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a b s t r a c t

Introduction: Cutting the cost of manufacturing is important for extending the use of tissue-engineered
therapeutic products. The present study aimed to develop a simple method for fabrication of cartilagi-
nous tissues for regenerative therapy, utilizing the phenomenon where human articular chondrocytes
grow thickness-wise and spontaneously form three-dimensionally thick tissues.
Methods: Normal human articular chondrocytes (NHACs) were cultured with varying concentrations of
transforming growth factor beta 1 (TGF-b1) and/or fibroblast growth factor-2 (FGF-2) to optimize the
culture condition for thickness-wise growth of chondrocytes. Next, the tissues grown in the optimal
condition were subjected to re-differentiation culture in attached and detached states to assess differ-
entiation capacity by evaluating secreted factors, histological analysis, and a gene expression assay.
Results: NHACs grew thickness-wise efficiently in the presence of 1 ng/mL TGF-b1 and 10 ng/mL FGF-2.
After two weeks of culture, NHACs grew with 11-fold higher thickness and 16-fold higher cell number
compared to cells which were neither treated with TGF-b1 nor with FGF-2. These thickness-wise-grown
chondrocytes could be re-differentiated by a differentiation medium according to the increase in mel-
anoma inhibitory activity (MIA) and positive safranin-O staining. Interestingly, the cartilaginous gene
expression was considerably different between the attached and detached conditions even in the same
culture medium, indicating the necessity of detachment and shrinkage to achieve further differentiation.
Conclusions: Spontaneous thickness-wise growth might provide a simple tissue-engineering method for
manufacturing cartilaginous 3D tissues.
© 2020, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The main obstacle against extending the use of tissue-
engineered therapeutic products includes its cost of
manufacturing.While pursuing the simplest method for fabricating
a cartilaginous tissue suitable for regeneration of articular cartilage
defects, we found that human articular chondrocytes can grow
GF-b1, Transforming growth
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thickness-wise and spontaneously form a three-dimensionally (3D)
thick tissue even in a conventional tissue culture dish. Thus, in the
present study, we investigated a method for manufacturing tissue-
engineered cartilage grafts exploiting this thickness-wise growth
technique.

It is widely believed that normal primary cells exhibit “contact
inhibition” in tissue culture dishes while malignantly transformed
cells break it and grow aggressively. As an exception, stratified
epithelial cells, such as keratinocytes, can grow three-
dimensionally only in tuned conditions with or without feeder
cells [1,2]. Stratification of epithelial cells has been widely investi-
gated in terms of histology, physiology, pathology, and in vitro
culture techniques [2e8]. In contrast, 3D growth of non-epithelial
cells has been less investigated. However, understanding micro
environment and behavior of cells in 3D tissue culture is a key
factor for elucidating the underlying pathological phenomena, such
as wound healing process or fibrosis, and for tissue-engineering of
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in vitromodels or therapeutic grafts. Few studies have reported that
factors such as transforming growth factor beta (TGF-b) or ascorbic
acid, which stimulate extracellular matrix secretion, promote the
3D growth of fibroblasts in vitro, and these studies indicated the
importance of fibronectin for adhesion among cells [9e12]. In
addition, Hendriks and colleagues reported that chondrocytes can
grow thickness-wise over the confluence in the presence of fibro-
blast growth factor 2 (FGF-2), TGF-b, platelet-derived growth factor
(PDGF), non-essential amino acids (NEAA), and ascorbic acid
phosphate [13]. Therefore, we hypothesized that spontaneous
thickness-wise growth of chondrocytesmight be a simple approach
to prepare 3D cartilaginous tissue, where chondrocytes proliferate
both two-dimensionally and three-dimensionally in a culture
vessel without any extra processing, such as passaging. Although it
is known that articular chondrocytes lose their differentiated
phenotype upon prolonged passage culture [14e16], they regain
their differentiated phenotype partially when cultured with dif-
ferentiation factors (TGF-bs, BMPs, GDFs, or dexamethasone),
especially in 3D cultures including pellet culture. Thus, it was also
expected that the thickness-wise-grown tissues could be re-
differentiated by adding differentiation factors. To ascertain these
hypotheses, in this study, we first optimized the thickness-wise
culture condition of propagated human articular chondrocytes,
and then, examined the re-differentiation capacity of the resultant
construct as a 3D cartilaginous tissue.
2. Methods

