GOOD SCIENCE E SM 0
w ‘ l BETTER MEDICINE
BEST PRACTICE SCIENCE FOR OPTIMAL

CANCER CARE

ORIGINAL ARTICLE

A radiomics-based artificial intelligence model to assess the risk of relapse in
localized colon cancer

C. Prieto-de-la-Lastra®?, J. A. Carbonell-Asins®, A. Bueno*°, A. Gdmez-Alderete®, M. Busto’, A. B. Alcolado-Jaramillo®,

A. Jimenez-Pastor®, X. Monzonis®, A. Cufiat®, C. Montagut®'°, P. Moreno-Ruiz’, M. Huerta®'°, D. Roda*'*’,

F. Gimeno-Valiente*, A. Estepa-Fernandez’®, F. Bellvis-Bataller®, A. Fuster-Matanzo®, J. Gibert®, S. Rosell6*°,

C. Martinez-Ciarpaglini'®'%, J. Vidal®'°, A. Alberich-Bayarri®*, A. Cervantes*°* & N. Tarazona®'°*

'Quantitative Imaging Biomarkers in Medicine, Quibim S.L., Madrid; *Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid;
3Biostatistics Unit, INCLIVA Biomedical Research Institute, University of Valencia, Valencia; 4Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA
Biomedical Research Institute, University of Valencia, Valencia; *Quantitative Imaging Biomarkers in Medicine, Quibim S.L., Valencia; 6Department of Medical
Oncology, Hospital del Mar Research Institute, Universitat Pompeu Fabra, Barcelona; ’Department of Radiology, Hospital del Mar Research Institute-IMIM, Universitat
Pompeu Fabra, Barcelona; 8Department of Radiology, Hospital Clinico Universitario, INCLIVA Biomedical Research Institute, Valencia; 9Hospital del Mar Research

Institute, Barcelona; °CIBERONC, Instituto de Salud Carlos Ill, Madrid; 11Department of Pathology, Hospital Clinico Universitario, INCLIVA Biomedical Research
Institute, University of Valencia, Valencia, Spain

Available online xxx

CHECK FOR
UPDATFS

Background: Accurately estimating relapse risk in localized colon cancer (LCC) remains a challenge, as clinicopathological
staging often fails to differentiate patients with a higher likelihood of recurrence. There is a need for novel tools to improve
patient selection for post-operative chemotherapy. Radiomics has emerged as a powerful, noninvasive approach that may
enhance clinical decision making.

Methods: This retrospective study selected consecutive stage Il and Ill LCC patients operated with curative intent from
2015 to 2017 in two academic institutions. Patients were assigned to either a training cohort made up of 80% of them
or a test cohort, to further validate the initial findings. Penalized Cox proportional hazards and gradient boosted
algorithms were designed to estimate time to relapse following a five-fold cross-validation process. Three models
were assessed: (i) based only on clinical and pathological features, (ii) on radiomic features alone, and (iii) including
clinical/pathological and radiomic variables. A new ‘Risk Classification’ score was generated based on the best risk
assessment.

Results: A total of 278 patients were included in both cohorts. The Cox model trained with clinical and imaging variables
showed the highest prognostic power, with a C-index of 0.68 and a mean cumulative dynamic area under the curve
(AUC) of 0.69 on the test set. Feature screening identified 20 variables, including clinical data, radiomics features,
and fractal features. SHapley Additive exPlanations (SHAP) analysis highlighted factors related to geometry, vascular
invasion, and tumor stage as significant variables related to relapse. The new ‘Risk Classification” score was able to
identify patients with high risk of relapse both in univariable [hazard ratio (HR) 14.22, 95% confidence interval (Cl)
1.91-106.08, P = 0.010] and multivariable (HR 11.74, 95% Cl, 1.54-89.34, P = 0.017) models.

Conclusions: Risk analysis revealed the new ‘Risk Classification’ variable as the one with the highest prognostic power
compared with the ones currently used. Our findings suggest the potential for improved time-to-relapse estimation,
enabling better patient stratification.

