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Abstract: Irregular dietary intakes impairs estimations from food records. Biomarkers and method
combinations can be used to improve estimates. Our aim was to examine reproducibility from two
assessment methods, compare them, and validate intakes against objective biomarkers. We used
the Malmö Offspring Study (55% women, 18–71 y) with data from a 4-day food record (4DFR) and
a short food frequency questionnaire (SFFQ) to compare (1) repeated intakes (n = 180), (2) intakes
from 4DFR and SFFQ (n = 1601), and (3) intakes of fatty fish, fruits and vegetables, and citrus
with plasma biomarkers (n = 1433) (3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid [CMPF],
β-carotene and proline betaine). We also combined 4DFR and SFFQ estimates using principal
component analysis (PCA). Moderate correlations were seen between repeated intakes (4DFR median
ρ = 0.41, SFFQ median ρ = 0.59) although lower for specific 4DFR-items, especially fatty/lean fish
(ρ ≤ 0.08). Between-method correlations (median ρ = 0.33) were higher for intakes of overall food
groups compared to specific foods. PCA scores for citrus (proline betaine ρ = 0.53) and fruits and
vegetables (β-carotene: ρ = 0.39) showed the highest biomarker correlations, whereas fatty fish
intake from the SFFQ per se showed the highest correlation with CMPF (ρ = 0.46). To conclude,
the reproducibility of SFFQ data was superior to 4DFR data regarding irregularly consumed foods.
Method combination could slightly improve fruit and vegetable estimates, whereas SFFQ data gave
most valid fatty fish intake.

Keywords: food intake; dietary assessment methods; reproducibility; validation; biomarker; fish;
vegetables; fruits; citrus

1. Introduction

A significant part of chronic diseases can be prevented by leading a healthy lifestyle,
including diet. Consequently, there is a need for improved understanding of the role
of dietary intakes in disease prevention. However, dietary intake in epidemiological
studies mainly relies on self-reported information, and all dietary assessment methods
are prone to errors [1]. Irregular consumption of foods makes it difficult to remember and
report dietary intake, which complicates valid assessment of long-term habitual intakes [2].
Previous results from the Malmö Diet and Cancer cohort indicate that the validity and
reproducibility of intake assessments of some specific foods consumed on a non-regular
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basis, such as fish, are quite low [3–6]. This points towards some intakes being challenging
to capture, and it may therefore be valuable to combine dietary assessment methods with
different strengths and weaknesses in order to improve the ability to capture habitual
dietary intake. In addition, biomarkers of dietary intakes can be important complements to
self-reported dietary data and have been used to validate dietary assessment methods [7,8].
The biomarker 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), measured in
human plasma, has previously been associated with dietary fish intake, especially fatty fish
and fish oils [9–11]. Plasma β-carotene is an objective biomarker for fruit and vegetable
intake [12,13], whereas proline betaine, which is present in citrus, has been identified as an
objective biomarker of citrus intake [14,15].

In this study, we compared intakes from the two different dietary assessment methods
used in Malmö Offspring Study (MOS): a 4-day food record (4DFR) and a short food
frequency questionnaire (SFFQ). In a subsample, we also examined the reproducibility
of data obtained by the two methods using repeated intake measurements with a mean
time interval of 1.6 y. Finally, we examined the validity of data on fatty fish, fruit and
vegetable and citrus intakes from each assessment method, as well as of data obtained
by combining intakes obtained from the 4DFR and SFFQ, using the plasma biomarkers
CMPF, β-carotene and proline betaine. This study evaluates the quality of dietary data in
MOS, and may indicate which data to use regarding different foods, in order to capture
dietary intake most accurately when further examining associations between diet and
chronic disease.

2. Materials and Methods
2.1. Data Collection

MOS is an ongoing population-based cohort study where children and grandchil-
dren (aged > 18 years) of the Malmö Diet and Cancer–Cardiovascular Cohort are re-
cruited [16–18]. The participants visited the research clinic twice. At the first visit, venous
blood was drawn after an overnight fast; anthropometrics were measured and the partici-
pants were instructed as to how to record the 4DFR (starting the day after the first visit)
and how to fill in a SFFQ and a comprehensive questionnaire on other lifestyle and so-
cioeconomic factors. All participants provided written informed consent and the Regional
Ethics Committee of Lund University approved the MOS study protocols (Dnr: 2012/594).

2.2. Study Sample

From the start of the study in March 2013 until April 2017, 2644 individuals partici-
pated in baseline examinations (47% of the eligible participants). Among those, 1601 partic-
ipants (54% women) completed both a 4DFR and SFFQ on selected foods and constituted
the study sample for dietary method comparisons (Figure 1).

The participants that completed a 4FDR between 31 May 2014 to 13 June 2015 (n = 400)
were invited to repeat the 4FDR and the SFFQ. The study sample for this reproducibility
study included the 180 participants with complete repeated measurements from both 4DFR
and SFFQ. The mean interval between the assessments was 1.6 years (±0.3).

Plasma metabolite levels were measured in 1433 out of the 1601 participants with
complete dietary data from the baseline measurements and constituted the study sample
for validation of citrus intake against proline betaine in plasma. When validating fatty
fish intake against CMPF, 101 participants were excluded due to reported use of omega-3
fatty acid containing supplements during the 4FDR, leaving 1332 participants. Finally, for
validation of fruit and vegetable intake against β-carotene, 132 of the 1433 participants were
excluded due to reported use of multivitamin dietary supplements commonly containing
β-carotene. Therefore, 1301 participants constituted the study sample.
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Eligible persons 
n = 5626

MOS halftime: clinical data 
n = 2644

4-d food record and short FFQ,
at baseline

n = 1601
Study sample method comparison

Plasma metabolite data at baseline

n = 1433
Study sample validation of citrus intake

Eligible for reproducibility study
Baseline 4-d food record 2014-05-31 to 2015-06-13 

n = 400

Repeated 4-d food record and short FFQ

n = 180
Study sample reproducibility

No multivitamin supplements in 4-d food record

n = 1301
Study sample validation of fruit and vegetable intake 

No fish oil supplements in 4-d food record

n = 1332
Study sample validation of fatty fish intake

Figure 1. Flowchart of study samples in the Malmö Offspring Study until end of April 2017.

