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ABSTRACT

Site-specific evolutionary rates can be estimated from codon sequences or from amino-
acid sequences. For codon sequences, the most popular methods use some variation of
the dN /dS ratio. For amino-acid sequences, one widely-used method is called Rate4Site,
and it assigns a relative conservation score to each site in an alignment. How site-wise
dN /dS values relate to Rate4Site scores is not known. Here we elucidate the relationship
between these two rate measurements. We simulate sequences with known dN /dS,
using either dN /dS models or mutation—selection models for simulation. We then
infer Rate4Site scores on the simulated alignments, and we compare those scores to
either true or inferred dN /dS values on the same alignments. We find that Rate4Site
scores generally correlate well with true dN /dS, and the correlation strengths increase
in alignments with greater sequence divergence and more taxa. Moreover, Rate4Site
scores correlate very well with inferred (as opposed to true) dN /dS values, even for
small alignments with little divergence. Finally, we verify this relationship between
Rate4Site and dN /dS in a variety of empirical datasets. We conclude that codon-level
and amino-acid-level analysis frameworks are directly comparable and yield very similar
inferences.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Statistics

Keywords Evolutionary rate, Codon evolution models, Amino-acid evolution models, Rate
variation

INTRODUCTION

Different sites in a protein evolve at different rates (Kimura ¢ Ohta, 1974; Perutz,
Kendrew & Watson, 1965), and these rate differences are shaped by the interplay of
functional and structural constraints each site experiences (Echave, Spielman & Wilke,
2016). For example, protein surface sites tend to evolve faster than interior sites of a
protein (Franzosa ¢ Xia, 2009; Shahmoradi et al., 2014; Yeh et al., 2014b; Yeh et al., 2014a;
Huang et al., 2014; Ramsey et al., 2011; Dean et al., 2002; Scherrer, Meyer ¢ Wilke, 2012;
Mirny ¢ Shakhnovich, 1999; Zhou, Drummond & Wilke, 2008). Active sites in enzymes
tend to be highly conserved (Jack et al., 2016; Dean et al., 2002; Kimura ¢» Ohta, 1973;
Huang et al., 2015), and sites involved in protein—protein interactions are somewhat more
conserved than other surface sites (Mintseris ¢ Weng, 2005; Kim et al., 2006; Franzosa ¢
Xia, 2009; Jack et al., 2016).
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Analyses of sequence variation in a structural context frequently make use of site-specific
evolutionary rate estimates, and a wide variety of different methods exist to infer such
rates from either codon or amino-acid sequences (Nielsen ¢ Yang, 1998; Yang & Nielsen,
2002; Kosakovsky Pond, Frost & Muse, 2005; Kosakovsky Pond & Muse, 2005; Yang et al.,
2000; Murrell et al., 2012; Lemey et al., 2012; Pupko et al., 2002; Fernandes & Atchley, 2008;
Huang & Golding, 2014; Huang & Golding, 2015; Mayrose et al., 2004). The most widely
applied methods for codon sequences are based on dN /dS, the rate of non-synonymous
substitutions per non-synonymous site dN divided by the rate of synonymous substitutions
per synonymous site dS. The dN /dS ratio is commonly used to infer purifying (dN /dS < 1)
or positive selection (dN /dS > 1) in protein-coding genes (Nielsen ¢» Yang, 1998; Goldman
& Yang, 1994). The most popular method for rate inference in amino-acid sequences is
Rate4Site (Pupko et al., 2002; Mayrose et al., 2004). Rate4Site assigns a score to a site as a
proxy for the rate of evolution at that site. Rate4Site is typically used to locate active sites on
the protein structure, such as protein—protein interaction or protein-ligand interaction sites
and catalytic sites (Mousson et al., 2005; Fischer, Mayer & Soding, 2008; Tuncbag, Gursoy
¢ Keskin, 2009; Bradford et al., 2006; Guney et al., 2008). How dN /dS inference methods
relate to Rate4Site scores is not known.