Key words: localized colon cancer, imaging biomarkers, machine learning, prognostic biomarkers, radiomics, artificial
intelligence
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GRAPHICAL ABSTRACT
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Current clinical management relies mainly on the TNM
(tumor—node—metastasis) staging system to guide treat-
ment decisions and prognosis for LCC.*® While stage 11l LCC
patients are globally recognized to benefit from chemo-
therapy, such an advantage is still contentious in stage I1.>’
Furthermore, overall survival rate varies significantly for
stage Il patients.®? Risk estimation in LCC is challenging due
to the heterogeneous nature of this condition, making a
treatment decision a complex task.>®’

The value of radiomics in the nonmetastatic colon cancer
setting has been already suggested by other authors, with
classification of patients between low and high risk of devel-
opment of colon carcinoma,’® as well as estimation of the
different patient outcomes including survival,"*™** response to
therapy,"* disease relapse,” lymph node metastasis,"*” mi-
crosatellite instability,18 and recurrence risk.”® These studies
support the idea that radiomics could be a helpful tool in
improving risk assessment in colon cancer patients.

In this context, radiomics offers a promising solution for
addressing the heterogeneous nature of nonmetastatic LCC
and the limitations of current prognostic tools. Radiomics
facilitates the extraction of quantitative features from medi-
cal images, aiming to transform qualitative imaging data into

2 https://doi.org/10.1016/j.esmoop.2025.105495

actionable insights. This noninvasive approach, together with
artificial intelligence (Al) techniques, enables the identifica-
tion of patterns that relate radiomics features with clinical
endpoints. Recent studies have demonstrated the power of
predictive models including radiomics features to better es-
timate survival, treatment response, and recurrence risk of
colon cancer in a noninvasive manner."**>*%%°

In this study, we aim to develop and validate Al-based
models for early estimation of time to relapse and differ-
entiation between low- and high-risk stage Il and stage Il
LCC patients by combining clinical real-world data with an
imaging biomarker panel of radiomics features extracted
from computed tomography (CT) scans acquired before
surgery. By developing and validating this Al-based algo-
rithm, our objective is to provide clinicians with robust tools
for guiding their treatment decisions, potentially improving
patient outcomes.

MATERIALS AND METHODS

Study design

A retrospective real-world data multicenter study was
conducted. The subject cohort included stage Il and IlI
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consecutive localized colon cancer patients with a CT ex-
amination before surgery, acquired from 2015 to 2017.
Patients may or may not have received adjuvant chemo-
therapy after clinical assessment, consistent with standard
clinical practice. The inclusion criteria were as follows: (i)
patients >18 years old with a stage Il or stage Il colon
cancer diagnosis and histological confirmation, who un-
derwent surgery with curative intent, (ii) availability of a
detailed pathology report indicating surgical staging, (iii)
availability of abdomen—pelvic CT scan acquired within 1
month before surgery, and (iv) availability of clinical data on
follow-up. Patients from two different centers (INCLIVA
Biomedical Research Institute and IMIM Hospital del Mar
Research Institute) who met the inclusion criteria were
included. The dataset was obtained retrospectively as part
of an observational study that received approval from the
ethics committee at each institution. Consequently,
informed consent collection was waived.

Clinical data were collected for each subject, including
tumor location, stage, histological grade, vascular invasion,
perineural invasion, colonic obstruction and perforation and
the number of retrieved lymph nodes at the surgical
specimen.

For the development of the algorithm, the whole data-
base was divided into 80% for training and validation, and
20% for external test, as shown in Figure 1A. The partition
consisted of a stratified split based on clinical and patho-
logical categorical variables and on the occurrence of
relapse, to keep the variables balanced among groups.

Statistical analysis

Distributions of clinical variables between the training and
test sets were compared using the Mann—Whitney—Wil-
coxon test for the numerical variables and the chi-squared
statistic for the categorical variables. Moreover, the time
to the follow-up date—in the case of nonrelapsing or
censured patients—and the time to relapse—in case of
relapsing patients—after tumor resection surgery was
recorded, and a Kaplan—Meier analysis was carried out. To
reduce bias, the log-rank test was used to check statistical

similarity between training and test groups according to
relapse.

Data acquisition and annotations

Scanners from four manufacturers were used for image
acquisitions: 53 patients were examined in 4 different
scanner models from GE Medical Systems, 3 exams were
acquired in 2 types of Philips models, 104 exams were
carried out in 4 different Siemens models, and 118 exams
were made in 4 different scanner models from Canon
(Supplementary Table S1, available at https://doi.org/10.
1016/j.esmoop.2025.105495).