2.3. Dietary Data

Dietary intake was assessed with a web-based 4DFR, Riksmaten2010, developed
by the Swedish National Food Agency [19], and a semiquantitative SFFQ, developed
by nutritionists working with MOS. The participants were instructed via a video (https:
//www.youtube.com/watch?v=DB3bzD0FJMg, accessed on 3 October 2013) and asked
to record all they ate and drank during four consecutive days and to estimate their usual
portion sizes using a booklet containing 24 photographs or household measurement (e.g.,
cups, spoons, deciliters, etc.). Each set of photographs showed different portion sizes with
5–9 options depending on dish/food item. The participants started the 4DFR one day
after the first visit to the research clinic, a design chosen to make sure all weekdays were
represented in the study and that all participants had at least one weekend day included in
their 4DFR. For the repeated 4DFR, the participants were asked to start recording on the
weekday following the last weekday of their first 4DFR.

The relative validity of the Riksmaten2010 was validated by comparing the total
energy expenditure (TEE) measure by the objective double-labeled water technique to the
reported energy intake (r = 0.40) [19]. The average daily food intake (g/d) was calculated
based on information from the 4DFR and converted into nutrient and energy intakes
(including alcohol) using the National food database “Riksmaten vuxna 2010” (in Swedish)
version 10-05-05.

The SFFQ questionnaire included 32 selected food items (focusing on bread, vegetables,
fruits, fish, and sources of fat in cooking, see Supplementary Table S1), three questions
about beverages, and three about use of food replacement products (e.g., different shakes
such as Nutrilett), i.e., intakes that may be consumed irregularly or seldom and thereby
not satisfactorily captured when recorded during too few days as in a 4DFR. In addition,
four questions about meal type, one question about use of probiotics, and a final question
about previous substantial change of dietary habits were included. The participants were
asked to indicate average intake frequencies during the last six months (eight alternatives,
from “seldom/never” to “more than once per day” day). Additionally, fish portion sizes
were asked for using a set of photographs with six different portion sizes. The SFFQ has
not previously been validated.

https://www.youtube.com/watch?v=DB3bzD0FJMg
https://www.youtube.com/watch?v=DB3bzD0FJMg
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2.4. Anthropometric Measurements

Height (m) was measured to the nearest centimeter, without shoes and hats. Weight
(kg) was measured in light clothing on a calibrated balance beam or digital scale. Thereafter,
body mass index (BMI; kg/m2) was calculated from these measurements.

2.5. Other Variables

Physical activity levels (PAL) were based on two questions about physical activity at
work and leisure-time physical activity (LTPA) (both on a four-level scale ranging from
sedentary to heavy manual labor/exercise ≥ 3 × 30 min/week) in the 4DFR. Education
was based on the participant’s highest level of completed education defined as primary
(<9 years), secondary (9 years), upper secondary (12 years) and university degree. Smoking
status was obtained from the web-based lifestyle questionnaire and categorized as never-
smoker and ex/current smoker.

2.6. Liquid Chromatography–Mass Spectrometry Analysis

Profiling of metabolites was performed in EDTA plasma samples using two liquid
chromatography–mass spectrometry (LC-MS) methods, which have been described in
more detail previously [20]. Briefly, proline betaine and β-carotene were measured in
positive ion mode in samples separated on an Acquity UPLC BEH Amide column (1.7 µm,
2.1 × 100 mm; Waters Corporation, Milford, MA, USA). CMPF was measured in negative
ion mode in samples separated on an ACE C18 column (1.7 µm; 2.1 × 100 mm; Advanced
Chromatography Technologies Ltd., Aberdeen, UK). A more detailed description of the ana-
lytical procedures, data processing, normalization and metabolite identification is available
in Supplementary Material: Method explanation [21] and Supplementary Table S2.

2.7. Statistical Analysis

The SPSS statistical computer package (version 24.0; IBM Corporation, Armonk, NY,
USA) was used for all statistical analyses. Statistical significance was set at p < 0.05, and all
p-vales are two-sided. The differences in baseline characteristics including dietary intakes
from the 4DFR between the participants with a complete single dietary measurement com-
pared to those with repeated dietary measurements were tested using general linear model
for continuous variables, adjusted for age and sex where applicable, and chi-square test
for categorical variables. Crude means and standard deviations for food intakes obtained
from the 4DFR and the SFFQ, at baseline and at the second measurement, are presented in
women and men separately. Regarding baseline measurements, data are presented both
among all individuals (study sample for method comparisons) and among those with
complete repeated measurements (study sample for reproducibility analyses). We used
Spearman correlations (rho = ρ) because dietary intakes were not normally distributed.
The correlation coefficients are presented stratified by sex because it is well known that
both dietary habits and accuracy of dietary reporting could differ between women and
men [22,23]. Spearman correlations were calculated to compare (i) intakes obtained from
the 4DFR (g/d) and SFFQ (times/month and g/d for fish intake), (ii) intakes from repeated
measurements and (iii) reported intakes and combined intake estimates of fatty fish, fruits
and vegetables and citrus with objective biomarkers in plasma. Combined intake estimates
were obtained by reducing reported intakes from the 4DFR and SFFQ at baseline into one
score using principal component analysis, in line with previous combinations of reported
intakes and biomarker levels [24].