The relationship between protein structure and evolutionary variation has been
investigated in many different protein families and many different datasets of varying
divergence levels and taxonomic origin, and some studies have used codon sequences and
codon-related methods to infer the rate of evolution (Franzosa ¢~ Xia, 2009; Shahmoradi et
al., 2014; Scherrer, Meyer & Wilke, 2012; Zhou, Drummond ¢ Wilke, 2008; Kim et al., 2006)
while others have used amino-acid sequences (Ramsey et al., 2011; Yeh et al., 2014b; Yeh
et al., 2014a; Huang et al., 2014; Huang et al., 2015; Jack et al., 2016; Mirny ¢ Shakhnovich,
1999). Because of these differences in datasets and analysis approaches, it is not obvious
to what extent results from different studies can be compared. To the extent that different
studies produce contradictory results, and they frequently do (Jackson et al., 2016; Echave,
Spielman ¢ Wilke, 2016), are these contradictions due to fundamental differences in the
analyzed datasets (e.g., highly diverged sequences from many taxonomic groups vs. weakly
diverged sequences from a single population) or in the employed methods to infer
evolutionary rates (e.g., inference based on amino-acid sequences vs. on codon sequences)?

Here we address the second question, to what extent analyses at the codon level are
comparable to analyses at the amino-acid level. Specifically, we use extensive simulations
to ask how similar the site-specific Rate4Site scores are to site-specific dN /dS values. We
simulate sequence divergence both under dN /dS models and under mutation—selection
models, and we then ask how inferred Rate4Site scores for these simulated alignments
compare to (i) the true simulated dN /dS values at each site and (ii) the inferred dN /dS
values obtained from the simulated alignments. We find that Rate4Site scores generally
correlate well with dN /dS, in particular if both quantities are inferred from sequence data.
We verify this observation on rates inferred from empirical datasets, and we conclude that
amino-acid level and codon-level analysis of rate variation will generally yield comparable
results.
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METHODS

Generation of simulated alignments

Our simulation approach was similar to the one employed by Spielman, Wan & Wilke
(2016). In brief, we first generated a set of balanced, binary trees with different branch
lengths and numbers of taxa, using the R package ape (Paradis, Claude & Strimmer,
2004). We then simulated sequence evolution along these trees using the python library
pyvolve (Spielman e Wilke, 2015a).

We generated a total of 40 trees, using all pairwise combinations of five different branch
lengths and eight different numbers of taxa. The branch lengths we used were 0.0025, 0.01,
0.04, 0.16, and 0.64. These numbers indicate the divergence in mutations per site between
two nodes in a tree. The numbers of taxa we used were 16, 32, 64, 128, 256, 512, 1,024, and
2,048.

To generate alignments with site-specific dN /dS values, we simulated sequences with
100 codon sites using a site-specific Muse—Gaut model (Muse & Gaut, 1994). To simulate
sequences with constant dS, we set dS = 1 atall sites and set dN at each site to a different value
randomly drawn from a uniform distribution between 0.1 and 1.6. To simulate sequences
with variable dS, we assigned each site a distinct dN and dS value, by first choosing a
randomly drawn dN /dS value, then choosing a randomly drawn dS value, and then setting
dN = dS x (AN /dS). The dN /dS values were drawn from a uniform distribution between
0.1 and 1.6, and the dS values were drawn from a uniform distribution between 0.5 and
2. We generated 50 replicate sequence alignments for each combination of branch length,
number of taxa (128-2,048), and choice of dS (constant or variable), for a total of 2,500
sequence alignments.

We also generated alignments with gamma-distributed site-specific dN /dS values. We
simulated sequences with 100 codon sites using a site-specific Muse—Gaut model. We set
dN /dS to a randomly drawn value from a gamma distribution. We ran simulations for six
distinct gamma distributions, using shape parameters « and rate parameters 8 previously
estimated for six HIV-1 proteins (Table 2 in Meyer ¢ Wilke, 2015b). For each protein
(i.e., distinct gamma distribution), we generated 50 replicate sequence alignments for each
combination of branch length and number of taxa (16-256), for a total of 1,500 sequence
alignments per protein.

For sequences simulated according to MutSel models, we used sequence alignments
previously published in Spielman, Wan & Wilke (2016), specifically the alignments
simulated with unequal nucleotide frequencies. These sequences were simulated using
the Halpern and Bruno model (HB98) (Halpern ¢» Bruno, 1998), and we had alignments
for the same tree parameters, dS variation (constant/variable), and replicate numbers as
our simulations of the dN /dS model, for a total of 2,500 sequence alignments.

Rate inference
To acquire the Rate4Site scores, the simulated sequences were translated into amino acids
using biopython. The translated sequences were inputted into Rate4Site along with their
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corresponding trees. We ran Rate4Site with the following options:

rate4site -s aln_file -t tree_file -o norm_rates_file \
-y orig_rates_file

Here, aln_file is the input fasta file with aligned sequences. The file tree_file contains
the phylogenetic tree. The file norm_rates_file is the output file into which Rate4Site
writes z-normalized rate scores, and orig_rates_file is the output file into which
Rate4Site writes original rate scores. The option -y causes Rate4Site to output original
scores. (By default, Rate4Site only outputs z-transformed scores.) In our analysis we used
only the original scores, renormalized such that they had a mean of 1.