Each patient CT exam in the training and the testing
group was manually segmented slice by slice and supervised
by six dedicated radiologists with >12 years of experience.
All the annotations were carried out on the transverse
plane of the original acquisitions using ITK-SNAP v3.8.0.

Data preprocessing

All the images were resampled to have isotropic voxels of
1 x 1 x 1 mm?® through bicubic spline interpolation.
Moreover, a z-score normalization was applied to the vol-
umes before the radiomics analysis. The corresponding
masks of the tumors were also converted to isovoxels of
1 x 1 x 1 mm? by applying nearest neighbor interpolation.

Feature extraction

3D radiomics analysis was carried out extracting low- and
high-order statistics using QP-Insights® platform (Quibim
S.L.,, Valencia, Spain). In total, 1379 radiomic features were
extracted from each region of interest, including shape and
volume (n = 14), first-order (n = 18), second-order (n =
73), and higher order features (14 filters). In the case of
some first-order features that involve square operations,
after clipping CT intensities to —1024 HU, a voxel shift
of +1024 was added to grey level intensities to prevent
negative values from being squared. Second-order variables
included features derived from the Gray Level
Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix

Whole dataset
(278 patients)

80% 20%

Training-validation
dataset
(222 patients)

80% 20%

5-fold cross

validation Tuning-validation
dataset

(45 patients)

Training dataset

Testing dataset
(177 patients) @9

(56 patients)

‘ Model development ‘ ‘ Reproducibility ‘

assessment

[1 23 patients from}

155 patients from
center 2
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278 patients

127 stage Il
cancer patients

151 stage Il
cancer patients

100 nonrelapsing
or censured
patients

86 nonrelapsing
or censured
patients

‘ 65 relapsing

27 relapsing
patients patients

Figure 1. (A) Patient cohort; (B) datasets for training, validation, and testing of the models.
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(GLSZM), Gray Level Run Length Matrix (GLRLM), Neigh-
boring Gray Tone Difference Matrix (NGTDM) and Gray
Level Dependence Matrix (GLDM). To calculate higher order
features, statistical filters were applied to the original im-
age: square, exponential, logarithm, Haar wavelet with
eight decompositions—all possible combinations of
applying either a high- or a low-pass filter in each of the
three dimensions—and Laplacian of Gaussian (LoG) filter
with sigma values equal to 0.5, 3, and 5.

In addition, the 2D and 3D fractal dimensions were
calculated from the CT exams. Fractal geometries are useful
to understand patterns of irregularity changes in the tissue.
An in-house Python-based algorithm was developed for that
purpose. Categorical clinical and pathological features were
converted to one-hot encoding to be processed. Once all
numeric variables were extracted from the imaging exams,
a z-score standardization was applied to avoid biases in
variable ranges and distributions. Thus, the whole database
was composed of 278 subjects with 1388 variables (1379
radiomics, 2 fractal, and 7 clinical and pathological vari-
ables) for each patient.

Model training and tuning

Two different methodologies were explored to find the best
strategy for time to relapse and relapse risk prognosis. Thus,
a penalized Cox proportional hazards model and a gradient
boosted method were implemented to estimate the time to
relapse after surgery. In addition, a five-fold cross-validation
with hyperparameter tuning strategy based on grid search
was implemented in both types of model.

Three models were developed to train and evaluate each
assessment method: the first model exclusively received
clinical and pathological variables as input, the second model
was trained with imaging-based (i.e. radiomics and fractal)
features only, and the third one included the combination of
imaging and clinical variables as input to the model.

The whole database was divided into 80% for training
(222 patients) and validation, and 20% for external testing
(56 patients), as shown in Figure 1. Each fold of the cross-
validation consisted of several steps. Firstly, highly
correlated features were removed by means of the Pearson
correlation coefficient. Then, the Minimum Redundancy—
Maximum Relevance (mRMR) feature selection method***?
was applied to select the most representative features.
Finally, two methods were evaluated for time-to-relapse es-
timations: Cox proportional hazards***> and gradient boos-
ted model.’®?” In each fold of the cross-validation, 80% of
the training set was used for training while the remaining
20% was used as a validation or tuning set (Figure 1). At each
step, different hyperparameters were evaluated to choose
those offering the best performance, therefore maximizing
the C-index on the validation dataset. Supplementary
Table S2, available at https://doi.org/10.1016/j.esmoop.
2025.105495, represents a summary of the hyper-
parameters that were evaluated and adjusted during the
cross-validation to obtain a final model to further test on an
external dataset.