Agreement of repeated intakes of nutrients and important food sources of fiber ob-
tained using the 4DFR were also evaluated by cross-classification of intake quartiles and
calculation of Cohen’s κ. We excluded participants reporting use of fish oil supplements
when fish intake was compared to CMPF in plasma, and participants reporting use of
multivitamin supplements when fruit and vegetable intake was compared to β-carotene
in plasma. In addition to absolute intakes, energy adjusted intakes from the 4DFR were
evaluated using intakes divided with non-alcohol energy intake.
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3. Results
3.1. Baseline Characteristics and Reported Intakes from the Different Dietary Assessments

The participants with complete data from repeated dietary measurements (n = 180)
were older and more frequently women compared to participants who only had complete
dietary measurements from the baseline examination (n = 1421) (Table 1). In addition,
those with repeated measurements had lower BMI, higher HDL-cholesterol and higher
intake of polyunsaturated fat (PUFA) according to the 4DFRs, and a higher percentage
among them had a university degree at baseline. There were no significant differences in
intakes of energy, protein, carbohydrates, saturated fat, fiber, sucrose, meat, whole grain,
fruit and vegetables or sugar-sweetened beverages between those with single and repeated
dietary measurements.

Table 1. Baseline characteristics among the 1601 MOS participants with single (n = 1421) or repeated dietary data from both
4-d food records (4DFR) and the short food frequency questionnaire (SFFQ) (n = 180).

Baseline Characteristics a Participants with Only Baseline Diet Data
(n = 1421)

Participants with Repeated Diet Data
(n = 180) p Value b

Age (y) 40.3 (39.6, 41.0) 46.2 (44.2, 48.2) <0.001
Sex (women n (%)) 770 (54.2) 115 (63.9) 0.01

BMI (kg/m2) 25.8 (25.6, 26.1) 24.8 (24.1, 25.4) 0.003
Systolic blood pressure (mmHg) 116.5 (115.9, 117.2) 114.9 (113.0, 116.7) 0.09
Diastolic blood pressure (mmHg) 71.7 (71.3, 72.1) 70.5 (69.3, 71.7) 0.07

Fasting glucose (mmol/L) 5.5 (5.4, 5.5) 5.4 (5.3, 5.6) 0.33
Triglycerides (mmol/L) 1.1 (1.1–1.2) 1.0 (0.9–1.1) 0.09

HDL-C (mmol/L) 1.61 (1.59, 1.63) 1.69 (1.63, 1.75) 0.02
LDL-C (mmol/L) 3.17 (3.12, 3.21) 3.10 (2.97, 3.23) 0.32

Total cholesterol (mmol/L) 4.97 (4.91, 5.01) 4.92 (4.78, 5.07) 0.58
Total energy (kcal/d) 2028 (1998, 2058) 2070 (1984, 2155) 0.37

Protein (E%) 17.6 (17.4, 17.8) 17.3 (16.7, 17.9) 0.30
Carbohydrates (E%) 45.1 (44.7, 45.5) 45.1 (44.0, 46.2) 0.97

Fat (E%) 37.3 (36.9, 37.6) 37.6 (36.5, 38.6) 0.60
Saturated fat (E%) 14.2 (14.0, 14.4) 13.9 (13.4, 14.4) 0.32

PUFA (E%) 6.0 (5.9, 6.1) 6.4 (6.1, 6.7) 0.02
Fiber (g/1000kcal) 9.7 (9.6, 9.9) 9.9 (9.4, 10.3) 0.59

Sucrose (E%) 8.4 (8.2, 8.7) 8.3 (7.6, 8.9) 0.66
Alcohol (g/d) 14.0 (13.1, 14.9) 14.9 (12.3. 17.5) 0.52

Red meat (g/d) 87.1 (84.2, 89.0) 85.0 (76.9, 93.1) 0.63
Fruits and vegetables (g/d) 264.8 (256.4, 273.1) 257.0 (233.2, 280.8) 0.55

Whole grain (g/d) 35.2 (33.1, 37.3) 35.4 (29.4, 41.3) 0.96
Sugar-sweetened beverages (g/d) 94.4 (86.2, 102.6) 85.6 (62.4, 108.9) 0.48

Physical activity (PAL) 1.66 (1.66, 1.67) 1.66 (1.64, 1.68) 0.43
Smokers, ex or current (n (%)) 500 (37.3) 63 (35.4) 0.62
Higher education, university

degree (n (%)) 517 (38.7) 90 (51.1) 0.01

BMI: body mass index, HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; PUFA: polyunsaturated
fat. a Information was missing for some participants: SBP (n = 1402/n = 179); f-glucose (n = 1420/n = 180); Triglycerides (n = 1406/n = 180);
HDL-C and total cholesterol (n = 1417/n = 180); LDL-C (n = 1416/n = 180); Education (n = 1337/n = 176); Smoking (n = 1341/n = 178);
b The general linear model, adjusted for age and sex when applicable, for continuous and chi2-test for categorical variables. Mean (±SD)
for continuous and n (%) for categorical variables. p < 0.05. Dietary data from 4-d food records.

Mean food intakes from the repeated 4DFRs and the repeated SFFQ are presented for
both women and men in Supplementary Table S3. Means from baseline measurements
are given both in the whole study sample and among those with repeated measurements.
Mean nutrient intakes at baseline obtained from the 4DFR are presented in Supplementary
Table S4, together with food intakes that were only reported in the 4DFR.