2.1. Experimental groups

A total of five culture conditions were compared in this study.
The culture condition of each group is summarized in Fig. 1.
2.2. Cell preparation

Adult normal human articular chondrocytes (NHACs) and adult
normal human dermal fibroblasts (NHDFs) were purchased from
Lonza (Cat.No. CC-2550 and CC-2511, respectively, passage 2 at
arrival). NHACs were passaged twomore times (passage 4) in CGM-
2 medium (Lonza, CC-3216). NHDFs were passaged five more times
(passage 7) in FGM-2 medium (Lonza, CC-3132) or DMEM-F12
medium (Thermo Fisher Scientific, Cat.No. 11320-082) supple-
mented with 10% fetal bovine serum (Japan Bio Serum), 10 ng/mL
Fig. 1. Diagram of culture conditions. Samples in each group were cultured according to th
week 5.
FGF-2 (Fiblast spray, Kaken Pharmaceutical), and 1% penicillin-
streptomycin (Thermo Fisher Scientific, Cat.No. 15140-122).
Passaged cells were cryopreserved in CellBanker 1-plus (Takara Bio)
at �80 �C until further use.
2.3. Thickness-wise growth culture

The cells were cultured in Cell Culture Inserts for 6-well plates
(Corning, Cat.No. 353090) or tissue culture dishes with growth or
differentiation media. Growth medium was prepared by adding
fetal bovine serum (FBS), 1% penicillin-streptomycin, 0.01%
ascorbic acid phosphate magnesium salt n-hydrate (Wako
Chemicals, Cat.No. 013-12061), FGF-2 (Fiblast spray, Kaken Phar-
maceutical), and TGF-b1 (Miltenyi Biotec, Cat.No. 130-095-066) to
DMEM-F12 basal medium (Thermo Fisher Scientific, Cat.No.
11320-082). The concentrations of FBS, TGF-b1, and FGF-2 were
determined in the first experiment (10% FBS, 10 ng/mL FGF-2, and
1 ng/mL TGF-b1). Differentiation medium was prepared by adding
1% FBS, 1% penicillin-streptomycin, 1% insulin-transferrin-
selenium solution (Thermo Fisher Scientific, Cat.No. 41400-045),
0.01% ascorbic acid phosphate magnesium salt n-hydrate, 10 ng/
mL TGF-b1, 10 ng/mL bone morphogenetic protein 2 (BMP-2)
(Miltenyi Biotec, Cat.No. 130-094-616), and 10 ng/mL growth and
differentiation factor 5 (GDF-5) (BioVision, Cat.No. 4667-50).
Thawed NHACs and NHDFs were seeded at 1 � 104 cells/cm2 in
growth medium. For re-differentiation, the medium was changed
to differentiation medium at Day 7. In all experiments, cells were
cultured in a humidified incubator at 37 �C under 5% CO2 and the
medium was changed 2 or 3 times in a week.
2.4. Pellet culture

A pellet culture of chondrocytes was performed to produce a
histological positive control of chondrogenic differentiation
induced by a three-dimensional culture and to confirm the differ-
entiation capacity of the chondrocytes used in this study. Thawed
NHACs were seeded in a tissue culture dish at 1� 104 cells/cm2 and
cultured for four days in growth medium. The cells were then
harvested by Accutase (Nacalai tesque, 12679-54) and re-
suspended in the medium at 1 � 106 cells/mL. Next, 0.5 mL of the
suspension was transferred to a 15 mL conical tube (Corning),
centrifuged at 230�g for 5 min and cultured for four weeks in
differentiation medium.
is diagram. * NHDFs were analyzed at day 28 because they detached spontaneously at
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2.5. Detachment and re-culture of tissues

To promote re-differentiation of chondrocytes, a part of NHAC
tissues at Day 7 were detached from the culture inserts or dishes
mechanically by pipetting. The tissues were then cultured in the
differentiation medium sandwiched by 10% agarose gels to prevent
folding up. When the tissues were detached, they shrunk in parallel
to the culture surface spontaneously.