We inferred site-specific dN /dS using the one-parameter fixed-effects likelihood method
(FEL1) implemented in HyPhy (Kosakovsky Pond, Frost ¢ Muse, 2005). We ran HyPhy
using the FEL1 script provided in Spielman, Wan ¢» Wilke (2016). After running the dN /dS
inference, we explicitly set dN /dS = 0 at all sites that did not experience any amino-acid
changes. We did so because the FEL1 method assigns a site-wise dN /dS of 1 to completely
conserved sites that contain no synonymous and no non-synoymous mutations. However,
dN /dS should equal 0 at such sites in a one-parameter model, which implicitly assumes

that dS is the same at all sites and hence will be non-zero even at completely conserved sites.

Analysis of empirical datasets

For analysis of empirical datasets, we used data from Spielman ¢ Wilke (2013) and Meyer
& Wilke (2015b). From Spielman ¢ Wilke (2013), we acquired unaligned sequence

data for six arbitrarily chosen membrane proteins: Mannose-6-phosphate receptor
M6PR (Ensembl transcript ID: ENST00000000412), CD74 (Ensembl transcript ID:
ENST00000009530), CD4 (Ensembl transcript ID: ENST00000011653), G protein-
coupled receptor class C, GPRC5A (Ensembl transcript ID: ENST00000014914), Gamma-
aminobutyric acid type A receptor, GABRA1 (Ensembl transcript ID: ENST00000023897),
and TNF receptor superfamily member 17, TNFRSF17 (Ensembl transcript ID:
ENST00000053243). We aligned the amino-acid sequences using MAFFT 7.305b (Multiple
Alignment using Fast Fourier Transform) (Katoh ¢» Standley, 2013). We ran MAFFT using
default options with:

mafft input_fasta_file > output_fasta_file

Here, input_fasta_file is the fasta file containing sequences to be aligned and
output_fasta_file is the output file into which the alignment is written. The aligned
amino-acid sequences were subsequently back-translated to codon sequences using the
unaligned nucleotide sequences.

For sequence data from Meyer & Wilke (2015b), we used the aligned amino and
nucleotide sequence files for all of the proteins used in the paper.

We inferred phylogenetic trees from amino-acid sequences using RAXML (Stamatakis,
2014). We ran RAXML with the following options:

raxmlHPC-PTHREADS-SSE3 -T 48 -s fasta_file -w output_directory \
-n tree_name -m PROTCATLG -p 1
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Here, fasta_file is the input file containing the aligned sequences. RAXML outputs all
output files into the directory indicated by output_directory, and tree_name is the
name for the output tree files. The option -m PROTCATLG picks a protein CAT model with
LG matrix for the tree inference, and the option -p 1 generates a random number seed for
parsimony inference.

Finally, for all empirical datasets, we inferred Rate4Site scores and per-site dN /dS values
as described in the subsection “Rate inference.”

RESULTS

Both Rate4Site scores and per-site dN /dS values are measures of the extent to which
selection acts on individual protein sites. The Rate4Site model decomposes evolutionary
distances in amino-acid alignments into a site-specific component rx and a branch-specific
component #;, such that the total divergence at site k along branch i can be written as
rrt;. Here, ry is the Rate4Site score at site k and t; is the branch length of branch i in the
phylogenetic tree. Importantly, ¢ is the same at all branches in the tree and ¢; is the same at
all sites for each branch i. Because the rate decomposition is invariant under a rescaling of
r. = Cry and t] = ;/C, Rate4Site scores are not unique unless an additional normalization
condition is specified as well. The Rate4Site software solves this uniqueness problem by
turning the ry into z-scores. However, the more natural normalization is to divide all rx by
their mean, ry, =1/ i where the sum runs over all sites in the protein. These normalized
r;. scores have the simple interpretation of providing the relative increase or decrease in
substitution rate at site k compared to the average rate of substitution in the rest of the
protein.

