
of a previous study showing that TGR5 exerted its effects 
via Nrf2/HO-1 (21). 

Inflammation plays an important role in various diseases 
including cancer, diabetes, cardiovascular disease, and 
CLDs (2,33-35). Previous studies showed that TLR4 plays 
a key role in inflammation associated with several acute 
and chronic diseases (36-38). All TLR signaling pathways 
lead to NF-κB activation, which controls the expression of 
numerous inflammatory genes (39). TLRs have been shown 
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Figure 6 Activation of TGR5 by INT-777 inhibited LPS-induced M1-predominant polarization, NF-κB nuclear translocation, and 
secretion of inflammatory cytokines. WT primary Kupffer cells were isolated and administered LPS or INT-777. (A) TNF-α and IL-6 
secretion; (B) mRNA levels of iNOS2 and Arg I; (C) protein levels of NF-κB (nuclear and plasma). ***P<0.001 (vs. vehicle); ##P<0.01, 
###P<0.001 (vs. LPS + vehicle).

to activate NF-κB and pro-interleukin-1 beta (pro-IL-1β), 
leading to neuroinflammation and age-related neurological 
condition (40), and LR4 has been shown to activate NF-κB 
and increase TNF-α and IL-6 (41). Huang et al. reported 
that TLR4 activated NF-κB to induce IL-6/IL-8, leading 
to colon cancer progression (42). NF-κB was activated 
in hepatocytes (43) and hepatic macrophages (44) during 
cholestatic injury. Downregulation of NF-κB signaling is 
involved in the protective effects of chlorogenic acid in-
naphthylisothiocyanate (ANIT)-induced cholestasis and 
liver injury (45). Our results showed that silencing of TGR5 
significantly increased TLR4 and promoted NF-κB nuclear 
translocation, leading to the elevation of TNF-α and IL-6. 
In contrast, TGR5 activation remarkably inhibited secretion 
of pro-inflammatory cytokines. These findings reveal a 
new role for TGR5 in CLDs, showing that its activation 

inhibits NF-κB signaling to suppress inflammation in 
Kupffer cells. However, role of TGR5 in Kupffer cells and 
CLD, is controversial (10,46-49). It has been reported the 
functions of TGR5 in other liver cells. It may regulate liver 
microcirculation in sinusoidal endothelial cells (SEC) (50), 
TGR5 mediates secretory, proliferative and antiapoptotic 
effects in cholangiocytes (51). Keitel et al. has suggested 
that TGR5 may regulate BA transport in gallbladder 
epithelial cells (52). Animal studies have supported 
the protective roles of TGR5 in various liver diseases. 
RDX8940, a TGR5 agonist improves liver steatosis and 
insulin sensitivity in a mouse model (5). TGR5 regulates 
type I and II Natural killer T (NKT) cell polarization and 
inhibits inflammation in a mouse model of hepatitis (6). 
TGR5 alleviated inflammation response and liver damage 
in a hepatic ischaemia-reperfusion injury model (7). Further 
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studies exploring the possible function of TGR5 in the 
communication between Kupffer cells and other liver cells, 
such as cholangiocytes, gallbladder epithelial cells and 
hepatic stellate cells, during the pathogenesis of CLD will 
provide more relevant data.

Taken together, our results indicate that TGR5 activation 
protects against BDL-induced CLD by suppressing 
inflammation through inhibiting NF-κB-dependent pro-
inflammatory cytokine production and reducing ROS 
through activating Nrf2/HO-1 signaling. These findings 
demonstrate the importance of TGR5 in CLD and provide 
new insight into therapeutic strategies for CLD.
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