2.6. Thickness measurement

Three dimensional light scattering images of the tissues were
acquired by an optical coherence microscope (OCM) (Panasonic, in
development) [17], and the thicknesses were measured from these
images using ImageJ software. The resolution of the images was
0.675 mm for the horizontal axis and 0.73 mm for the vertical
(stacking) axis. In these images, the surfaces of culture inserts could
be detected as peaks of intensity, and surfaces of cultured tissues
facing the medium were detected as inflection points of intensity.
The images were slightly blurred by a Gaussian filter to reduce
noises before the measurement. The average of randomly selected
three points was adopted as the representative thickness value for
each tissue.

2.7. Cell counting

The number of cells in each tissue was counted after digestion
by enzymes. Cultured tissues were rinsed with phosphate buffered
saline (PBS) twice, and dispersed by treatment with 5 mg/mL
collagenase (Serva, Cat.No. 17454) for 1e3 h in a 37 �C incubator
followed by TrypsineEDTA (Nacalai tesque, Cat.No. 32777-44)
treatment for 5 min. The cells were collected and counted using
disposable hemocytometers.

2.8. Measurement of secreted factors

To confirm the time-dependent re-differentiation of chon-
drocytes, melanoma inhibitory activity (MIA) and matrix
Fig. 2. Thickness-wise growth of chondrocytes. Human articular chondrocytes of three i
transforming growth factor beta 1 (TGF-b1) and/or fibroblast growth factor-2 (FGF-2) for 2
izontal slice images acquired by an optical coherence microscopy (OCT). White arrowheads in
the OCT images. Bars indicate standard deviations of three strains. Multiple linear regression
TGF-b1 (p ¼ 0.00048) and FGF-2 (p ¼ 0.00026). c, Number of cells in each tissue counted afte
regression analysis proved that the cell numbers were positively correlated with concentra
metalloproteinase 13 (MMP-13) in the supernatants were
measured. Culture supernatants were sampled once a week, 24 h
after medium change, and stored at �80 �C immediately. Next, an
Enzyme-Linked Immuno Sorbent Assay (ELISA) was conducted
using commercially available kits for MIA (R&D Systems, Cat.No.
DY2050) and total MMP-13 (R&D Systems, Cat.No. DY511), ac-
cording to the manufacturer's instructions.
2.9. Histological analysis

To examine the extent of chondrocyte proliferation and re-
differentiation, histological analyses were conducted. Firstly, the
proliferation of chondrocytes in growth medium were demon-
strated using a Ki-67 antibody and 4', 6-diamidino-2-phenylindole
(DAPI). Secondly, the tissues in all culture groups were embedded
in paraffin and sectioned. Then, hematoxylin-eosin (H&E) staining
and Safranin-O fast green staining were performed according to the
standard procedures. In addition, a supplementary immunohisto-
logical analysis for type I collagen and type II collagen was
conducted.
2.10. Quantitative polymerase chain reaction (qPCR)

To examine the phenotypes of chondrocytes in 3D tissues,
quantitative polymerase chain reaction (qPCR) was performed.
Chondrocyte tissues at day 7, 22, and 35 were sampled. Total RNAs
were extracted using RNeasy Plus Mini Universal Kit (Qiagen), and
cDNAs were synthesized by PrimeScript RT reagent Kit (Takara Bio).
Next, Ct values of genes were determined by TaqMan Gene
Expression Assay (Applied Biosystems) with a Viia7 apparatus
(Applied Biosystems) using 5 ng total RNA per reaction. For DCt
calculation, the geometric average of expression (arithmetic
average of Ct values) of YWHAZ, PUM1, and EIF2B1 geneswere used
as endogenous control as determined by geNorm method [18] for
32 housekeeping genes in TaqMan Array Human Endogenous
Controls Plate (Thermo Fisher Scientific). In addition to the DCt
analysis for each single gene with endogenous control genes, DCt
between two opposing genes (COL2A1 to COL1A1, ACAN to VCAN,
ndependent strains were cultured in growth medium with varying concentrations of
weeks. a, Cross-sectional images of 5 mm thickness re-constructed from stacked hor-
dicate sparse or void spaces in the tissues. b, Thicknesses of the tissues calculated from
analysis proved that the thicknesses were positively correlated with concentrations of
r enzymatic digestion. Bars indicate standard deviations of three strains. Multiple linear
tions of TGF-b1 (p ¼ 0.0078) and FGF-2 (p ¼ 0.011).