In contrast to Rate4Site scores, which are calculated from amino-acid alignments, dN /dS
ratios are calculated on nucleotide alignments. They estimate the rate of non-synonymous
divergence relative to the rate of synonymous divergence. However, just like in Rate4Site,
in a site-specific dN /dS model evolutionary divergence is decomposed into a site-specific
dN /dS value and a site-independent branch length. Thus, Rate4Site and site-specific
dN /dS measure fundamentally the same quantity. The main difference is the input data
(amino-acid sequences vs. codon sequences) and the normalization (relative to mean
across sites vs. relative to the synonymous divergence rate dS).

Relationship between Rate4Site scores and true dN/dS

To determine the relationship between Rate4Site and dN /dS models, we began by
simulating sequence evolution with known, site-specific dN /dS values and then comparing
these true dN /dS values to Rate4Site scores inferred from the simulated alignments (Fig.
1). We first considered the case of constant dS among all sites. Thus, for each site in each
alignment, we randomly drew a dN from a uniform distribution ranging from 0.1 to 1.6.
We set dS =1 for all sites, such that the dN /dS ratios similarly varied from 0.1 to 1.6. We
ran simulations along a set of 25 balanced trees with different branch lengths and numbers
of taxa, as used previously in a study of dN /dS inference (Spielman, Wan ¢ Wilke, 2016).
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Figure 1 Analysis approach. We assess the relationships between dN /dS values and Rate4Site scores by
simulating sequences with known dN /dS values and then comparing either known or inferred dN /dS val-
ues for these simulated alignments to the Rate4Site scores inferred on the same alignments.

Simulated sequences were 100 codon sites long, and we generated 50 replicate simulations
for each simulation condition.

We calculated the correlation between each site’s true dN /dS and its inferred Rate4Site
score to assess how well the Rate4Site scores agreed with the simulated rates. We then plotted
the mean correlation strengths in replicate simulations against the simulations” branch
lengths and number of taxa. We found that correlation strengths systematically increased
with both increasing branch lengths and number of taxa (Fig. 2A). While correlations were
low to moderate for the least-diverged and smallest alignments, for larger and/or more
diverged alignments correlations approached values ranging from 0.8 to 1.0.

We also performed a comparison of the magnitude of Rate4Site scores and dN /dS
scores, by calculating root-mean-square deviations (RMSD) between these scores. Because
these two types of scores are not measured in the same units, this comparison may not
seem meaningful. However, we can convert both types of scores into normalized, relative
scores by dividing them by their mean score. These normalized scores have comparable
interpretations and RMSDs between them are meaningful quantities.

We found that RMSD values were generally moderate, between 0.1 and 0.6 (Fig. 2B).
They declined with both increasing number of taxa and increasing sequence divergence.
However, overall RMSD depended more strongly on branch length than on the number of
taxa. Visual inspection of normalized Rate4Site scores plotted against normalized dN /dS
scores revealed no major systematic differences between these scores (Fig. 3). Differences
seemed to be driven primarily by the sampling noise inherent in estimating site-specific
evolutionary rates.

We repeated the same analysis but now using simulations in which dS was allowed to
vary amonyg sites as well. The dN /dS range was kept the same as before (0.1-1.6), but now
each site had its own unique dS, randomly chosen from a uniform distribution ranging
from 0.5 to 2. Overall, we found similar patterns in the variable dS case as we had seen for
constant dS (compare Figs. 2C, 2D to Figs. 2A, 2B. However, correlations were generally
somewhat weaker (Fig. 2C) and RMSD values somewhat higher (Fig. 2D) than what we
had observed for constant dS. These results were to be expected, since Rate4Site as an
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Figure 2 Relationship between Rate4Site scores and true site-specific dN /dS for simulations per-
formed with dN /dS (Muse—Gaut) models. Each point represents the mean over 50 replicate simulations.
The error bars represent the standard error. In nearly all cases, error bars are smaller than the symbol size.
(A) Correlations and (B) RMSD values between Rate4Site scores and true dN /dS, for the sequences sim-
ulated with constant dS = 1. (C) Correlations and (D) RMSD values between Rate4Site scores and true
dN /dS, for the sequences simulated with variable 4.

amino-acid based metric does not take synonymous variation into account, and thus the
dS variation acts simply as added random noise on the dN /dS scores compared to Rate4Site
scores.