3.2. Comparison of Intakes Obtained from 4DFR and SFFQ

The median Spearman correlation between baseline food intakes assessed by the
4DFR and the SFFQ was 0.33 (range: 0.21–0.50) in the whole study sample (n = 1601),
with the lowest correlation for cruciferous vegetables (i.e., cabbage, cauliflower, broccoli,
Swedish turnip) and the highest for fruits and berries (Table 2). In sex-specific analysis, the
lowest correlation was seen for cruciferous vegetables in men (ρ = 0.16), and the highest
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for low-calorie beverages in women (ρ = 0.52). Specific fruits, vegetables and fish showed
lower correlation than the overall food groups. The correlations for citrus (ρ = 0.42) and
berries (ρ = 0.34) were, for example, lower than that for total intakes of fruits and berries
(ρ = 0.50), and correlations for fatty fish (ρ = 0.29) and lean fish (ρ = 0.26) were lower than
that for total fish intake (ρ = 0.33).

Table 2. Spearman correlations * between food intakes assessed by the 4-d food record (4DFR) (g/d) and the short food
frequency questionnaire (SFFQ) (times/month and g/d for fish intake), in 1601 women and men from the Malmö Offspring
Study.

Dietary Factor

ρ

Baseline Measurements
All

(n = 1601)

ρ

Baseline Measurements
Women
(n = 885)

ρ

Baseline Measurements
Men

(n = 716)

Fruit and berries 0.50 0.48 0.45
Citrus 0.42 0.43 0.39
Berries 0.34 0.33 0.30

Vegetables total 0.35 0.35 0.35
Legumes 0.26 0.30 0.21

Green leafy vegetables 0.31 0.31 0.28
Cruciferous vegetables 0.21 0.24 0.16

High-fiber soft bread total 0.33 0.31 0.36
High-fiber crisp bread 0.35 0.35 0.31
Low-fiber soft bread 0.32 0.34 0.27

Fish total (including shellfish) 0.33 0.31 0.35
Fatty fish 0.26 0.28 0.26

Lean fish and shellfish 0.26 0.25 0.29
Sugar-sweetened beverages 0.42 0.39 0.44

Low-calorie beverages 0.49 0.52 0.44

* p < 0.01 for all correlations.

We also examined correlations between baseline intakes obtained from the two meth-
ods restricted to those who participated in the repeated dietary measurements (n = 180). In
that subsample, we observed slightly higher correlations between the two methods regard-
ing most of the baseline intakes (median ρ = 0.39, range: 0.16–0.62 in analysis of women
and men together) (Figure 2, Supplementary Table S5). Finally, the two methods were
compared using mean intakes of the repeated measurements (2 × 4DFR vs. 2 × SFFQ). We
observed higher correlation between the two methods for all intakes based on repeated
measurements (median ρ = 0.44, range 0.26–0.74), compared to correlations between base-
line measurements only, and especially regarding sub-groups of vegetables, soft bread and
fatty fish (Figure 2, Supplementary Table S5). The median Spearman correlation between
the two methods regarding the measurements performed 1.6 y after baseline was 0.35
(range: 0.28–0.68).

3.3. Reproducibility of Intakes Obtained from 4DFR

The median Spearman correlation between food and nutrient intakes obtained from
the baseline 4DFRs and the repeated 4DFRs was 0.41 (range: 0.07–0.79) (Table 3). The
correlations were in general higher for nutrients (median ρ = 0.48, range: 0.21–0.60) than for
foods, with the lowest correlation observed for vitamin D and the highest for carbohydrates
and water (Table 3). Correlations between nutrient intakes obtained from the repeated
4DFRs were in general somewhat higher in women; only correlations between intakes
of PUFA (ρ = 0.24 vs. 0.37) and vitamin E (ρ = 0.30 vs. 0.48) indicated markedly lower
correlations in women than in men. In men, the correlation between repeated β-carotene
intake data was especially low (ρ = 0.05). Correlation between the repeated 4DFRs were,
with a few exceptions, slightly higher for absolute intakes (median ρ = 0.48) than for
energy-adjusted intakes (median ρ = 0.41) (data only shown for women and men together).
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Figure 2. Correlations between 4DFR and SFFQ based on baseline vs. mean of baseline and repeated measurements.
Stronger correlations were observed between the two methods for all intakes based on mean of baseline and repeated
measurements (2 × 4DFR and 2 × SFFQ) compared to correlations between baseline measurements only, especially
regarding specific vegetables, soft bread and fatty fish. Data from individuals with repeated dietary measurements in the
Malmö Offspring Study (n = 180).

Table 3. Spearman correlations between dietary intakes from the first and repeated 4-d food record (4DFR) (g/d) in the
Malmö Offspring Study (n = 180).

Dietary Intakes
ρ

All
n = 180

ρ

Women
n = 115

ρ

Men
n = 65

ρ Eneradj a

All
n = 180

Energy 0.51 * 0.57 * 0.43 *
Carbohydrates (non fiber) 0.60 * 0.62 * 0.53 * 0.54 *

Fat 0.43 * 0.45 * 0.38 * 0.40 *
Saturated fat 0.39 * 0.44 * 0.28 * 0.34 *

Monounsaturated fat 0.44 * 0.42 * 0.42 * 0.37 *
Polyunsaturated fat 0.29 * 0.24 * 0.37 * 0.21 *

Protein 0.52 * 0.47 * 0.47 * 0.51 *
Fiber 0.58 * 0.68 * 0.36 * 0.58 *

Sucrose 0.41 * 0.43 * 0.36 * 0.32 *
Monosaccharides 0.53 * 0.58 * 0.48 * 0.50 *

Disaccharides 0.47 * 0.50 * 0.44 * 0.41 *
Vitamin C 0.49 * 0.46 * 0.47 * 0.52 *

Folate 0.48 * 0.54 * 0.39 * 0.50 *
Retinol equivalent 0.35 * 0.36 * 0.33 * 0.34 *