Fig. 3. Time-course of thickness-wise growth of human articular chondrocytes. Three independent strains of human articular chondrocytes were cultured in GM or DM-A
culture conditions shown in Fig. 1. a, Time-course of thickness and cell number. b, MIA and MMP13 secretion in a day.
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COL1A2 to COL1A1) were directly calculated from the Ct values as
indicators of the state of chondrocytes [19e23]. All the assay targets
are listed in Supplementary Material 1. Statistical analysis was
conducted using paired t-tests between two groups for each gene
and gene combination under the assumption that expressions of a
gene in a group converge to a log-normal distribution [24]. The
differences where the p-value was less than 0.05 were considered
to be significant.
3. Results

3.1. Optimization of culture conditions for thickness-wise growth

Firstly, NHACs were cultured in growth medium (10% FBS) with
0, 0.1, 0.3, or 1 ng/mL TGF-b1 and 0, 10, or 30 ng/mL FGF-2 for 2
weeks, and cell numbers and thicknesses were measured (Fig. 2).
Both TGF-b1 and FGF-2 increased cell number and thickness of the
tissue concentration-dependently although relatively sparse or
void spaces were observed in OCT images in the presence of 30 ng/
mL FGF-2. Thus, we determined the optimum concentration of
growth factors as 1 ng/mL TGF-b1 and 10 ng/mL FGF-2. Next, the
effect of FBS concentrationwas assessed. The thickness of the tissue
slightly increased with FBS concentration. However, tissues
cultured with 20% FBS exhibited many void spaces near the culture
surfaces (Supplementary Material 2a). Therefore, 10% FBS was
adopted for further experiments. In this condition, immunohisto-
logical analysis for Ki-67 demonstrated that proliferation of chon-
drocytes continued at least up to 2 weeks in the tissues
(Supplementary Material 2b).
Fig. 4. Histological analysis of cultured tissues. H&E, hematoxylin and eosin staining.
Safranin O, Safranin-O and fast green staining. Culture conditions are shown in Fig. 1.
Bars indicate 100 mm.
3.2. Time-course of thickness-wise growth

Secondly, how chondrocytes grow thickness-wise in growth
medium or differentiation mediumwas investigated (Fig. 3). In GM
group, NHACs were cultured in growth medium (containing 10 ng/
mL FGF-2 and 1 ng/mL TGF-b1) for five weeks. In DM-A group,
NHACs were cultured in growth medium during the first week, and
cultured in differentiation medium in second to fifth weeks (see
Fig. 1). Tissues and culture supernatants were sampled weekly, and
subjected to the analysis of thickness, cell number, and secreted
chondrogenic markers (MIA and MMP-13). In the GM group, both
thickness and cell number increased until day 21, and the increase
was suppressed after that. MIA secretion was stable over the cul-
ture period. MMP-13 secretionwas high at day 7e8, but stable after
day 14. In DM-A group, the increase of thickness was comparable to
that of GM group. However, the increase in cell number was slower
than GM group. MIA secretion increased gradually indicating the
re-differentiation of chondrocytes, while the secretion of MMP-13
decreased.



Fig. 5. Expression of cartilage-related genes. Three independent strains of human articular chondrocytes were cultured in three conditions (GM, DM-A, and DM-D). Until day 7,
the chondrocytes in all three groups were cultured in the same condition with growth medium. After that, the cells in GM group were cultured in growth medium, the cells in DM-A
group were cultured in differentiation medium, and the cells in DM-D group were detached from the culture inserts and cultured in differentiation medium. Total RNAs were
extracted at day 7, 22 and 35 for qPCR analysis. a, Expression of each gene relative to the endogenous control genes. b, Relative expression between two genes. Downward arrows in
the graphs indicate instances where the Ct values could not be determined over 50 cycles.
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Table 1
Paired t-test of gene expression between GM group and DM-A group.
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3.3. Histological analysis

Paraffin sections of a tissue cultured in each condition of Fig. 1
were subjected to H&E staining and Safranin-O/fast-green stain-
ing (Fig. 4). Samples in GM group and fibroblast group were
negative for Safranin-O as expected, and samples in DM-A, DM-D,
and pellet culture group were vividly positive for Safranin-O
proving accumulation of glycosaminoglycan in these tissues.
However, chondrocytes in DM-A sample presented flatten
morphology while chondrocytes in DM-D and pellet culture sam-
ples had rather round shapes. In addition, immunohistological
analysis revealed different fluorescence patterns for type II collagen
between DM-A and DM-D groups (Supplementary Material 3).