Relationship between Rate4Site scores and scaled selection
coefficients

The dN /dS model is not a particularly realistic model of sequence evolution, because it
does not have the notion of an underlying fitness landscape. A mutation increasing fitness
should fix much more rapidly than the reverse mutation decreasing fitness. However, in a
dN /dS model, both mutations fix at the same rate. To increase realism in our analysis, we
next investigated Rate4Site in the context of sequences simulated with mutation—selection
(MutSel) models. MutSel models are specified by scaled selection coefficients, which
describe the relative fitness of different amino acids (or codons) at each site in a sequence.
We can derive expected dN /dS values from these scaled selection coefficients (Spielman &
Wilke, 2015b; Dos Reis, 2015) and hence we can ask how Rate4Site scores compare to the
predicted dN /dS values in MutSel models.

Sydykova and Wilke (2017), PeerJ, DOI 10.7717/peerj.3391 7/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.3391

Peer

0.0025 0.04 0.64
3.51 .

3.0

Rate4Site scores

0 05 1.0 15 20 0 05 1.0 15 200 05 1.0 15 2.0
True dN/dS (normalized)

0.0025 0.04 0.64

Rate4Site scores

0 05 1.0 15 20 0 05 1.0 15 200 05 1.0 15 2.0
True dN/dS (normalized)

Figure 3 Rate4Site scores vs. true normalized dN /dS for a few example alignments simulated with a
dN /dS model. Each point represents one site in the simulated alignment, and the diagonal line represents
the x = y line. Numbers above each subplot indicate the branch length of the alignment, and the number
of taxa was 512 in all cases. (A) Simulations with constant dS= 1. (B) Simulations with variable dS.

For this analysis, we employed previously published sequence alignments from Spielman,
Wan & Wilke (2016). These alignments had been simulated using the Halpern and Bruno
model (HB98) (Halpern ¢ Brumno, 1998) along the same 25 phylogenetic trees we employed
in our previous analysis (five branch lengths in all pairwise combinations with five datasets
with different numbers of taxa). As before, there were 50 replicates per simulation condition,
and we again had one dataset with constant dS and one with variable dS. In the dataset
with constant dS, all synonymous codons have the same fitness (neutral synonymous
codons). In the dataset with variable dS, there are fitness differences among synonymous
codons (non-neutral synonymous codons). See Spielman, Wan ¢ Wilke (2016) for details
of parameter choices.

Our results for sequences simulated with MutSel models were broadly similar to our
results for sequences simulated with dN /dS models (Fig. 4). As before, correlations
increased and approached 1 with increasing branch lengths and numbers of taxa, and
RMSDs commensurately decreased. However, correlation strengths were consistently
lower and RMSD values higher for the MutSel datasets than for the dN /dS datasets at
the same sequence divergence and number of taxa (compare Figs. 4 to 2). As before,
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Figure 4 Relationship between Rate4Site scores and true site-specific dN /dS for simulations
performed with MutSel (Halpern—Bruno) models. Each point represents the mean over 50 replicate
simulations. The error bars represent the standard error. In nearly all cases, error bars are smaller than
the symbol size. (A) Correlations and (B) RMSD values between Rate4Site scores and true dN /dS, for
the sequences simulated without codon bias (neutral synonymous codons). (C) Correlations and (D)
RMSD values between Rate4Site scores and true dN /dS, for the sequences simulated with codon bias
(non-neutral synonymous codons).

differences between normalized Rate4Site scores and normalized true dN /dS values
seemed to be driven primarily by the sampling noise inherent in estimating site-specific
evolutionary rates (Fig. 5). Finally, we found only minor differences between simulations
with neutral synonymous codons and simulations with non-neutral synonymous codons.
However, in the latter case, correlations were generally slightly lower and RMSD values
somewhat higher (compare Figs. 4C and 4D to 4A and 4B).

Relationship between Rate4Site scores and inferred dN/dS

The preceding analyses asked to what extent Rate4Site scores reflect the known underlying
parameters used to generate the sequence alignments. An alternative question, possibly
more applicable to practical sequence analysis, is to what extent Rate4Site scores mirror
dN /dS values inferred on the same sequence data. To address this second question, we
inferred site-wise dN /dS values for all sites in all alignments studied in the previous two
subsections. The dN /dS values were inferred using the one-rate fixed-effects likelihood
method (FEL1) implemented in HyPhy (Kosakovsky Pond, Frost ¢» Muse, 2005). The FELI
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Figure 5 Rate4Site scores vs. true normalized dN /dS for a few example alignments simulated with a
MutSel (Halpern—-Bruno) models. Each point represents one site in the simulated alignment, and the di-
agonal line represents the x = y line. Numbers above each subplot indicate the branch length of the align-
ment, and the number of taxa was 512 in all cases. (A) Simulations without codon bias (neutral synony-
mous codons). (B) Simulations with with codon bias (non-neutral synonymous codons).

method assigns one dN value per site and one dS value across all sites in the sequence
(Spielman, Wan & Wilke, 2016). Therefore, the variation in the inferred dN /dS values is
captured entirely by dN.