4 https://doi.org/10.1016/j.esmoop.2025.105495
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Testing and model evaluation

Images from 56 different patients were used for external
validation of both models (Figure 1). Preprocessing and
feature extraction were carried out in the same way as for
the training data. After the training and hyperparameter
tuning, the best Cox proportional hazards model and
gradient boosted models trained on each subset of fea-
tures (i.e. clinical/pathological data only, imaging data
only, or both sets of data together) were evaluated
independently on the testing data. To evaluate the per-
formance of the models, the C-index score and the cu-
mulative dynamic area under the curve (AUC)*® were
measured and inspected. C-index is a measurement of
rank correlation between predicted risk scores and
observed time points in which a value of 1.0 would indi-
cate perfect prediction, while a random ordering of risk
scores would have a C-index of 0.5. Furthermore, SHAP
values of the best model were calculated for interpret-
ability and explicability of the algorithm purposes.?® The
model with best performing metrics on the left-out data
from the cross-validation was selected for time-to-relapse
prediction on the test set.

Development and implementation of a novel risk score

A new risk score was elaborated. This way, the relapse risk
for each patient was predicted by the selected model, and
a risk cut-off was calculated to divide the population into
high and low risk of relapse. For this purpose, the optimal
threshold for maximum distance division was established
as the median risk. This threshold was calculated using
the training set after risk score prediction by the best
selected model. The risk threshold was then applied on
the test set, and the log-rank test was implemented to
prove significant differences between classified risk
groups. Therefore, a new dichotomous variable—‘Risk
Classification’—that divided patients into low- and high-
risk subjects was generated. In addition, the prognostic
power and the impact of this new variable on the clinical
routine were also evaluated through two different
methodologies: Cox regression with elastic net penalty
and Cox regression with forward—backward stepwise
variable selection using Akaike’s information criterion
(AIC).2° Clinical variables together with the new Risk
Classification variable served as input to these models,
which were developed using the test set. All the de-
velopments were done using Python v3.9.

Ethics approval and consent to participate

This work was authorized by the local ethics committees
of the Valencia Clinic University Hospital (Spain) (2023/
088) and of Hospital del Mar Research Institute (IMIM)
and conducted following the Declaration of Helsinki prin-
ciple. Informed consent collection was waived as the
dataset was obtained retrospectively as part of an
observational study.
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RESULTS

Patient characteristics

A total of 278 stage Il and stage Il LCC patients were eligible
for inclusion as they had a CT scan acquired before surgery
that passed the quality check and clinical data available, and
they met the other criteria detailed in the Methods section.
Of them, 108 (38.8%) were females and the median age was
78 years (range 41-103 years).

Of the 278 patients included in the study, 127 patients
(45.7%) presented with stage Il disease, and 151 patients
(54.3%) had stage Il LCC. At median follow-up of 42.2
months, 92 patients (33.1%) from the whole cohort expe-
rienced a relapse. Specifically, relapses occurred in 27 stage
Il patients (29.3%), while the remaining 65 patients (70.7%)
presented with stage Il disease (Figure 1B).

A summary of patient clinical and pathological charac-
teristics in both the training and test cohorts is shown in
Table 1. No significative differences were found between
the training and test cohorts. In addition, no statistical dif-
ferences were found in time to relapse between both
groups (log rank test, P = 0.22). The Kaplan—Meier curve of
relapse-free survival for the whole population is depicted in
Supplementary Figure S1, available at https://doi.org/10.
1016/j.esmoop.2025.105495.