β-carotene 0.38 * 0.55 * 0.05 0.41 *
Vitamin D 0.21 * 0.17 0.28 * 0.20 *
Vitamin E 0.36 * 0.30 * 0.48 * 0.40 *
Alcohol 0.51 * 0.52 * 0.46 * 0.47 *

Iron 0.48 * 0.54 * 0.33 * 0.46 *
Zink 0.49 * 0.43 * 0.46 * 0.31 *

Magnesium 0.55 * 0.60 * 0.46 * 0.48 *
Calcium 0.43 * 0.52 * 0.29 * 0.42 *
Sodium 0.49 * 0.43 * 0.44 * 0.32 *

Water (in beverages and food moisture) 0.60 * 0.62 * 0.57 * 0.48 *
Whole grain 0.37 * 0.38 * 0.34 * 0.40 *

Low-fiber Soft bread total 0.36 * 0.40 * 0.25 * 0.33 *
High-fiber soft bread total 0.36 * 0.38 * 0.41 * 0.43 *

High-fiber crisp bread 0.32 * 0.35 * 0.34 * 0.34 *
Breakfast cereals/porridge 0.51 * 0.53 * 0.50 * 0.50 *
Rice, pasta and other grains 0.28 * 0.20 * 0.43 * 0.22 *

Nuts/seeds 0.40 * 0.47 * 0.15 0.40 *
Red meat, non processed 0.33 * 0.30 * 0.26 * 0.28 *

Processed meat 0.32 * 0.31 * 0.19 0.27 *
Total red meat 0.47 * 0.42 * 0.40 * 0.43 *

Poultry 0.21 * 0.24 * 0.16 0.25 *
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Table 3. Cont.

Dietary Intakes
ρ

All
n = 180

ρ

Women
n = 115

ρ

Men
n = 65

ρ Eneradj a

All
n = 180

Vegetarian products b 0.43 * 0.42 * 0.51 * 0.44 *
Egg 0.29 * 0.31 * 0.26 * 0.30 *

Total dairy 0.45 * 0.38 * 0.56 * 0.42 *
Yoghurt/sour milk 0.52 * 0.54 * 0.45 * 0.54 *

Milk, non fermented total 0.47 * 0.50 * 0.44 * 0.43 *
Cheese 0.29 * 0.33 * 0.21 * 0.30 *

Butter based spreads 0.44 * 0.52 * 0.30 * 0.45 *
Oil-based spreads 0.48 * 0.49 * 0.43 * 0.48 *

Fatty fish 0.08 0.07 0.09 0.05
Lean fish and shellfish 0.07 0.07 0.06 0.11

Fish total 0.15 * 0.15 0.16 0.22 *
Vegetables total 0.47 * 0.53 * 0.28 * 0.51 *

Legumes 0.23 * 0.26 * 0.16 0.23 *
Root vegetables 0.27 * 0.41 * 0.06 0.27 *

Green leafy vegetables 0.30 * 0.34 * 0.21 0.32 *
Cruciferous vegetables 0.21 * 0.22 * 0.15 0.20 *

Potatoes 0.37 * 0.34 * 0.38 * 0.36 *
Fruit and berries, total 0.51 * 0.46 * 0.38 * 0.38 *

Citrus 0.39 * 0.29 * 0.27 * 0.32 *
Berries 0.29 * 0.31 * 0.16 0.30 *

Sweets/pastry/desserts 0.32 * 0.19 * 0.48 * 0.32 *
Jam, sugar and honey 0.21 * 0.24 * 0.14 0.20 *

Salty snacks 0.31 * 0.24 * 0.44 * 0.31 *
Food replacement products 0.44 * 0.41 * 0.49 * 0.43 *
Sugar-sweetened beverages 0.43 * 0.33 * 0.53 * 0.42 *

Low-calorie beverages 0.47 * 0.31 * 0.67 * 0.46 *
Juice 0.34 * 0.32 * 0.34 * 0.32 *
Tea 0.69 * 0.67 * 0.72 * 0.70 *

Coffee 0.79 * 0.81 * 0.75 * 0.79 *
Water (tap and bottled) 0.63 * 0.60 * 0.58 * 0.62 *

* p < 0.01 for indicated correlations. a Energy adjusted dietary intakes in the 180 participants were calculated using intakes divided with
non-alcohol energy intake; b Meat/milk/cheese replacement products.

Regarding food intakes from the repeated 4DFRs, the Spearman correlations ranged
between 0.06 (root vegetables in men) and 0.81 (coffee in women). In analysis of women and
men together, the median Spearman correlation was 0.36 and we observed correlations of
at least 0.45 for overall food groups such as total intakes of red meat, fruits, vegetables and
dairy products. Lower correlations were in general observed for intakes of more specific
foods. Correlations for specific vegetables (ρ = 0.21–0.30) were for example lower than the
correlation between repeated measurements of total vegetable intake (ρ = 0.47). Similarly,
the correlations for citrus (ρ = 0.39) and berries (ρ = 0.29) were lower than that for total
intake of fruits and berries (ρ = 0.51), and correlations between repeated measurements
of processed (ρ = 0.32) and unprocessed red meat (ρ = 0.33) were lower than that for total
red meat (ρ = 0.47). Among examined dairy products, the lowest correlation was seen for
cheese (ρ = 0.29) and the highest was seen for yoghurt/sour milk (ρ = 0.52), which was
somewhat higher than that for total intake of dairy products (ρ = 0.45). In contrast to other
overall food groups, total fish intake from the repeated 4DFRs showed a correlation of only
ρ = 0.15 and specific intakes of fatty fish (ρ = 0.08) and lean fish (ρ = 0.07) showed even
lower correlations. Correlations for fish intakes were weak in both genders.