3.4. Quantitative polymerase chain reaction (qPCR) analysis

Finally, the expression of cartilage-related genes in GM, DM-A
and DM-D groups were quantified by qPCR (Fig. 5, Table 1, and
Table 2) to elucidate the phenotypic differences among these
groups. In comparison between GM group and DM-A group, the
expression of COL2A1 was higher in DM-A group at day 35, and the
expression of ACANwas higher in DM-A group at day 22 and day 35
while the expression of VCAN was higher in GM group at day 22
and day 35, confirming the effects of differentiation medium to
promote re-differentiation of chondrocytes. In comparison be-
tween DM-A (attached) group and DM-D (detached) group, the
expressions of COL2A1 and SOX9were higher in DM-D group at day
22 and day 35, suggesting the detachment and/or shrinkage had
positive effect on differentiation of chondrocytes. The expression of
RUNX2 was slightly higher in DM-A group.

4. Discussion

It is known that growth factors, serum, and ascorbic acid induce
thickness-wise growth of fibroblasts and chondrocytes [9e13].
Among these factors, we examined the effects of TGF-b1 and FGF-2
because they synergistically promote two-dimensional growth of
chondrocytes [25e28]. Accordingly, both TGF-b1 and FGF-2
increased cell number and thickness in a concentration-
dependent manner. We also confirmed FBS concentration affected
the thickness. Thickness-wise growth occurred even in 1% FBS
when supplemented with TGF-b and FGF-2, suggesting that high
serum content was not essential for this phenomenon (Supple-
mentary Material 2a).

Secondly, we evaluated the time-course of NHAC thickness-wise
growth in terms of thickness and cell numbers. In growth medium,
NHACs proliferated up to 3 � 106 cells/cm2 and the thickness
increased up to 120 mm within 3 weeks although the proliferation
and the increase of thickness slowed down in week 4 and 5.
Immunohistochemistry analysis for Ki-67 demonstrated that
chondrocytes can proliferate even at the top of the tissue (Sup-
plementary Material 2b). It indicated that cell-dense tissues and/or
secreted extra cellular matrix provided a substrate on which cells
adhere and proliferate. Therefore, what is limiting the proliferation



Table 2
Paired t-test of gene expression between DM-A group and DM-D group.
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and the increase of thickness is to be investigated. In differentiation
medium, the proliferation of NHACs was limited while the thick-
ness increased probably because sizes of the cells enlarged through
differentiation.

Then, we examined the differentiation capacity of these
thickness-wise-grown tissues. MIA secretion increased after the
medium change for differentiation medium in DM-A group. MIA
has been reported to be a reliable chondrogenic differentiation
marker [29]. Therefore, the medium could promote re-
differentiation of chondrocytes. MMP-13 secretion was seen in
GM group but declined in DM-A group. MMP-13 is secreted in
osteoarthritis cartilages [30e32] and used as a marker for hyper-
trophic differentiation followed by calcification as well as type X
collagen [33,34]. However, primary culture chondrocytes derived
fromnormal cartilage also secreteMMP-13 [32], and the expression
is strongly stimulated by FGF-2 [35e37]. Therefore, high secretion
of MMP-13 in GM group should come from FGF-2 supplementation
in growth medium while low secretion of MMP-13 in DM-A group
may reflect their imperfect hypertrophic differentiation. In the
histological examination, the tissues in DM-A, DM-D and pellet
culture groups were positive for Safranin-O staining indicating
accumulation of glycosaminoglycan as expected. However, the
chondrocytes in DM-A group presented flattened shapes while the
chondrocytes in DM-D and pellet culture groups have spherical
shapes. In addition, immunohistochemistry analysis for type II
collagen demonstrated different fluorescence patterns between
DM-A and DM-D groups (Supplementary Material 3). In DM-A
group, the cytosol of chondrocytes was slightly positive and inter-
cellular space showed less fluorescent intensity. In the samples of
DM-D and pellet culture group, the cytosol of chondrocytes was
negative and inter-cellular space had strong intensity. Hence, we
performed gene expression analysis for cartilage-related genes to
elucidate the difference.