Prognostic models and model selection

A Cox proportional hazards model and a gradient boosted
model were implemented. Moreover, three different models
were evaluated considering clinical—pathological variables
only, radiomic features alone, or the combination of both.
Results showed a better performance of the penalized Cox
proportional hazards models over the gradient boosted
model. The Cox model, including clinical/pathological vari-
ables, as well as fractal and radiomic features, performed

Table 1. Patient characteristics in training and test sets
Variable Training set Test set P value
(N = 222), n (%) (N = 56), n (%)
Tumor location 1.00
Right 115 (51.80) 29 (51.79)
Left 107 (48.20) 27 (48.21)
Stage 0.98
I 102 (45.95) 25 (44.64)
I 120 (54.05) 31 (55.36)
Histological grade 1.00
Low 191 (86.04) 48 (85.71)
High 31 (13.96) 8 (14.29)
Vascular invasion 0.52
No 124 (55.86) 28 (50.00)
Yes 98 (44.14) 28 (50.00)
Perineural invasion 0.09
No 155 (69.82) 46 (82.14)
Yes 67 (30.18) 10 (17.86)
Colonic obstruction 0.86
and perforation
No 210 (94.59) 52 (92.86)
Yes 12 (5.41) 4 (7.14)
Number of retrieved 22.49 (0.37) 25.23 (12.97) 0.18
lymph nodes

The table presents categories and distributions of clinical features, and results from
the Mann—Whitney—Wilcoxon and chi-square tests.
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better than the other two with a C-index score of 0.678 and a
mean cumulative dynamic AUC of 0.691 (0.05) in the test set.
Furthermore, the value of the area under the cumulative
dynamic curve was maintained at ~0.7 over time, as
depicted in Supplementary Figure S2, available at https://doi.
org/10.1016/j.esmoop.2025.105495. The C-index and the
mean dynamic cumulative AUC of each model are detailed in
Supplementary Table S3, available at https://doi.org/10.
1016/j.esmoop.2025.105495. Therefore, this Cox model was
selected for risk and time-to-relapse prognosis. The threshold
employed for variable reduction through the Pearson corre-
lation method was 0.9. The regularization term o that was
chosen for Cox training in the hyperparameter tuning was
0.0001. Thus, the 20 most significant variables were selected
using the Pearson reductor and mMRMR methods
(Supplementary Table S4, available at https://doi.org/10.
1016/j.esmoop.2025.105495). Four clinical variables, 15
radiomics features, and 1 fractal feature were selected. In
addition, a SHAP analysis was executed to provide inter-
pretability of the model. Figure 2 represents the SHAP values
of the 20 parameters ordered by their impact on the model
for the test set, being the 3D fractal dimension the most
powerful feature followed by some higher order variables. In
the plot, larger SHAP values (to the right) are associated with
worse prognosis, and variable colors are correlated to feature
values. Thus, the presence of vascular or perineural invasion,
a higher stage (lll versus Il), or a high histological grade (red
colors) are associated with worse prognosis (to the right), as
was expected. In a similar way, the higher the value of the 3D
fractal feature, the higher the resulting SHAP value and,
therefore, the associated risk of relapse also increases.

Novel risk score

To be able to estimate the probability of relapse of new
patients, a risk score was developed. The threshold to
classify patients into high or low risk was defined by the
median risk of relapse of the training set. The risk score
resulted in a risk cut-off of —0.49. Patients with associated
risk above the threshold were classified as high-risk patients
while patients with estimated risk under the cut-off were
categorized as low-risk patients.

Differences in time to relapse were observed between
patients with high risk versus patients with low risk (log-
rank test, P < 0.001), as shown in Figure 3. In brackets,
the total considered patients per year is indicated,
excluding the patients that relapse in previous years and
those with lost follow-up. The distribution of variables
according to risk group was compared for the training and
test sets (Supplementary Table S5, available at https://
doi.org/10.1016/j.esmoop.2025.105495). Therefore, the
risk analysis provided a new dichotomous variable—
named as ‘Risk Classification’—that classified patients as
low or high risk. The added value that this new variable
may provide to clinical practice was then evaluated by
comparing its prognostic power to the power of the
clinical variables that are already considered in clinical
practice.
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Figure 2. SHAP (SHapley Additive exPlanations) values from model testing set.

GLCM, Gray Level Co-occurrence Matrix; GLSZM, Gray Level Size Zone Matrix; HHL, high-high-low pass filter; HLL, high-low-low pass filter; LHH, low-high-high pass
filter; LLH, low-low-high pass filter; LLL, low-low-low pass filter; LoG, Laplacian of Gaussian; NGTDM, Neighboring Gray Tone Difference Matrix.