Correlations between repeated measurements of vegetable intakes were found to be
higher in women (ρ = 0.53 for total vegetable compared to ρ = 0.28 in men, and ρ = 0.22–0.41
for specific vegetables in women compared to ρ = 0.06–0.21 in men). The highest corre-
lations between intakes from the repeated 4DFRs were seen for coffee and tea in both
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genders, with the highest correlation observed for coffee in women (ρ = 0.81) and for tea in
men (ρ = 0.72).

On average 80% of the women were classified in the correct or adjacent quartile of
the examined nutrient intakes from the repeated measurements, ranging from 70% for
vitamin D to 90% for fiber (Table 4). In men, the corresponding average was somewhat
lower (76%), ranging from 60% for β-carotene to 85% for monounsaturated fat and vitamin
C (median = 77%). Kappa values were found to be ≥0.20 for most of the intakes. When
specifically examining four important food sources of fiber (fruits and berries, vegetables,
high-fiber bread and breakfast cereals/porridge), we observed similar results for the
different sources, 79–82% of the women were found to be classified in the same or adjacent
intake quartile of the different sources, and 68–74% of the men (Supplementary Table S6).

Table 4. Agreement between quartiles of nutrient intakes from the first and repeated 4-d food record (4DFR) in the Malmö
Offspring Study (n = 180).

Women
Cross-Classification (%)

Men
Cross-Classification (%) All

Dietary Intakes

Perfect
Agreement

(Same
Quartile)

Same or
Adjacent
Quartile

Gross Mis-
classification

(Opposite
Quartile)

K

Perfect
Agreement

(Same
Quartile)

Same or
Adjacent
Quartile

Gross mis-
classification

(Opposite
Quartile)

K K

Energy 47.0 84.4 3.4 0.28 38.5 76.8 3.1 0.13 0.25
Carbohydrates

(non fiber) 49.5 86.1 1.7 0.32 44.6 80.0 4.6 0.23 0.30

Fat 38.4 80.9 5.2 0.17 44.7 75.3 7.7 0.25 0.21
Saturated fat 40.0 75.8 3.4 0.20 40.1 67.6 7.7 0.20 0.20

Monounsaturated fat 35.7 76.6 5.2 0.14 36.9 84.8 9.2 0.15 0.15
Polyunsaturated fat 33.9 71.3 7.8 0.12 44.6 80.0 7.7 0.27 0.17

Protein 42.7 80.8 3.5 0.14 38.5 80.0 4.6 0.22 0.22
Fiber 48.7 89.6 1.8 0.31 32.4 81.6 4.6 0.13 0.25

Sucrose 40.1 79.1 5.2 0.23 43.1 72.3 9.2 0.20 0.22
Alcohol 40.9 79.9 2.6 0.20 44.6 76.9 10.8 0.25 0.23

Vitamin C 45.2 80.1 2.6 0.27 46.1 84.7 9.2 0.27 0.27
Folate 40.9 79.1 1.8 0.21 38.5 72.3 3.1 0.19 0.20

β-carotene 40.0 81.0 2.6 0.20 29.3 60.1 6.1 0.04 0.15
Vitamin D 33.0 70.3 10.5 0.11 27.7 73.6 11.0 0.04 0.08
Vitamin E 32.2 70.4 6.1 0.09 46.2 76.9 1.5 0.28 0.16

Iron 47.0 83.5 3.4 0.29 40.1 72.4 1.5 0.18 0.26
Zink 45.3 77.4 4.4 0.26 46.2 81.5 4.6 0.26 0.27

Magnesium 43.6 86.2 1.7 0.25 41.6 81.5 7.7 0.22 0.24
Calcium 38.2 80.9 2.6 0.18 27.7 70.7 6.2 0.03 0.13
Sodium 44.3 80.9 4.3 0.24 43.2 71.6 6.1 0.19 0.25
Water 51.2 84.3 1.8 0.35 39.9 81.7 1.5 0.20 0.30

3.4. Reproducibility of Intakes Obtained from SFFQ

Regarding the selected foods included in the SFFQ, the median Spearman correlation
between the repeated measurements was 0.59 (range: 0.32–0.79) (Table 5). The correlations
for specific foods were in general in the same range as those for overall food groups. The
Spearman correlation for fatty fish (ρ = 0.56 in analysis of women and men together) from
the repeated SFFQs was for example similar to that for total fish intake (ρ = 0.54). The
correlations for specific vegetables (ρ = 0.55–0.66) were similar to that for total vegetable
intake (ρ = 0.58), and the correlations for citrus (ρ = 0.59) and berries (ρ = 0.69) were almost
as high as that for total intakes of fruits and berries (ρ = 0.70). The lowest correlation
between the repeated SFFQs was seen for butter for cooking in women (ρ = 0.29) and the
highest was seen for fiber-rich crispbread in men (ρ = 0.80).
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Table 5. Spearman correlations * between repeated assessments of food intakes using the short food frequency questionnaire
(SFFQ) (times/month and g/d for fish intake) in 180 women and men from the Malmö Offspring Study.