We found that Rate4Site scores were very highly correlated to inferred dN /dS across all
datasets and simulation conditions (Figs. 6 and 7). For sequences simulated with the dN /dS
model, correlations for all branch lengths exceeded 0.8 (Figs. 6A and 6C). Correlations
generally increased and approached 1 for sequence alignments with more divergent
sequences or more taxa. RMSD values were large for the smallest and least-diverged
alignments but declined rapidly as either branch length or number of taxa increased (Figs.
6B and 6D). There was little difference between alignments simulated with constant dS
and with variable dS (Figs. 6A vs. 6C and 6B vs. 6D). Results for sequences simulated with
MutSel models were similar (Fig. 7). The main difference was that correlation coefficients
were more sensitive to the number of taxa. For the lowest number of taxa (128) correlation
coefficients were systematically lower when sequences were simulated with MutSel models
rather than with dN /dS models. The pattern reversed for the highest number of taxa
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Figure 6 Relationship between Rate4Site scores and inferred site-specific dN /dS for simulations per-
formed with dN /dS (Muse—-Gaut) models. Each point represents the mean over 50 replicate simulations.
The error bars represent the standard error. In nearly all cases, error bars are smaller than the symbol size.
(A) Correlations and (B) RMSD values between Rate4Site scores and inferred dN /dS, for the sequences
simulated with constant dS = 1. (C) Correlations and (D) RMSD values between Rate4Site scores and in-
ferred dN /dS, for the sequences simulated with variable dS.

(2,048). RMSDs, however, were systematically higher for sequences simulated with MutSel
models rather than with dN /dS models. In all cases, there was little difference between
sequences simulated with neutral synonymous codons and with non-neutral synonymous
codons (Figs. 7A vs. 7D and 7B vs. 7D).

Analysis of more realistic parameter settings and of empirical datasets
The above simulations utilized rates that were uniformly distributed across sites. In
empirical datasets, however, the majority of sites evolves slowly and only very few sites
evolve rapidly, with a resulting distribution that is approximately gamma (see e.g., Meyer
¢ Wilke, 2015b). Therefore, we wanted to assess if the observed relationships between
Rate4Site scores and dN /dS hold for simulations with gamma-distributed true rates. We
simulated sequences with gamma-distributed true dN /dS values, using the shape and rate
parameters obtained by Meyer ¢» Wilke (2015b) for six different HIV-1 proteins. For these
simulations, we also included a range of smaller numbers of taxa (16, 32, and 64) than
before, to increase realism in the simulations.
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Figure 7 Relationship between Rate4Site scores and inferred site-specific dN /dS for simulations per-
formed with MutSel (Halpern-Bruno) models. Each point represents the mean over 50 replicate simula-
tions. The error bars represent the standard error. In nearly all cases, error bars are smaller than the sym-
bol size. (A) Correlations and (B) RMSD values between Rate4Site scores and inferred dN /dS, for the se-
quences simulated without codon bias (neutral synonymous codons). (C) Correlations and (D) RMSD
values between Rate4Site scores and inferred dN /dS, for the sequences simulated with codon bias (non-
neutral synonymous codons).

We found a wide range of correlations between Rate4Site and true dN /dS (Fig. 8A
and Parts A of Figs. S1-55), but the overall pattern was similar to what we had previously
observed for uniformly distributed rates: Correlations increased and approached 1 as either
sequence divergence or the number of taxa increased. Also note that the lowest number of
taxa now was 16 vs. 128 in Fig. 2, and thus at identical numbers of taxa and branch lengths,
the correlations for gamma-distributed rates were generally higher than the correlations
for uniformly distributed rates. On the other hand, the RMSD values between Rate4Site
scores and true dN /dS were higher than in our previous analysis (compare Figs. 8B to 2B).