The qPCR analysis revealed a gap in the expression of cartilag-
inous differentiation marker genes between DM-A group and DM-
D group according to the histological observation. For example, the
ratio of COL2A1/COL1A1 was higher in DM-D group by DDCt¼ 11 at
day 35 (Table 2). This gap should arise due to the change of peri-
cellular micro environment at the detachment from the substrate,
including cytoskeletal shrinkage, thickening of tissue, and gel-
sandwiched culture. These results suggested that both the differ-
entiation factors in differentiation medium and the structure of the
3D tissues are necessary for accomplishing the differentiation of
chondrocytes as observed from the expressions of chondrogenic
markers, such as COL2A1 or SOX9. Interestingly, the direct com-
parisons of two opposing genes indicated that the soluble differ-
entiation factors (GM vs. DM-A) mainly affected ACAN/VCAN ratio
while the structure of the tissue (DM-A vs. DM-D) had great impact
on COL2A1/COL1A1 ratio. The expression ratios of COL2A1 to
COL1A1 and ACAN to VCAN were reported as quantitative differ-
entiation markers for chondrocytes [19e23] although it was also
reported that the rises of both ratios do not necessarily coincide
[23]. In addition, COL1A2/COL1A1 ratio (ratio of two types of chains
forming type I collagen) decreased from GM to DM-A, and
increased from DM-A to DM-D. Basically, type I collagen consists of
one a2 chain and two a1 chains [38], and the protein synthesis ratio
of COL1A2/COL1A1 is regulated to be 1:2 both at the levels of
transcription and translation [39e41]. However, it has been re-
ported that the mRNA ratio of COL1A2/COL1A1 was lower in bones
of osteoarthritis patients [19] and higher in developing cartilages
[42]. Also, type I collagen a1 chain homotrimer was found in fetal
tissues, genetic disorders, fibrotic tissues, carcinomas, and fetal and
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cancer cell cultures [43]. At present, we cannot judge weather the
result is trivial or profound, the ratio might indicate a kind of
normality of cartilaginous tissues.

Articular cartilage regeneration by cultured human chon-
drocytes was first reported in 1994 by Brittberg et al. [44], and
thereafter, several methods to effectively transplant functional
chondrocytes at cartilage defect sites have been investigated. The
technical challenge of these methods converged on the fact that
chondrocytes lost their differentiated state in two-dimensional
in vitro propagation while the expanded chondrocytes could
regain their differentiated phenotype partially by soluble differ-
entiation factors and by three-dimensional cultures [45e48]. In the
context of production of cell-based medicines, the simpler method
is preferred because a complicated procedure requires trained cell
culture technicians and causes risk of quality variance including
microorganism contamination. In line with this, our method has an
advantage in sweeping away the steps of passaging cells and three-
dimensional tissue fabrication from the manufacturing process,
which may reduce the total cost of manufacturing. Once chon-
drocytes are isolated from a donor tissue, all you need is medium
changes which can be done by a less-trained person or by an
automated medium change apparatus. However, if the re-
differentiation of the tissue is required for effective repair of the
cartilage defects, the detachment of tissues from culture vessels
and the following gel-sandwiched culture is rather elaborated
process. That is a drawback of the current method. While searching
the simplest method exploiting the forerunners' effort, as a by-
product, this study has demonstrated that the structure of tissue
affects the phenotype of chondrocytes even in three-dimensional
cultures, although previous reports have mentioned the differ-
ence only for two-dimensional culture vs. three-dimensional cul-
ture. In short, what is essential is not only ‘dimension’ but also
‘structure’.

5. Conclusion

In this study, we demonstrated that propagated human articular
chondrocytes grew thickness-wise efficiently in the presence of
FGF-2 and TGF-b1, forming three-dimensional thick tissues that
could be re-differentiated by a differentiation medium in terms of
glycosaminoglycan accumulation. However, further differentiation,
in terms of expression of chondrogenic marker genes, required
detachment and shrinkage. Collectively, the thickness-wise growth
technique might prove to be a simple approach for manufacturing
cartilaginous 3D tissue grafts for regenerative therapy, and the
detachment from the culture surface is a key factor for chondro-
genic re-differentiation of the tissues.
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