Dietary Factor ρ

All
ρ

Women
ρ

Men

Low-fiber soft bread total 0.70 0.67 0.68
Low-fiber crispbread 0.40 0.38 0.45

High-fiber soft bread total 0.73 0.69 0.79
Medium high-fiber soft bread 0.60 0.56 0.63

Very high-fiber soft bread 0.61 0.58 0.66
High-fiber crisp bread 0.66 0.58 0.80

Fish total 0.54 0.58 0.44
Fatty fish 0.56 0.61 0.50

Lean fish and shellfish 0.55 0.51 0.62
Fish products times 0.48 0.51 0.45

Vegetables total 0.58 0.57 0.61
Legumes 0.61 0.60 0.63

Green leafy vegetables 0.55 0.64 0.37
Cruciferous vegetables 0.57 0.54 0.56

Onions 0.66 0.71 0.57
Tomatoes 0.60 0.64 0.51
Carrots 0.59 0.70 0.42

Other vegetables 0.48 0.47 0.51
Fruit and berries total 0.70 0.66 0.72

Fruits total 0.71 0.66 0.71
Citrus 0.59 0.57 0.63

Other fruits 0.64 0.64 0.53
Berries 0.69 0.72 0.61

Sugar-sweetened beverages 0.74 0.68 0.76
Low-calorie beverages 0.68 0.70 0.69

Energy/sport beverages 0.58 0.51 0.65
Butter for cooking 0.40 0.29 0.59

Margarine for cooking 0.44 0.42 0.47
Oil/liquid margarine for cooking 0.57 0.53 0.65

Oil/vinaigrette on salad 0.60 0.61 0.60
Energy bars/protein powder 0.58 0.62 0.56

Protein beverages 0.41 0.29 0.56
Food replacement products 0.32 0.28 0.39

Probiotic products 0.44 0.52 0.26
Home cooked meals 0.71 0.72 0.69

Precooked/ready to eat dishes 0.51 0.53 0.48
Eating out at restaurants 0.79 0.79 0.76

Take-away/fast food 0.72 0.76 0.66

* p < 0.01 for all correlations.

3.5. Validation of Fatty Fish Intake

Correlations between reported intakes of fatty fish and CMPF were higher for intakes
from the SFFQ (ρ = 0.45 in women, ρ = 0.46 in men) than from the 4DFR (ρ = 0.28 in women,
ρ = 0.22 in men) (Table 6). Correlations with CMPF did not improve when combining fatty
fish intakes from the two dietary assessment methods using PCA. Correlations between the
combined intake estimation and CMPF (ρ = 0.44 in women, ρ = 0.42 in men) were slightly
lower than those observed for the SFFQ per se.

3.6. Validation of Citrus Intake

Total citrus intake from 4DFR showed higher Spearman correlations with proline
betaine (ρ = 0.50 in women, ρ = 0.53 in men) than citrus intake from the SFFQ (intake
from juice was not included in the SFFQ estimation) (ρ = 0.34 in women, ρ = 0.36 in men)
(Table 6).
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Table 6. Spearman correlations * between fatty fish, citrus and fruits and vegetable intake estimations and the plasma
biomarkers 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), proline betaine, and β-carotene in the Malmö
Offspring Study.

Fatty Fish/CMPF n 4DFR SFFQ Combination 4DFR and SFFQ by PCA

All 1332 a 0.25 0.46 0.43
Women 731 0.28 0.45 0.44

Men 601 0.22 0.46 0.42
Citrus/

Proline betaine
All 1433 0.51 0.35 0.53

Women 794 0.50 0.34 0.50
Men 639 0.53 0.36 0.55

Fruits vegetable/
β-carotene

All 1301 b 0.35 0.32 0.39
Women 713 0.34 0.27 0.35

Men 588 0.30 0.30 0.36

CMPF: 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid; 4DFR: 4-d food record; SFFQ: short food frequency questionnaire; PCA:
principal component analysis. a in non-users of fish oil supplements; b in non-users of multivitamin supplements. * p < 0.01 for
all correlations.

In men, the highest correlation with proline betaine was seen for citrus scores obtained
when combining self-reported intakes from the two assessment methods (ρ = 0.55). In
women, the correlation with proline betaine and the combined intake estimation was
similar to that observed when using data from the 4DFR per se (ρ = 0.50).

3.7. Validation of Total Fruit and Vegetable Intake

Fruit and vegetable intake from the 4DFR (ρ = 0.35) and the SFFQ (ρ = 0.32) showed
similar correlations with plasma concentration of β-carotene in analysis of women and
men together (Table 6). In women, intakes from the SFFQ indicated somewhat lower
correlation with the biomarker compared to intakes from the 4DFR. For both genders,
highest correlations were seen between the combined intake estimation and β-carotene in
plasma (ρ = 0.39 in analysis of men and women together).

4. Discussion

In this population-based Swedish cohort study, we observed moderate correlations
between overall food groups in our main 4DFR method and an SFFQ. Higher agreement
between the methods was seen when intake data from two time points were included,
but the improvement varied between foods. Regarding the selected foods hypothesized
to be insufficiently captured on a 4-day basis and therefore assessed by both methods,
stronger correlations were seen between the repeated intakes obtained from the SFFQ
data than between repeated 4DFR data. Regarding nutrients, agreement between intake
levels from the repeated 4DFRs were found to be somewhat higher in women, where
on average 80% were found to be classified into the correct or adjacent quartile. When
validating intake data against objective plasma biomarkers, intake of fatty fish obtained
from the SFFQ showed strongest correlation with CMPF, whereas a combined measure of
fruit and vegetable intake obtained from the 4DFR and SFFQ showed stronger correlation
with β-carotene, than intakes from either method per se. Combining the methods was also
found to result in slightly higher correlation between intake data on citrus and the plasma
biomarker proline betaine.

Both food records and food frequency questionnaires are prone to errors. However,
correlation between repeated measurements showed higher overall precision of data
obtained from the SFFQ compared to the 4DFR. In addition, validation of intakes against
objective biomarkers indicated higher validity of intake data obtained from the SFFQ
regarding fatty fish. On the other hand, the results indicated similar validity of intake data
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obtained from the 4DFR, compared to the SFFQ, regarding citrus intake and total fruit and
vegetable intake, and that the best intake estimates could be obtained when combining
those measures.