On the one hand, Cox analysis was carried out by varying
the elastic net penalty a. The impact of each variable was
inspected depending on the penalty (Supplementary
Figure S3, available at https://doi.org/10.1016/j.esmoop.
2025.105495). Results proved that the variable with the
largest Cox coefficient (absolute value) across different
penalties was the risk score (‘Risk Classification’), high-
lighting that this was the feature with the highest impact on
the prediction of relapse. On the other hand, a Cox
regression model with forward—backward stepwise feature
selection was applied to select best model according to AlC.
Both univariable and multivariable analyses were carried
out. Table 2 shows the hazard ratio, confidence intervals,
and P values for each variable, representing their impact on
the relapse prediction. The analyses outputted the risk
score (‘Risk Classification’) variable as the one with highest

6 https://doi.org/10.1016/j.esmoop.2025.105495

impact in both cases, overcoming the power of every clin-
ical variable.

DISCUSSION

This study addresses a critical need in the management of
LCC, particularly for stage Il and Ill patients, who face a risk
of relapse despite the use of post-operative chemotherapy.
With colorectal cancer ranking among the top causes of
cancer-related mortality worldwide™ and current prog-
nostic tools showing limited effectiveness, exploring novel
approaches such as radiomics has become increasingly
relevant.>*® Addressing this, we employed radiomics, a
noninvasive imaging-based technique, to extract quantita-
tive features from presurgery CT scans and develop novel
assessment models for better estimation of time to relapse
in LCC patients.
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Figure 3. Kaplan—Meier analysis of training and test set divided by risk, and number of patients that are relapse free over the years (in brackets, the total of
considered patients per year).

In line with previous studies, our findings demonstrate cohorts, while gradient boosted models tend to perform
that models integrating both radiomics features and clinical better with larger datasets. Consequently, gradient boosted
data outperform those relying only on conventional models exhibited overfitting during training, which was not
clinical—pathological variables,>** offering superior prog- matched by improved performance on the validation set.
nostic accuracy. The Cox proportional hazards model trained Moreover, Cox models allow interpretation of results
on imaging and clinicopathological features showed better through hazard ratios, enhancing their clinical applicability.
overall performance than other evaluated models and This was evidenced by a C-index of 0.68 on the external test
methodologies. This may be attributable to the sample size, set compared with the results from the clinical—
as Cox models are generally more robust with smaller pathological variables alone model (0.65) and the

Table 2. Variables analysis in relapse-free survival Cox regression

Variable HR (univariable) HR (multivariable)
Location n (%)

Left 27 (48.2) — —

Right 29 (51.8) 0.85 (0.36-1.99, P = 0.702) 0.49 (0.20-1.18, P = 0.113)
Stage

Il 25 (44.6) — —

I 31 (55.4) 3.85 (1.29-11.44, P = 0.015) 4.40 (1.44-13.38, P = 0.009)
Number of retrieved lymph nodes

Mean (SD) 25.2 (13.1) 0.97 (0.93-1.01, P = 0.209) 0.96 (0.92-1.01, P = 0.085)
Histological grade

High 8 (14.3) — —

Low 48 (85.7) 0.96 (0.28-3.26, P = 0.949) —
Vascular invasion

No 28 (50.0) — —

Yes 28 (50.0) 1.50 (0.62-3.63, P = 0.365) —
Perineural invasion

No 46 (82.1) — —

Yes 10 (17.9) 2.72 (1.09-6.77, P = 0.032) 2.68 (1.01-7.13, P = 0.049)
Colonic obstruction and perforation

No 52 (92.9) — —

Yes 4(7.1) 1.35 (0.31-5.83, P = 0.686) —
Risk classification

0 21 (37.5) — —

1 35 (62.5) 14.22 (1.91-106.08, P = 0.010) 11.74 (1.54-89.34, P = 0.017)

In bold, hazard ratios (HR) from the Risk Classification variable, representing the new risk score as the feature with highest impact on time-to-relapse prediction. Multivariable
model was selected according to Akaike’s information criterion using all variables included in univariable analyses.
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radiomic-only features model (0.61). Furthermore, the
mean cumulative dynamic AUC showed a value of ~0.7
over time, which was higher than other competing models.
Importantly, we also developed a novel dichotomous risk
score that effectively stratifies patients into low- and high-
risk groups. This score, generated based on the best risk
assessment obtained, emerged as the strongest predictor,
with a hazard ratio higher than any other clinical—
pathological variable. Besides, it remained independently
significant after adjustment for potential confounders, and
its prognostic value was consistent across both training and
test sets, supporting its potential utility as a tool for patient
stratification in clinical practice.