We also inferred dN /dS from the simulated sequences and compared them to
the Rate4Site scores. Unlike in our previous analysis on inferred dN/dS (Fig. 6), the
correlations between Rate4Site and inferred dN /dS now spanned a wide range of values
(Figs. 8C and Parts C of Figs. S1-55) but were generally higher than the corresponding
correlations between Rate4Site and true dN /dS. On the flip side, RMSD values were larger
when calculated for inferred dN /dS than when calculated for true dN /dS, and there
was a notable uptick in RMSD at the highest branch lengths (Figs. 8D and Parts D of
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Figure 8 Relationship between Rate4Site scores and site-specific dN /dS for simulations performed
with a dN /dS model with gamma-distributed true rates. We used the gamma distribution observed for
the HIV-1 integrase protein, with shape parameter « = 0.312 and rate parameter 8 = 1.027 (Meyer ¢
Wilke, 2015b). Each point represents the mean over 50 replicate simulations. The error bars represent the
standard error. In nearly all cases, error bars are smaller than the symbol size. (A) Correlations and (B)
RMSD values between Rate4Site scores and true dN /dS. (C) Correlations and (D) RMSD values between
Rate4Site scores and inferred dN /dS. All simulations were performed without codon bias (neutral synony-
mous codons).

Figs. S1-55). These observations can be explained with imprecise point estimates produced
by both Rate4Site and dN /dS inference at both low and high sequence divergence: In
general, both methods correctly assess which sites in an alignment evolve more rapidly
than which other sites, and hence correlations are high, but the specific rate estimates
assigned to individual sites are poor at both low and high sequence divergence, and hence
RMSDs are high as well.

Finally, we asked to what extent the results found for simulated sequences carry over to
empirical datasets. We inferred both Rate4Site scores and site-wise dN /dS in two distinct
datasets, one consisting of six membrane proteins in mammals (taken from Spieliman
¢ Wilke, 2013) and one consisting of six alignments of HIV-1 genes (taken from Meyer
& Wilke, 2015b). For both datasets, we measured the correlation between the original
(non-normalized) dN /dS and normalized Rate4Sites scores. We found that Rate4Site
scores and dN /dS were highly correlated, with correlation coefficients exceeding 0.8 in all
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cases (Fig. 9). Thus, we can conclude that our simulation results carry over to empirical
datasets, and that Rate4Site scores are generally comparable to inferred dN /dS values.

Note that we plotted raw (non-normalized) dN /dS in Fig. 9, and as a result points
are not expected to fall onto the x = y line. We plotted the data in this way because
dN /dS values are not typically normalized to their mean, and we wanted to assess how
similar in magnitude raw dN /dS scores are to Rate4Site scores. We found that for proteins
under strong positive selection (such as HIV-1 gp120), raw dN /dS is virtually identical
to Rate4Site. However, for more typical proteins that experience little positive selection,
raw dN /dS values tend to be up to a factor 10 smaller than the corresponding Rate4Site
scores.

DISCUSSION

We have compared codon-level site-specific evolutionary rates estimated via dN /dS to
amino-acid level site-specific rates estimated via Rate4Site. We have found that Rate4Site
scores correlate well with the known true dN /dS values both in sequences simulated with
a dN /dS model and in sequences simulated with a MutSel model. Correlations generally
increase and approach 1 for more diverged sequence alignments and for alignments with
more taxa. Correlations are generally somewhat stronger when there is no variation in
dS among sites, though this effect is minor. We have also compared Rate4Site scores to
inferred dN /dS values and have found high correlations between the two measures, even
for less diverged and smaller alignments. Finally, we have verified the relationship between
Rate4Site scores and dN /dS in a set of empirical datasets, and have found correlations
close to 1 between the two rate estimates.

Surprisingly, even in scenarios of low sequence divergence or few taxa, when Rate4Site
scores are only weakly correlated with the true dN /dS, we have found that they nevertheless
correlate highly with inferred dN /dS. For all levels of sequence divergence and numbers of
taxa, Rate4Site scores always correlate more strongly with inferred dN /dS than with true
dN /dS. While this observation may seem counterintuitive, there is a simple explanation.
The evolutionary process is stochastic, and by random chance some sites will experience
substantially more or fewer mutations than expected given their true rate. At those sites,
all rate inference methods are expected to over/under-estimate the true rate, since their
only input are the mutations that actually happened. As a result, we would generally
expect different inference methods to produce results that are more similar to each other
than they are to the true, underlying parameters. In agreement with this reasoning, a
strong relationship between Rate4Site and inferred dN /dS was also evident in empirical
datasets. For the majority of alignments that we considered, correlation coefficients were
in excess of 0.9. For the two alignments with the lowest correlation coefficients, of 0.83 for
both alignments, the number of sequences were 19 and 22 and sequence divergence was
low. Thus, unless alignments are very small and/or have very little divergence, Rate4Site
scores and site-specific dN /dS can be expected to correlate strongly in all cases. These
findings demonstrate that Rate4Site and dN /dS approaches have comparable ability to
infer rates from sequence alignments. For sufficiently diverged alignments, both methods
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(A) Inferred dN /dS vs. Rate4Site scores for six membrane proteins taken from Spielman & Wilke (2013).
(B) Inferred dN /dS vs. Rate4Site scores for six HIV-1 proteins taken from Meyer ¢ Wilke (2015b).
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accurately recover the true underlying rates. And for alignments with less divergence, they
mis-estimate the underlying rates in a similar fashion.