As the time between repeated measurements varies between studies, and as different
studies did not evaluate reproducibility of identical food groups, comparison between
studies is not straightforward. However, the reproducibility correlations of the repeated
overall food group intakes obtained from 4DFRs in this study were in general moderate,
although very weak for fish [25], whereas correlations between repeated intakes from the
SFFQ were moderate or strong [25], and similar to those observed in other studies with
FFQs [26,27].

Moreover, only fatty fish intake obtained from the SFFQ showed a correlation with
the plasma biomarker CMPF that was in line with that observed in previous studies [9,28].
CMPF is incorporated in the cell membranes and is thereby a good marker of long-term
fatty fish intake [29,30]. However, we cannot exclude that 4DFR data for fatty fish may
be valuable when examining phenotypes that rapidly respond to dietary changes, such
as gut bacterial composition. Our observed Spearman correlation coefficients of around
0.3 between reported intake of fruit and vegetables and plasma β-carotene, from the 4DFR
as well as from the SFFQ, were similar to those observed in previous studies using differ-
ent dietary assessment methods (0.17 to 0.46) [8,29,31,32], and among men we observed
substantially stronger correlation with fruit and vegetable intake than when the same
Riksmaten2010 4DFR was evaluated in another study population [33]. Proline betaine is an
objective biomarker of citrus intake [14,15], and we observed correlations with total citrus
intake from the 4DFR from ρ = 0.50, which is comparable to [34,35] or somewhat stronger
than [30] those reported in other studies. Our lower correlation coefficients regarding citrus
intakes obtained from the SFFQ were probably due to the fact that the questionnaire did
not include juice intake, and citrus juice could be considered as an important source of
proline betaine.

To improve dietary data quality, our observed correlations between reported intakes
and biomarkers indicate that combining estimates from the 4DFR and SFFQ may result in
slightly better estimations of true habitual intakes regarding some foods. These findings
are important to consider when designing future dietary assessment studies. However,
our biomarker validation does not suggest that 4DFRs contribute importantly to valid
estimations of habitual fatty fish intake. Instead, the observed markedly higher correlation
between the 4DFR and SFFQ using mean intakes of baseline and repeated measurements
of fatty fish intake (8 d = 2 × 4 d) compared to correlations between baseline measurements
only indicate that repeating the measurements in all individuals, at another point in time,
could improve the quality of estimated habitual fatty fish intake. In fact, repeated 4DFRs
may give a better estimate of usual long-term intakes of fatty fish, bread and different types
of vegetables compared to the single 4DFRs. Finally, in addition to repeated measurements
and combined dietary assessment methods, a third opportunity might be to also include
biomarker data and thereby take advantage of the strengths of both the 4DFR and the SFFQ,
as well as objective intake estimates [7]. This possibility could be evaluated by examining
combined intake estimates in relation to markers of chronic disease in a future study.
However, it is important to consider the additional costs and representativeness of the
individuals in the study sample that agreed to participate in such combined measurements
in a large study population.

The strengths of this study include the large sample with intake data from both
the 4DFR and the SFFQ. In addition, data is available from repeated measurements and
objective plasma biomarkers regarding specific intakes. This enables comparison and
evaluation of different aspects of data quality of importance when selecting and combining
different types of data for differing purposes, such as studies of long-term diet in relation
to disease development or current diet in relation to gut bacterial composition. A limitation
of the study is that none of our data can be regarded as a golden standard, as both the
4DFR and the SFFQ are subject to different types of systematic errors. Consequently,
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our method comparisons do not give any strong general guidance regarding reported
intakes in relation to true usual intakes. However, although objective biomarkers also have
errors, comparisons against objective biomarkers showed correlations in line with those of
previous studies. Unfortunately, we do not have repeated biomarker data. Furthermore,
we cannot guarantee that the sample with complete repeated dietary measurements is
perfectly representative of the whole study sample with regard to accuracy of dietary
reporting, because those with repeated data may be more health conscious; they were more
often women and normal weight, and they had higher education, higher HDL-cholesterol
and higher intake of PUFA. To enable comparison of the two different dietary assessment
methods regarding their reproducibility, we only included individuals with repeated data
from both methods. We therefore ended up with a small sample of men (n = 65) included in
the reproducibility study, which may explain some of the rather weak correlations between
some of the specific food intakes obtained from the 4DFRs. On the other hand, we did not
observe stronger correlations between repeated 4DFRs, when adding 130 individuals with
repeated dietary data restricted to the 4DFR (range: ρ = 0.01 for fatty fish to ρ = 0.66 for
coffee). Moreover, due to the small study sample, we could not adjust the reproducibility
correlations between repeated 4DFRs for season and weekday. However, adjustment for
those factors, in future diet-disease studies, may improve observed risk estimates. Finally,
it is worth mentioning that, as diet varies over time, the correlation between repeated
measurements is influenced not merely by the precision of the methods, but also by true
dietary change over time. On the other hand, both factors are of importance when aiming
to assess long-term diet.

5. Conclusions

Regarding overall food groups, moderate correlations were in general seen between
two dietary assessment methods and between repeated measurements. Our findings
also showed that long-term intake of irregularly consumed foods was more accurately
captured by the SFFQ compared to a single 4DFR and that data could be improved by
repeated measurements. Assessment of fatty fish intake by the SFFQ indicated more valid
estimations compared to fish intake from the 4DFR, whereas a combined measure from
both diet assessment methods indicated most optimal estimations of fruit and vegetable
intakes. These findings will provide guidance for how dietary data from the MOS cohort
can be used and combined in future studies.
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