Our results are in line with earlier efforts to improve
recurrence risk stratification beyond classical staging sys-
tems. Thus, in 2018, Pagés et al.>* proposed Immunoscore,
a new quantitative immune-based classifier based on the
evaluation of the density of CD3+ and CD8+ T lymphocytes
in the tumor core and invasive margin. Immunoscore re-
flects the host immune response to the tumor and
demonstrated superior prognostic accuracy compared with
TNM staging, microsatellite instability (MSI) status, and
other clinicopathological markers. Despite its clinical
promise, it is worth noting that the Immunoscore requires
postsurgical histological analysis and immunohistochemical
quantification of T-cell infiltration, limiting its applicability in
preoperative decision making. In contrast, our risk score,
based on radiomic features, offers a noninvasive alternative
capable of effectively stratifying relapse risk before surgery
and is potentially easier to implement in clinical practice.

In parallel, serial circulating tumor DNA (ctDNA) analysis
has emerged as a surveillance strategy for patients with
resected LCC, as its detection has been independently
associated with higher risk of recurrence.*”*> However,
compared with CT imaging—already part of standard pa-
tient management—ctDNA entails higher cost, invasive-
ness, and more limited accessibility. Moreover, the
sensitivity and specificity for the determination of ctDNA is
far from optimal, requiring better diagnostic tools and
further validation in clinical trials. On the other hand,
radiomic analysis of these routinely acquired CT scans offers
an opportunity to extract prognostically relevant informa-
tion before surgery. Indeed, several prior studies have
demonstrated the potential of radiomics in colon cancer,
particularly showing promising prognostic performance for
recurrence with C-indices ranging from 0.68 to 0.78 and
AUCs reaching up to 0.91 in integrated nomograms during
validation.** 3119

Regarding feature selection and its contribution to model
performance, our analysis highlighted the 3D fractal
dimension, which is related to tumor geometry, as the most
powerful variable. Beyond this feature, significant variables
overall revealed the impact of the tumor morphology on
relapse predictions and included several high-order features
related to the texture and homogeneity/heterogeneity
of the tissue. These findings are consistent with prior
studies where radiomic features such as wavelet-based
textures, GLDM-derived measures of local uniformity, and
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GLSZM-derived metrics of small area emphasis have been
associated with relapse risk, all capturing aspects of spatial
disorganization and structural complexity within the tu-
mor."***>*° Moreover, pathological variables such as tumor
stage, histological grade, vascular invasion, or perineural
invasion also stood out for their relapse prediction power.
These prognostic variables highlight the complex interplay
between tumor phenotype and LCC patient outcomes.

Despite the promising results of our study, several limi-
tations should be acknowledged. The limited reliability of
Al-based models, mainly due to the risk of overfitting and
the challenges associated with interpreting radiomics-based
models, must be considered. To strengthen model reliability
and interpretability, several strategies were implemented.
Specifically, to mitigate the risk of overfitting, feature se-
lection and cross-validation techniques were carefully
applied. In parallel, to avoid the ‘black box’ effect—refer-
ring to the limited interpretability of the internal decision-
making processes of Al-based models—SHAP analysis and
Cox regression models, with elastic net penalty and with
backward stepwise feature selection, were used to assess
the contribution of each individual variable. These strategies
helped improve both the robustness and transparency of
our models, facilitating a better understanding of the
mechanisms driving relapse risk. Additionally, while the
retrospective nature of the study and the relatively small
sample size may still limit the generalizability of our find-
ings, the inclusion of patients from two different centers
already represents a step forward compared with most
previous studies conducted in a single-center setting. Future
research should aim to validate these models in larger and
more diverse multicenter cohorts to further enhance their
clinical applicability.

In conclusion, our study shows that the integration of an
Al-based analysis of CT scans with conventional clinical—
pathological data holds some promise for improving
relapse prediction in stage Il and Ill LCC patients. The pro-
posed novel risk score, integrating both radiomic and clin-
ical features, demonstrated the strongest relapse
estimation capability. These findings may have future im-
plications for further patient stratification and planning,
providing clinicians with a new valuable tool to help them in
patient management decisions.
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