In several cases, we saw high RMSDs despite high correlations between Rate4Site and
inferred dN /dS. This observation suggests that both approaches rank sites similarly in terms
of whether they are more rapidly or more slowly evolving, even when the point estimates
for rates differ. One major factor causing differences in point estimates is the specific
statistical approach used for rate inference in Rate4Site and in our dN /dS estimation.
In particular, Rate4Site uses a random-effects likelihood (REL) approach in a Bayesian
framework, while for dN /dS we employed a fixed-effects likelihood (FEL) approach in a
maximum-likelihood framework. Prior work has shown that REL and FEL inference for
the same model (e.g., dN /dS) tends to produce comparable estimates (Meyer, Dawson ¢
Wilke, 2013; Kosakovsky Pond ¢ Frost, 2005). However, the dynamic range for REL models
tends to be reduced relative to that of FEL models, and in particular, REL models tend to
overestimate the rates of sites with no or very few mutations. This pattern is evident for
example in the left-most panel of Fig. 3A, where the Rate4Site scores do not fall below
0.5. Because of the tendency of REL models to overestimate rates of completely conserved
sites, we generally prefer FEL approaches for site-specific rate estimation, and we believe
that an FEL version of the Rate4Site model would be a useful addition to the toolbox of
rate-inference approaches.

The dN /dS metric is frequently used to identify sites under positive selection in viruses
(Vijaykrishna et al., 2008; Wood et al., 2009; Demogines et al., 2013; Meyer & Wilke, 2015a).
By contrast, Rate4Site has been mostly applied to identify conserved sites that correspond
to protein—protein interaction sites or active sites in enzyme (Mousson et al., 2005; Fischer,
Mayer & Soding, 2008; Tuncbag, Gursoy & Keskin, 2009; Bradford et al., 2006; Guney et al.,
2008). Our results here show that for purposes of finding the most conserved or most
rapidly varying sites in a sequence alignments, both methods would likely identify similar
sites. One advantage of the dN /dS approach, of course, is the ability to test whether dN /dS
is significantly above 1. When using Rate4Site scores, one can identify the most rapidly
varying sites but one cannot run a statistical test that would determine whether the site is
positively selected or not.

Recently, there has been considerable interest in linking site-specific rate variation
to structural features of proteins (Echave, Spielman & Wilke, 2016). Studies addressing
this topic have considered both dN /dS-based methods (Scherrer, Meyer ¢» Wilke, 2012;
Franzosa & Xia, 2009; Shahmoradi et al., 2014; Kim et al., 2006; Meyer & Wilke, 2015b;
Meyer & Wilke, 2015a) and Rate4Site scores (Huang et al., 2014; Yeh et al., 2014b; Yeh et
al., 2014a; Jack et al., 2016; Huang et al., 2015), though these studies have generally been
done on disparate datasets. The extent to which results found with dN /dS carry over to
Rate4Site and vice versa has not been clear. Our findings here show that since the two
methods infer rates that correlate strongly with each other, either type of inferred rate
should produce comparable correlation strengths with structural features such as solvent
accessibility.

We note several caveats to our conclusions. First, our simulated alignments were
generally large and diverged, even for the smallest number of taxa and lowest branch
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lengths. Even smaller and/or less diverged alignments will yield more noisy, less reliable
Rate4Site inferences. Second, all our simulated alignments were obtained under the
assumption that sites evolve independently from each other and that the rate of evolution
does not change over time. These assumptions will generally increase the congruence
between the true, simulated dN /dS and the inferred Rate4Site score. However, the strong
correlations we observed between Rate4Site scores and dN /dS in several empirical datasets
demonstrate that neither of these assumptions and limitations fundamentally invalidate our
main findings. Amino-acid level and codon-level analyses of sequence data will generally
yield comparable estimates of site-specific rates of evolution.
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